共查询到20条相似文献,搜索用时 15 毫秒
1.
Several complementary experimental approaches were used to demonstrate that the SPO11 gene is specifically required for meiotic recombination. First, sporulating cultures of spo11-1 mutant diploids were examined for landmark biochemical, cytological and genetic events of meiosis and ascosporogenesis. Cells entered sporulation with high efficiency and showed a near-doubling of DNA content. Synaptonemal complexes, hallmarks of intimate homologous pairing, and polycomplex structures appeared during meiotic prophase. Although spontaneous mitotic intra- and intergenic recombination occurred at normal levels, no meiotic recombination was observed. Whereas greater than 50% of cells completed both meiotic divisions, packaging of the four meiotic products into mature ascospores took place in only a small subset of asci. Haploidization occurred in less than 1% of viable colony-forming units. Second, the Rec- meiotic defect conferred by spo11-1 was confirmed by dyad analysis of spores derived from spo13-1 single-division meiosis in which recombination is not a requirement for viable ascospore production. Diploids homozygous for the spo13-1 mutation undergo meiotic levels of exchange followed by a single predominantly equational division and form asci containing two near-diploid spores. With the introduction of the spo11-1 mutation, high spore viability was retained, whereas intergenic recombination was reduced by more than 100-fold. 相似文献
2.
A Meiotic Chromosomal Core Consisting of Cohesin Complex Proteins Recruits DNA Recombination Proteins and Promotes Synapsis in the Absence of an Axial Element in Mammalian Meiotic Cells 总被引:25,自引:0,他引:25 下载免费PDF全文
Jeanette Pelttari Mary-Rose Hoja Li Yuan Jian-Guo Liu Eva Brundell Peter Moens Sabine Santucci-Darmanin Rolf Jessberger Jose Luis Barbero Christa Heyting Christer Hg 《Molecular and cellular biology》2001,21(16):5667-5677
The behavior of meiotic chromosomes differs in several respects from that of their mitotic counterparts, resulting in the generation of genetically distinct haploid cells. This has been attributed in part to a meiosis-specific chromatin-associated protein structure, the synaptonemal complex. This complex consist of two parallel axial elements, each one associated with a pair of sister chromatids, and a transverse filament located between the synapsed homologous chromosomes. Recently, a different protein structure, the cohesin complex, was shown to be associated with meiotic chromosomes and to be required for chromosome segregation. To explore the functions of the two different protein structures, the synaptonemal complex and the cohesin complex, in mammalian male meiotic cells, we have analyzed how absence of the axial element affects early meiotic chromosome behavior. We find that the synaptonemal complex protein 3 (SCP3) is a main determinant of axial-element assembly and is required for attachment of this structure to meiotic chromosomes, whereas SCP2 helps shape the in vivo structure of the axial element. We also show that formation of a cohesin-containing chromosomal core in meiotic nuclei does not require SCP3 or SCP2. Our results also suggest that the cohesin core recruits recombination proteins and promotes synapsis between homologous chromosomes in the absence of an axial element. A model for early meiotic chromosome pairing and synapsis is proposed. 相似文献
3.
《Cell cycle (Georgetown, Tex.)》2013,12(18):2153-2159
The cyclin-dependent kinase (CDK) inhibitor roscovitine is under evaluation in clinical trials for its antiproliferative properties. Roscovitine arrests cell cycle progression in G1 and in G2 phase by inhibiting CDK2 and CDK1, and possibly CDK7 and CDK9. However, the effects of CDK2 inhibition in S-phase cells have been not fully investigated. Here, we show that a short-term treatment with roscovitine is sufficient to inhibit DNA synthesis, and to activate a DNA damage checkpoint response, as indicated by phosphorylation of p53-Ser15, replication protein A, and histone H2AX. Analysis of DNA replication proteins loaded onto DNA during S phase showed that the amount of proliferating cell nuclear antigen (PCNA), a cofactor of DNA replication enzymes, was significantly reduced by roscovitine. In contrast, chromatin-bound levels of DNA polymerase δ, DNA ligase I and CDK2, were stabilized. Checkpoint inhibition with caffeine could rescue PCNA disassembly only partially, pointing to additional effects due to CDK2 inhibition and the presence of replication stress. These results suggest that in S-phase cells, roscovitine induces checkpoint-dependent and -independent effects, leading to stabilization of replication forks and an uncoupling between PCNA and PCNA-interacting proteins. 相似文献
4.
