首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Genomics》2020,112(6):4348-4360
Extensins (EXTs) are major protein components in plant cell walls that play crucial roles in higher plants. The function of EXTs has been reported in several plants but is limited in tomato, especially in fruit ripening. In this study, we identified 83 EXTs in tomato, and divided them into seven groups. The gene intron-exon structure and protein-motif composition of SlEXTs were similar within each group but different among groups. SlEXT genes showed different expression patterns in roots, leaves, flowers and fruits, and some SlEXT gene expressions in flowers could be regulated by treatments of auxin, gibberellic acid and jasmonic acid. In particular, SlSEXT8 had higher and increased expression during tomato fruit ripening, and its expression could be induced by ethylene, suggesting SlSEXT8 may be involved in tomato fruit softening. The result provides insights into the function of EXTs, and will facilitate to further study EXT roles in tomato fruit ripening.  相似文献   

2.
Cyclins, cyclin-dependent kinases, and a number of other proteins control the progression of plant cell cycle. Although extensive studies have revealed the roles of some cell cycle regulators and the underlying mechanisms in Arabidopsis, relatively a small number of cell cycle regulators were functionally analyzed in rice. In this study, we describe 41 regulators in the rice genome. Our results indicate that the rice genome contains a less number of the core cell cycle regulators than the Arabidopsis one does, although the rice genome is much larger than the Arabidopsis one. Eight groups of CDKs similar to those in Arabidopsis were identified in the rice genome through phylogenetic analysis, and the corresponding members in the different groups include E2F, CKI, Rb, CKS and Wee. The structures of the core cell regulators were relatively conserved between the rice and Arabidopsis genomes. Furthermore, the expression of the majority of the core cell cycle genes was spatially regulated, and the most closely related ones showed very similar patterns of expression, suggesting functional redundancy and conservation between the highly similar core cell cycle genes in rice and Arabidopsis. Following auxin or cytokinin treatment, the expression of the core cell cycle genes was either upregulated or downregulated, suggesting that auxin and/or cytokinin may directly regulate the expression of the core cell cycle genes. Our results provide basic information to understand the mechanism of cell cycle regulation and the functions of the rice cell cycle genes. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users. Jing Guo and Jian Song have contributed equally.  相似文献   

3.
MADS-box基因是真核生物中一类重要的转录因子,参与调控多项植物的生长发育过程。然而关于谷子穗发育的MADS-box基因研究比较少。本研究使用序列相似性检索,在Phytozome 13.0数据库中筛选并且鉴定出了68个谷子MADS家族成员,并对这些家族成员的物理化学性质、系统发育树、染色体定位、表达谱等进行了全面的分析。结果表明,谷子MADS家族成员在染色体上分布不均匀,可以分为5个亚族。通过组织特异性表达谱分析得到,多数MADS基因在穗中表达量要高于其他器官。此外利用转录组测序技术对发育初期的谷穗和成熟期的谷穗进行了转录组测序分析,筛选到数个与谷穗分生组织发育相关MADS-box基因。为进一步揭示MADS-box基因在谷子穗发育过程中的作用奠定了重要的基础。  相似文献   

4.
PEBP (phosphatidylethanolamine-binding protein)家族包含保守的磷脂酰乙醇胺结合蛋白结构域,其中FT和TFL1蛋白构成植物成花素–反成花素系统调控植物的开花时间和株型结构被广泛关注。小鼠耳芥(Arabidopsis pumila)是早春短命植物,生长在古尔班通古特沙漠南缘荒漠地带,对环境具有较好的适应性。本研究对小鼠耳芥PEBP基因家族进行全基因组鉴定,发现其基因组包含11个PEBP基因(1个MFT、2个FT、2个TSF、2个TFL1、2个CEN和2个BFT),均由4个外显子与3个内含子组成。共线性分析表明,小鼠耳芥与拟南芥(A. thaliana)、琴叶拟南芥(A. lyrata) PEBP基因间存在11对共线性关系,PEBP家族在小鼠耳芥基因组中发生了明显的扩张,并且ApPEBP基因复制类型为全基因组复制/片段复制。组织表达分析发现ApMFT在种子中高表达,ApFT和ApBFT主要在花和果荚中表达,ApTFL1在茎尖中高表达,但ApCEN在根中高表达。进一步分析了6个ApPEBP基因在4种非生物胁迫下的表达特征,发现在10%PEG6000...  相似文献   

