首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Systemic Lupus Erythematosus (SLE) pathology has long been associated with an increased Epstein-Barr Virus (EBV) seropositivity, viremia and cross-reactive serum antibodies specific for both virus and self. It has therefore been postulated that EBV triggers SLE immunopathology, although the mechanism remains elusive. Here, we investigate whether frequent peaks of EBV viral load in SLE patients are a consequence of dysfunctional anti-EBV CD8+ T cell responses. Both inactive and active SLE patients (n = 76 and 42, respectively), have significantly elevated EBV viral loads (P = 0.003 and 0.002, respectively) compared to age- and sex-matched healthy controls (n = 29). Interestingly, less EBV-specific CD8+ T cells are able to secrete multiple cytokines (IFN-γ, TNF-α, IL-2 and MIP-1β) in inactive and active SLE patients compared to controls (P = 0.0003 and 0.0084, respectively). Moreover, EBV-specific CD8+ T cells are also less cytotoxic in SLE patients than in controls (CD107a expression: P = 0.0009, Granzyme B release: P = 0.0001). Importantly, cytomegalovirus (CMV)-specific responses were not found significantly altered in SLE patients. Furthermore, we demonstrate that EBV-specific CD8+ T cell impairment is a consequence of their Programmed Death 1 (PD-1) receptor up-regulation, as blocking this pathway reverses the dysfunctional phenotype. Finally, prospective monitoring of lupus patients revealed that disease flares precede EBV reactivation. In conclusion, EBV-specific CD8+ T cell responses in SLE patients are functionally impaired, but EBV reactivation appears to be an aggravating consequence rather than a cause of SLE immunopathology. We therefore propose that autoimmune B cell activation during flares drives frequent EBV reactivation, which contributes in a vicious circle to the perpetuation of immune activation in SLE patients.  相似文献   

2.
EBV infection is more common in patients with systemic lupus erythematosus (SLE) than in control subjects, suggesting that this virus plays an etiologic role in disease and/or that patients with lupus have impaired EBV-specific immune responses. In the current report we assessed immune responsiveness to EBV in patients with SLE and healthy controls, determining virus-specific T cell responses and EBV viral loads using whole blood recall assays, HLA-A2 tetramers, and real-time quantitative PCR. Patients with SLE had an approximately 40-fold increase in EBV viral loads compared with controls, a finding not explained by disease activity or immunosuppressive medications. The frequency of EBV-specific CD69+ CD4+ T cells producing IFN-gamma was higher in patients with SLE than in controls. By contrast, the frequency of EBV-specific CD69+ CD8+ T cells producing IFN-gamma in patients with SLE appeared lower than that in healthy controls, although this difference was not statistically significant. These findings suggest a role for CD4+ T cells in controlling, and a possible defect in CD8+ T cells in regulating, increased viral loads in lupus. These ideas were supported by correlations between viral loads and EBV-specific T cell responses in lupus patients. EBV viral loads were inversely correlated with the frequency of EBV-specific CD69+ CD4+ T cells producing IFN-gamma and were positively correlated with the frequencies of CD69+ CD8+ T cells producing IFN-gamma and with EBV-specific, HLA-A2 tetramer-positive CD8+ T cells. These results demonstrate that patients with SLE have defective control of latent EBV infection that probably stems from altered T cell responses against EBV.  相似文献   

3.
The generation and maintenance of virus-specific CD4(+) T cells in humans are not well understood. We used short in vitro stimulation assays followed by intracellular cytokine staining to characterize the timing, magnitude, and Ag specificity of CD4(+) T cells over the course of primary EBV infection. Lytic and latent protein-specific CD4(+) T cells were readily detected at presentation with acute infectious mononucleosis and declined rapidly thereafter. Responses to BZLF-1, BMLF-1, and Epstein-Barr nuclear Ag-3A were more commonly detected than responses to Epstein-Barr nuclear Ag-1. Concurrent analyses of BZLF-1-specific CD4(+) and CD8(+) T cells revealed differences in the expansion, specificity, and stability of CD4(+) and CD8(+) T cell-mediated responses over time. Peripheral blood EBV load directly correlated with the frequency of EBV-specific CD4(+) T cell responses at presentation and over time, suggesting that EBV-specific CD4(+) T cell responses are Ag-driven.  相似文献   