Molecular and Genetic Analysis of Rec103, an Early Meiotic Recombination Gene in Yeast 总被引:2,自引:0,他引:2 下载免费PDF全文
In the yeast Saccharomyces cerevisiae at least 10 genes are required to begin meiotic recombination. A new early recombination gene REC103 is described in this paper. It was initially defined by the rec103-1 mutation found in a selection for mutations overcoming the spore inviability of a rad52 spo13 haploid strain. Mutations in REC103 also rescue rad52 in spo13 diploids. rec103 spo13 strains produce viable spores; these spores show no evidence of meiotic recombination. rec103 SPO13 diploids produce no viable spores, consistent with the loss of recombination. Mutations in REC103 do not affect mitotic recombination, growth, or repair. These phenotypes are identical to those conferred by mutations in several other early meiotic recombination genes (e.g., REC102, REC104, REC114, MEI4, MER2, and SPO11). REC103 maps to chromosome VII between ADE5 and RAD54. Cloning and sequencing of REC103 reveals that REC103 is identical to SKI8, a gene that depresses the expression of yeast double-stranded (``killer') (ds)RNA viruses. REC103/SKI8 is transcribed in mitotic cells and is induced ~15-fold in meiosis. REC103 has 26% amino acid identity to the Schizosaccharomyces pombe rec14(+) gene; mutations in both genes confer similar meiotic phenotypes, suggesting that they may play similar roles in meiotic recombination. 相似文献
5.
6.
The DNA damage response (DDR) and DNA repair are critical for maintaining genomic stability and evading many human diseases [1, 2]. Recent findings indicate that accumulation of?SUN1, a nuclear envelope (NE) protein, is a significant pathogenic event in Emery-Dreifuss muscular dystrophy and Hutchinson-Gilford progeria syndrome, both caused by mutations in LMNA [3, 4]. However, roles of mammalian SUN proteins in mitotic cell division and genomic stability are unknown. Here we report that the inner NE proteins SUN1 and SUN2 may play a redundant role in DDR. Mouse embryonic fibroblasts from Sun1(-/-)Sun2(-/-) mice displayed premature proliferation arrest in S phase of cell cycle, increased apoptosis and DNA damage, and decreased perinuclear heterochromatin, indicating genome instability. Furthermore, activation of ATM and H2A.X, early events in?DDR, were impaired in Sun1(-/-)Sun2(-/-) fibroblasts. A biochemical screen identified interactions between SUN1 and SUN2 and DNA-dependent protein kinase (DNAPK) complex that functions in DNA nonhomologous end joining repair and possibly in DDR [2, 5, 6]. Knockdown of DNAPK reduced ATM activation in NIH 3T3 cells, consistent with a potential role of SUN1- and SUN2-DNAPK interaction during DDR. SUN1 and SUN2 could affect DDR by localizing certain nuclear factors to the NE or by mediating communication between nuclear and cytoplasmic events. 相似文献
7.