5.
《Genomics》2020,112(2):1371-1383
The two-component system (TCS) plays an important role in signal transduction pathways, cytokinin signaling and stress resistance of prokaryotes and eukaryotes. It is comprised of three types of proteins in plants; histidine kinases (HKs), histidine phosphotransfer proteins (HPs) and response regulators (RRs). Chickpea (Cicer arietinum L.) is one of the most important legume crops worldwide with special economic value in semi-arid tropics. Availability of complete genome sequence of chickpea presents a valuable resource for comparative analysis among angiosperms. In current study, Arabidopsis thaliana and Oryza sativa were used as reference plant species for comparative genomics analysis with C. arietinum. A genome-wide computational survey enabled us to identify putative members of TCS protein family including 18HKs, 26 RRs (7 type-A, 7 type-B, 2 type C and 10 pseudo) and 7 HPs (5 true and 2pseudo) genes in chickpea. The predicted TCS genes displayed family specific intron/exon organization and were randomly distributed across all the eight chromosomes. Comparative phylogenetic and evolutionary analysis suggested a variable conservation of TCS genes in relation to mono/dicot model plants and segmental duplication was the principal route of expansion for this family in chickpea. The promoter regions of TCS genes exhibited several abiotic stress-related cis-elements indicating their involvement in abiotic stress response. The expression analysis of TCS genes demonstrated stress (drought, heat, osmotic and salt) specific differential expression. Current study provides insight into TCS genes in C. arietinum, which will be helpful for further functional analysis of these genes in response to different abiotic stresses.  相似文献   

6.
7.
8.
通过生物信息学方法,对毛竹(Phyllostachys edulis(Carrière)J.Houzeau)TPS基因家族的成员进行鉴定,并对其编码蛋白的理化性质、基因结构、进化关系、蛋白结构、启动子元件及表达模式进行了分析。结果表明,毛竹全基因组含有14个TPS候选基因,大小为693~2439 bp。编码蛋白等电点为5.08~8.17。系统发育分析结果显示,毛竹含有TPS-a、TPS-b、TPS-e/f、和TPS-g 4个亚家族,成员数目分别为6、5、2、1个。TPS蛋白质二级结构中,α-螺旋和无规则卷曲所占比重较大;毛竹TPS基因家族各成员蛋白三维结构比较相似。基因启动子分析共获得50个调控元件,可分为6大类,其中光响应相关元件数量最多,共包含17个顺式调控元件。基于转录组测序数据构建的基因表达谱热图分析结果表明,Pe TPS在叶、花和笋等7个组织中的表达差异明显,表现出组织特异性,其中Pe TPS9仅在早花期花序中表达,Pe TPS8仅在叶中表达。  相似文献   

9.
Brassinolide (BR) is crucial for regulating plant architecture. Apple dwarfing rootstocks are used to control apple tree size. However, information regarding the effects of BR on apple trees is limited. In addition, the molecular mechanism underlying the dwarfing of apple rootstocks is poorly understood. To elucidate the role of BR signal transduction genes in controlling apple tree architecture, five BR receptor kinase 1 (BRI1), nine BR-signaling kinase 1 (BSK1), two BRI1 KINASE INHIBITOR 1 (BKI1), and seven BR-insensitive 2 (BIN2) genes were analyzed. Bioinformatic analyses revealed that gene duplication events likely contributed to the expansion and evolution of the identified genes. Nine homologs between apple and Arabidopsis thaliana were also identified, and their expression patterns in different tissues were characterized. Exogenous BR treatments increased the primary shoot length and altered the expression of BR signal transduction genes (MdBRI1-5, MdBSK3-8, MdBKI12, MdBIN14, and MdBIN6/7). The scion of Fuji/Malling 9 (M.9) trees exhibited inhibited growth compared with that of Fuji/Fuji trees. The Fuji/M.9 trees had lower levels of the positive regulators of BR signaling (MdBRI1-5,MdBSK1, MdBSK4/7, and MdBSK6) and higher levels of the negative regulators (MdBIN5-7) compared with the Fuji/Fuji trees. Thus, the above-mentioned genes may help to regulate apple tree size in response to BR. In addition, MdBRI15, MdBSK1, MdBSK4/7, MdBSK6, and MdBIN57 have important roles in different grafting combinations. Our results may provide the basis for future analyses of BR signal transduction genes regarding their potential involvement in the regulation of plant architecture.  相似文献   