4.
Epstein Barr virus (EBV) infection expands CD8+ T cells specific for lytic antigens to high frequencies during symptomatic primary infection, and maintains these at significant numbers during persistence. Despite this, the protective function of these lytic EBV antigen-specific cytotoxic CD8+ T cells remains unclear. Here we demonstrate that lytic EBV replication does not significantly contribute to virus-induced B cell proliferation in vitro and in vivo in a mouse model with reconstituted human immune system components (huNSG mice). However, we report a trend to reduction of EBV-induced lymphoproliferation outside of lymphoid organs upon diminished lytic replication. Moreover, we could demonstrate that CD8+ T cells against the lytic EBV antigen BMLF1 can eliminate lytically replicating EBV-transformed B cells from lymphoblastoid cell lines (LCLs) and in vivo, thereby transiently controlling high viremia after adoptive transfer into EBV infected huNSG mice. These findings suggest a protective function for lytic EBV antigen-specific CD8+ T cells against EBV infection and against virus-associated tumors in extra-lymphoid organs. These specificities should be explored for EBV-specific vaccine development.  相似文献   

5.
The incidence of (EBV-related) malignancies in HIV-infected subjects has declined since the introduction of highly active antiretroviral therapy (HAART). To investigate the effect of HAART on EBV infection, we performed a longitudinal analysis of the T cell response to both a latent and a lytic Ag and EBV viral load in 10 subjects from early in HIV infection up to 5 years after HAART. All individuals responded to HAART by a decline in HIV viral load, a restoration of total CD4+ T cell numbers, and a decline in T cell immune activation. Despite this, EBV load remained unaltered, even after 5 years of therapy, although a decline in both CD4+ and CD8+ T cells specific for the lytic EBV protein BZLF1 suggested a decreased EBV reactivation rate. In contrast, latent EBV Ag EBNA1-specific CD4+ and CD8+ T cell responses were restored after 5 years of treatment to levels comparable to healthy individuals. In two individuals who were treated by HAART late during HIV progression, a lymphoma developed shortly after initiation of HAART, despite restoration of EBV-specific CD4+ and CD8+ T cells. In conclusion, long-term HAART does not alter the EBV DNA load, but does lead to a restoration of EBNA1-specific T cell responses, which might allow better control of EBV-infected cells when applied early enough during HIV infection.  相似文献   

6.
EBV is a candidate trigger of rheumatoid arthritis (RA). We determined both EBV-specific T cell and B cell responses and cell-associated EBV DNA copies in patients with RA and demographically matched healthy virus carriers. Patients with RA showed increased and broadened IgG responses to lytic and latent EBV-encoded Ags and 7-fold higher levels of EBV copy numbers in circulating blood cells. Additionally, patients with RA exhibited substantial expansions of CD8(+) T cells specific for pooled EBV Ags expressed during both B cell transformation and productive viral replication and the frequency of CD8(+) T cells specific for these Ags correlated with cellular EBV copy numbers. In contrast, CD4(+) T cell responses to EBV and T cell responses to human CMV Ags were unchanged, altogether arguing against a defective control of latent EBV infection in RA. Our data show that the regulation of EBV infection is perturbed in RA and suggest that increased EBV-specific effector T cell and Ab responses are driven by an elevated EBV load in RA.  相似文献   