Frank Tobias Daniel L?b Nicor Lengert Marco Durante Barbara Drossel Gisela Taucher-Scholz Burkhard Jakob 《PloS one》2013,8(2)
The response of cells to ionizing radiation-induced DNA double-strand breaks (DSB) is determined by the activation of multiple pathways aimed at repairing the injury and maintaining genomic integrity. Densely ionizing radiation induces complex damage consisting of different types of DNA lesions in close proximity that are difficult to repair and may promote carcinogenesis. Little is known about the dynamic behavior of repair proteins on complex lesions. In this study we use live-cell imaging for the spatio-temporal characterization of early protein interactions at damage sites of increasing complexity. Beamline microscopy was used to image living cells expressing fluorescently-tagged proteins during and immediately after charged particle irradiation to reveal protein accumulation at damaged sites in real time. Information on the mobility and binding rates of the recruited proteins was obtained from fluorescence recovery after photobleaching (FRAP). Recruitment of the DNA damage sensor protein NBS1 accelerates with increasing lesion density and saturates at very high damage levels. FRAP measurements revealed two different binding modalities of NBS1 to damage sites and a direct impact of lesion complexity on the binding. Faster recruitment with increasing lesion complexity was also observed for the mediator MDC1, but mobility was limited at very high damage densities due to nuclear-wide binding. We constructed a minimal computer model of the initial response to DSB based on known protein interactions only. By fitting all measured data using the same set of parameters, we can reproduce the experimentally characterized steps of the DNA damage response over a wide range of damage densities. The model suggests that the influence of increasing lesion density accelerating NBS1 recruitment is only dependent on the different binding modes of NBS1, directly to DSB and to the surrounding chromatin via MDC1. This elucidates an impact of damage clustering on repair without the need of invoking extra processing steps. 相似文献
8.
中心体是动物细胞有丝分裂期微管组织中心,对于细胞有丝分裂期形成纺锤体、正常分裂及染色体精确分离至关重要. 中心体失调控常造成遗传物质错误分配,最终诱发肿瘤形成.因此,对中心体结构及数量的精密调控将对细胞命运起着决定 作用.目前发现,中心体至少包含100多种调节蛋白,这些蛋白在细胞内的功能各异.最近很多研究显示,多种DNA损伤修复及 应答通路的激酶或磷酸酶定位于中心体,并且参与中心体调控.本文将对中心体结构、中心体复制、中心体分离、中心体扩 增、DNA损伤与中心体异常及DNA损伤反应性蛋白在中心体调控中的功能作一综述. 相似文献
9.
《Cell cycle (Georgetown, Tex.)》2013,12(9):1044-1048
The FHIT gene encompasses the most active common fragile site of the human genome and is thus exquisitely sensitive to intragenic alterations by DNA damaging agents, alterations that can lead to FHIT allele loss very early in the preneoplastic phase of cancer development, before or coincident with activation of the DNA damage checkpoint. Fhit protein expression is lost or reduced in many preneoplastic lesions and in >50% of cancers, Fhit knockout mice are highly susceptible to carcinogen induction of tumors and Fhit replacement in these mice by gene therapy induces apoptosis and significantly reduces tumor burden. But learning how Fhit induces apoptosis and suppresses tumors has been a challenge because interacting proteins, effectors of Fhit signals, have not been discovered.Nevertheless, the study of Fhit deficient mouse and human tissue-derived and cancer-derived cells in vitro has led to several important conclusions: repair protein-deficient cancers are more likely to be Fhit-deficient; Fhit-deficient cells show enhanced resistance to UVC, mitomycin C, camptothecin and ionizing radiation-induced cell killing, possibly due to strong activation of the ATR pathway following DNA damage; Fhit-deficient cells show higher efficiency of homologous recombination repair, a double-strand break repair pathway in mammalian cells; Fhit protein indirectly affects S-phase checkpoint and DNA repair. Finally, results of a recent study have suggested that the DNA damage-susceptible FRA3B/FHIT chromosome fragile region, paradoxically, encodes a protein, Fhit, that is necessary for protecting cells from accumulation of DNA damage, through modulation of checkpoint proteins Hus1 and phosphoChk1. Thus, inactivation of Fhit contributes to accumulation of abnormal checkpoint phenotypes in cancer development. It will be very important to determine mechanisms employed by Fhit in modulating checkpoint pathways, and to define consequences of Fhit loss in specific preneoplastic and neoplastic tissues, to provide rationales for effective replacement or reactivation of endogenous Fhit pathways in novel therapeutic or preventive approaches. 相似文献
10.