10.
Sm proteins are members of a family of small proteins that are widespread in biosphere and found associated with RNA metabolism. To date, to our knowledge, only Arabidopsis SAD1 gene has been studied functionally in plant. In this study, 42 Sm genes are identified through comprehensive analysis in Arabidopsis. And a complete overview of this gene family is presented, including the gene structures, phylogeny, chromosome locations, selection pressure and expression. The results reveal that gene duplication contributes to the expansion of the Sm gene family in Arabidopsis genome, diverse expression patterns suggest their functional differentiation and divergence analysis indicates purifying selection as a key role in evolution. Our comparative genomics analysis of Sm genes will provide the first step towards the future experimental research on determining the functions of these genes.  相似文献   

11.
12.
Wang  Sining  Sun  Huayu  Xu  Xiurong  Yang  Kebin  Zhao  Hansheng  Li  Ying  Li  Xueping  Gao  Zimin 《Molecular biology reports》2019,46(2):1909-1930
Molecular Biology Reports - Brassinosteroids (BRs) are a group of plant steroid hormones that play crucial roles in a range of plant growth and development processes. BR action includes active BR...  相似文献   

13.
14.
15.
16.
李晓旭  刘成  李伟  张增林  高晓明  周慧  郭永峰 《遗传》2016,38(5):444-460
WUSCHEL相关的同源异型盒(WUSCHEL-related homeobox,WOX)是一类植物特异的转录因子家族,具有调控植物干细胞分裂分化动态平衡等重要功能。本研究利用番茄(Solanum lycopersicum)基因组数据,通过建立隐马尔科夫模型并进行检索,鉴定了番茄10个WOX转录因子家族成员。多序列比对发现,番茄WOX转录因子家族成员具有高度保守的同源异型结构域;以拟南芥WOX转录因子家族成员序列为参照,通过邻接法、极大似然法、贝叶斯法重建了系统发育树,三者呈现出类似的拓扑结构,番茄和拟南芥WOX转录因子家族共25个成员被分为3个进化支(Clade)和9个亚家族(Subgroup);利用MEME和GSDS对WOX转录因子家族成员的蛋白保守结构域和基因结构进行了分析,同一亚家族内的WOX转录因子家族成员的保守结构域的种类、组织形式以及基因结构具有高度的一致性;利用Perl和Orthomcl对家族成员的染色体定位和同源性关系进行分析,结果表明串联重复的SlWOX3a和SlWOX3b可能来源于一次复制事件;利用番茄转录组数据和qRT-PCR进行表达分析,结果显示家族成员在不同组织中的表达存在差异,暗示了WOX家族的不同成员在功能上可能具有多样性。本研究对番茄WOX转录因子家族成员进行GO(Gene Ontology)注释和比较分析,结果表明该家族成员作为转录因子,可能在组织器官发育、细胞间通讯等过程中发挥作用。  相似文献   

17.
赤霉素(Gibberellin)是一类非常重要的植物激素,在高等植物生命活动的整个周期都起着重要的调控作用。从毛竹Phyllostachys edulis基因组中共鉴定出23个赤霉素途径基因,包括赤霉素生物合成相关的8个GA20ox和1个GA3ox基因、降解相关的8个GA2ox基因、参与赤霉素感知的2个GID1基因以及信号转导的2个GID2基因和2个DELLA基因。拟南芥、水稻和毛竹的系统进化树和保守基序分析显示赤霉素的合成代谢与信号转导在这些物种中是高度保守的。利用外源赤霉素处理毛竹种子和幼苗,发现赤霉素能显著提高种子的萌发率和幼苗的茎秆伸长,并且有着最佳的作用浓度。在GA3处理后,毛竹体内赤霉素生物合成基因GA20ox和GA3ox表达量均下调而降解活性赤霉素的GA2ox基因表达量上调;赤霉素受体GID1和正调控基因GID2的转录水平显著提高而负调控基因DELLA的表达受到抑制。这些基因在竹笋茎秆的不同形态学位置表达差异明显,大部分赤霉素生物合成与降解的相关基因GA20ox、GA3ox和GA2ox以及赤霉素受体GID1和正调控基因GID2都在竹笋的形态学上端大量表达,而赤霉素信号转导的阻遏基因DELLA在笋体形态学底端大量积累而顶端基本不表达。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号