Yutaka Miyazawa Akiko Takahashi Akie Kobayashi Tomoko Kaneyasu Nobuharu Fujii Hideyuki Takahashi 《Plant physiology》2009,149(2):835-840
Roots respond not only to gravity but also to moisture gradient by displaying gravitropism and hydrotropism, respectively, to control their growth orientation, which helps plants obtain water and become established in the terrestrial environment. As gravitropism often interferes with hydrotropism, however, the mechanisms of how roots display hydrotropism and differentiate it from gravitropism are not understood. We previously reported MIZU-KUSSEI1 (MIZ1) as a gene required for hydrotropism but not for gravitropism, although the function of its protein was not known. Here, we found that a mutation of GNOM encoding guanine-nucleotide exchange factor for ADP-ribosylation factor-type G proteins was responsible for the ahydrotropism of Arabidopsis (Arabidopsis thaliana), miz2. Unlike other gnom alleles, miz2 showed no apparent morphological defects or reduced gravitropism. Instead, brefeldin A (BFA) treatment inhibited both hydrotropism and gravitropism in Arabidopsis roots. In addition, a BFA-resistant GNOM variant, GNM696L, showed normal hydrotropic response in the presence of BFA. Furthermore, a weak gnom allele, gnomB/E, showed defect in hydrotropic response. These results indicate that GNOM-mediated vesicular trafficking plays an essential role in hydrotropism of seedling roots.Stationary growth is a distinct feature of plants and distinguishes them from other organisms. Plants have evolved a variety of mechanisms for responding to environmental cues, which enables them to survive in the presence of limited resources or environmental stresses. One of the most important growth adaptations plants have acquired is tropism, growth response that involves bending or curving of plant organs toward or away from a stimulus. For example, roots display tropisms in response to environmental cues such as gravity, light, touch, and moisture (Darwin and Darwin, 1880; Takahashi, 1997; Correll and Kiss, 2002; Monshausen et al., 2008). Gravitropism has been the subject of intense study, while other tropic responses of roots have been less well characterized. There is some evidence of hydrotropism in roots, but this response has proven difficult to differentiate from gravitropism, as the latter always interferes with hydrotropism (Jaffe et al., 1985; Takahashi, 1994; Takahashi, 1997). The demonstration of true hydrotropism in roots has facilitated the identification of some of the physiological aspects of hydrotropism and its existence in a wide range of plant species. However, the underlying mechanisms that regulate hydrotropism remain unknown. The limited supply of water and precipitation in many parts of the world greatly affects agriculture and ecosystems. Elucidating the molecular mechanism of hydrotropism in roots is therefore important not only for understanding how terrestrial plants adapt to changes in moisture, but also for improving crop yields and biomass production.The isolation and analysis of hydrotropism-deficient mutants using the model plant species Arabidopsis (Arabidopsis thaliana) represents a potent tool for dissecting the molecular mechanism of hydrotropism. Previously, we isolated an ahydrotropic mutant of Arabidopsis, mizu-kussei1 (miz1), and showed that MIZ1 encodes a protein of unknown function (Kobayashi et al., 2007). In light of both the physiological features of hydrotropism, as well as what we have learned from genetic studies of other tropisms, it is unlikely that miz1 alone governs the hydrotropic response. In support of this, we have identified a second ahydrotropic mutant, miz2, a unique allele of gnom that confers ahydrotropic but not agravitropic growth, which implies distinct roles of vesicular trafficking between hydrotropism and gravitropism in roots. 相似文献
11.
Meiotic Recombination, Noncoding DNA and Genomic Organization in Caenorhabditis Elegans 总被引:6,自引:0,他引:6
The genetic map of each Caenorhabditis elegans chromosome has a central gene cluster (less pronounced on the X chromosome) that contains most of the mutationally defined genes. Many linkage group termini also have clusters, though involving fewer loci. We examine the factors shaping the genetic map by analyzing the rate of recombination and gene density across the genome using the positions of cloned genes and random cDNA clones from the physical map. Each chromosome has a central gene-dense region (more diffuse on the X) with discrete boundaries, flanked by gene-poor regions. Only autosomes have reduced rates of recombination in these gene-dense regions. Cluster boundaries appear discrete also by recombination rate, and the boundaries defined by recombination rate and gene density mostly, but not always, coincide. Terminal clusters have greater gene densities than the adjoining arm but similar recombination rates. Thus, unlike in other species, most exchange in C. elegans occurs in gene-poor regions. The recombination rate across each cluster is constant and similar; and cluster size and gene number per chromosome are independent of the physical size of chromosomes. We propose a model of how this genome organization arose. 相似文献
12.
Benoit Souquet Emilie Abby Roxane Hervé Friederike Finsterbusch Sophie Tourpin Ronan Le Bouffant Clotilde Duquenne Sébastien Messiaen Emmanuelle Martini Jacqueline Bernardino-Sgherri Attila Toth René Habert Gabriel Livera 《PLoS genetics》2013,9(9)
Meiotic recombination is a mandatory process for sexual reproduction. We identified a protein specifically implicated in meiotic homologous recombination that we named: meiosis specific with OB domain (MEIOB). This protein is conserved among metazoan species and contains single-strand DNA binding sites similar to those of RPA1. Our studies in vitro revealed that both recombinant and endogenous MEIOB can be retained on single-strand DNA. Those in vivo demonstrated the specific expression of Meiob in early meiotic germ cells and the co-localization of MEIOB protein with RPA on chromosome axes. MEIOB localization in Dmc1
−/− spermatocytes indicated that it accumulates on resected DNA. Homologous Meiob deletion in mice caused infertility in both sexes, due to a meiotic arrest at a zygotene/pachytene-like stage. DNA double strand break repair and homologous chromosome synapsis were impaired in Meiob
−/− meiocytes. Interestingly MEIOB appeared to be dispensable for the initial loading of recombinases but was required to maintain a proper number of RAD51 and DMC1 foci beyond the zygotene stage. In light of these findings, we propose that RPA and this new single-strand DNA binding protein MEIOB, are essential to ensure the proper stabilization of recombinases which is required for successful homology search and meiotic recombination. 相似文献
13.
Yulong Liang Hong Gao Shiaw-Yih Lin Guang Peng Xingxu Huang Pumin Zhang John A. Goss Francis C. Brunicardi Asha S. Multani Sandy Chang Kaiyi Li 《PLoS genetics》2010,6(1)
BRIT1 protein (also known as MCPH1) contains 3 BRCT domains which are conserved in BRCA1, BRCA2, and other important molecules involved in DNA damage signaling, DNA repair, and tumor suppression. BRIT1 mutations or aberrant expression are found in primary microcephaly patients as well as in cancer patients. Recent in vitro studies suggest that BRIT1/MCPH1 functions as a novel key regulator in the DNA damage response pathways. To investigate its physiological role and dissect the underlying mechanisms, we generated BRIT1
−/− mice and identified its essential roles in mitotic and meiotic recombination DNA repair and in maintaining genomic stability. Both BRIT1
−/− mice and mouse embryonic fibroblasts (MEFs) were hypersensitive to γ-irradiation. BRIT1
−/− MEFs and T lymphocytes exhibited severe chromatid breaks and reduced RAD51 foci formation after irradiation. Notably, BRIT1
−/− mice were infertile and meiotic homologous recombination was impaired. BRIT1-deficient spermatocytes exhibited a failure of chromosomal synapsis, and meiosis was arrested at late zygotene of prophase I accompanied by apoptosis. In mutant spermatocytes, DNA double-strand breaks (DSBs) were formed, but localization of RAD51 or BRCA2 to meiotic chromosomes was severely impaired. In addition, we found that BRIT1 could bind to RAD51/BRCA2 complexes and that, in the absence of BRIT1, recruitment of RAD51 and BRCA2 to chromatin was reduced while their protein levels were not altered, indicating that BRIT1 is involved in mediating recruitment of RAD51/BRCA2 to the damage site. Collectively, our BRIT1-null mouse model demonstrates that BRIT1 is essential for maintaining genomic stability in vivo to protect the hosts from both programmed and irradiation-induced DNA damages, and its depletion causes a failure in both mitotic and meiotic recombination DNA repair via impairing RAD51/BRCA2''s function and as a result leads to infertility and genomic instability in mice. 相似文献
14.
15.
Xrs2, a DNA Repair Gene of Saccharomyces Cerevisiae, Is Needed for Meiotic Recombination 总被引:7,自引:0,他引:7 下载免费PDF全文
The XRS2 gene of Saccharomyces cerevisiae has been previously identified as a DNA repair gene. In this communication, we show that XRS2 also encodes an essential meiotic function. Spore inviability of xrs2 strains is rescued by a spo13 mutation, but meiotic recombination (both gene conversion and crossing over) is highly depressed in spo13 xrs2 diploids. The xrs2 mutation suppresses spore inviability of a spo13 rad52 strain suggesting that XRS2 acts prior to RAD52 in the meiotic recombination pathway. In agreement with the genetic data, meiosis-specific double-strand breaks at the ARG4 meiotic recombination hotspot are not detected in xrs2 strains. Despite its effects on meiotic recombination, the xrs2 mutation does not prevent mitotic recombination events, including homologous integration of linear DNA, mating-type switching and radiation-induced gene conversion. Moreover, xrs2 strains display a mitotic hyper-rec phenotype. Haploid xrs2 cells fail to carry out G2-repair of gamma-induced lesions, whereas xrs2 diploids are able to perform some diploid-specific repair of these lesions. Meiotic and mitotic phenotypes of xrs2 cells are very similar to those of rad50 cells suggesting that XRS2 is involved in homologous recombination in a way analogous to that of RAD50. 相似文献
16.
Tuo Deng Christopher J. Lyon Laurie J. Minze Jianxin Lin Jia Zou Joey Z. Liu Yuelan Ren Zheng Yin Dale J. Hamilton Patrick R. Reardon Vadim Sherman Helen Y. Wang Kevin J. Phillips Paul Webb Stephen T.C. Wong Rong-fu Wang Willa A. Hsueh 《Cell metabolism》2013,17(3):411-422
Highlights? Obesity enhances MHCII expression in primary human and mouse adipocytes ? Adipocytes activate CD4+ ARTs via MHCII and leptin to induce adipose inflammation ? Macrophage changes in adipose follow adipocyte and T cell interactions during HFD ? Adaptive immune mechanisms are essential to obesity-induced adipose inflammation 相似文献
17.
Xiaofang Wang Suzhen Wang Yongbo Lu Monica P. Gibson Ying Liu Baozhi Yuan Jian Q. Feng Chunlin Qin 《The Journal of biological chemistry》2012,287(43):35934-35942
FAM20C is highly expressed in bone and tooth. Previously, we showed that Fam20C conditional knock-out (KO) mice manifest hypophosphatemic rickets, which highlights the crucial roles of this molecule in promoting bone formation and mediating phosphate homeostasis. In this study, we characterized the dentin, enamel, and cementum of Sox2-Cre-mediated Fam20C KO mice. The KO mice exhibited small malformed teeth, severe enamel defects, very thin dentin, less cementum than normal, and overall hypomineralization in the dental mineralized tissues. In situ hybridization and immunohistochemistry analyses revealed remarkable down-regulation of dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein in odontoblasts, along with a sharply reduced expression of ameloblastin and amelotin in ameloblasts. Collectively, these data indicate that FAM20C is essential to the differentiation and mineralization of dental tissues through the regulation of molecules critical to the differentiation of tooth-formative cells. 相似文献
18.
19.
Ruifeng Fan Haidong Yao Changyu Cao Xia Zhao Ahmed Khalid Jinxin Zhao Ziwei Zhang Shiwen Xu 《Biological trace element research》2017,180(1):135-145
In the present study, specific small interfering RNA (siRNA) for selenoprotein K (Selk) gene was designed and transfected into chicken myoblasts. Then, the expressions of inflammatory factors (including induced nitric oxide synthase [iNOS], nuclear factor-kappa B [NF-κB], heme-oxygenase-1 [HO-1], cyclooxygenase-2 [COX-2], and prostaglandin E synthase [PTGEs]), inflammation-related cytokines (including interleukin [IL]-1β, IL-6, IL-7, IL-8, IL-17, and interferon [IFN]-γ), and heat shock proteins (HSPs) (including HSP27, HSP40, HSP60, HSP70, and HSP90) were examined at 24 and 72 h after transfection. The results showed that messenger RNA (mRNA) expressions of iNOS, NF-κB, HO-1, COX-2, IL-6, IL-7, IL-8, HSP 27, HSP 40, HSP 60, HSP 70, and HSP 90 were significantly increased (p < 0.05) at 24 and 72 h after siRNA transfection, and the mRNA expressions of PTGEs, IL-1β, IL-17, and IFN-γ were significantly increased and decreased (p < 0.05) at 24 and 72 h after siRNA transfection. The results also showed that the protein expressions of iNOS, NF-κB, HO-1, COX-2, HSP60, HSP70, and HSP90 were significantly increased (p < 0.05) at 24 and 72 h after siRNA transfection. The correlation analysis and principal component analysis (PCA) showed that PTGEs, IL-1β, IL-17, IFN-γ, HSP40, and HSP90 might play special roles in response to Selk silencing in chicken myoblasts. These results indicated that Selk silencing induced inflammation response by affecting the expression levels of inflammatory factors and inflammation-related cytokines, and the heat shock proteins might play protective roles in this response in chicken myoblasts. 相似文献
20.
Liang Ge Rui-peng Zhang Feng Wan Dong-yang Guo Ping Wang Li-xin Xiang Jian-zhong Shao 《Molecular and cellular biology》2014,34(6):989-1002
Although epigenetic modulation is critical for a variety of cellular activities, its role in erythropoiesis remains poorly understood. Ten-eleven translocation (TET) molecules participate in methylcytosine (5mC) hydroxylation, which results in DNA demethylation in several biological processes. In this research, the role of TETs in erythropoiesis was investigated by using the zebrafish model, where three TET homologs were identified. These homologs share conserved structural domains with their mammalian counterparts. Zebrafish TETs mediate the conversion of 5mC to hydroxymethylcytosine (5hmC) in zebrafish embryos, and the deletion of TET2 inhibits erythropoiesis by suppressing the expression of the scl, gata-1, and cmyb genes. TET2-upregulated lineage-specific genes and erythropoiesis are closely associated with the occurrence of 5hmC and demethylation in the intermediate CpG promoters (ICPs) of scl, gata-1, cmyb, which frequently occur at specific regions or CpG sites of these ICPs. Moreover, TET2 regulates the formation and differentiation of erythroid progenitors, and deletion of TET2 leads to erythrocyte dysplasia and anemia. Here, we preliminarily proved that TET2 plays an essential role in erythrocyte development by regulating lineage-specific genes via DNA oxidative demethylation. This report is anticipated to broaden current information on hematopoiesis and pathogenesis of hematopoiesis-related diseases. 相似文献