7.
Murine models of lymphocytic choriomeningitis virus infection suggest that the memory CD8(+) T cell repertoire is reflective of the CD8(+) T cell repertoire generated during acute infection. Less is known regarding the evolution of CD8(+) T cell repertoires during human viral infections. We therefore examined epitope-specific CD8(+) T cell responses in a large cohort of individuals with acute through latent Epstein-Barr virus infection. Using 16 of 20 published EBV epitopes restricted by HLA-A2, HLA-A3 or HLA-B7, we showed that lytic cycle-specific CD8(+) T cell responses predominated during acute EBV infection. However, whereas HLA-A2(+)-restricted BMLF-1-specific CD8(+) T cell responses were maintained through latency, HLA-A2(+)- and HLA-B7(+)-restricted BZLF-1, as well as HLA-A3(+)-restricted BRLF-1 CD8(+) T cell responses, were generated but not readily maintained. Analyses of CD8(+) T cell responses to EBV latent cycle Ags showed delayed detection and lower frequencies of latent epitope-specific CD8(+) T cell responses during acute EBV infection, with maintenance of these responses 1 yr post-EBV infection. Early BMLF-1 and EBNA-3A epitope-specific CD8(+) T cell frequencies did not correlate with their frequencies at 1 yr postinfection. Interestingly, populations of EBV-specific CD8(+) T cells were stable during 20 mo in our long term EBV-seropositive populations, suggesting homeostasis between virus and the host immune system. This study demonstrates that CD8(+) T cell repertoires generated during persistent viral infections are not simply reflective of the initial pool of CD8(+) T cells and provides evidence that the generation of CD8(+) T cell responses to a persistent infection is a dynamic process.  相似文献   

8.
Epstein-Barr virus (EBV) infection leads to lifelong viral persistence through its latency in B cells. EBV-specific T cells control reactivations and prevent the development of EBV-associated malignancies in most healthy carriers, but infection can sometimes cause chronic disease and malignant transformation. Epstein-Barr nuclear antigen 1 (EBNA-1) is the only viral protein consistently expressed during all forms of latency and in all EBV-associated malignancies and is a promising target for a therapeutic vaccine. Here, we studied the EBNA-1-specific immune response using the EBV-homologous rhesus lymphocryptovirus (rhLCV) infection in rhesus macaques. We assessed the frequency, phenotype, and cytokine production profiles of rhLCV EBNA-1 (rhEBNA-1)-specific T cells in 15 rhesus macaques and compared them to the lytic antigen of rhLCV BZLF-1 (rhBZLF-1). We were able to detect rhEBNA-1-specific CD4+ and/or CD8+ T cells in 14 of the 15 animals screened. In comparison, all 15 animals had detectable rhBZLF-1 responses. Most peptide-specific CD4+ T cells exhibited a resting phenotype of central memory (TCM), while peptide-specific CD8+ T cells showed a more activated phenotype, belonging mainly to the effector cell subset. By comparing our results to the human EBV immune response, we demonstrate that the rhLCV model is a valid system for studying chronic EBV infection and for the preclinical development of therapeutic vaccines.  相似文献   

9.

Background  

Patients with multiple sclerosis (MS) have a decreased frequency of CD8+ T cells reactive to their own Epstein-Barr virus (EBV) infected B cells. We have proposed that this might predispose to the development of MS by allowing EBV-infected autoreactive B cells to accumulate in the central nervous system. The decreased CD8+ T cell response to EBV results from a general CD8+ T cell deficiency and also a decreased proportion of EBV-specific T cells within the total CD8+ T cell population. Because decreased HLA class I expression on monocytes and B cells has been reported in MS and could influence the generation and effector function of EBV-specific CD8+ T cells, the present study was undertaken to measure the expression of HLA molecules on B cells and monocytes in patients with MS.  相似文献   

10.
Recent studies on Hodgkin's lymphoma (HL) have indicated that patients with active disease display functional impairment of Ag-specific CD8+ T cells due to expansion of regulatory T cells at sites of disease and in the peripheral blood. Adoptive cellular immunotherapy based on EBV-specific CD8+ T cells has been explored with limited success to date. It has been proposed that improved targeting of these CD8+ T cells toward viral Ags that are expressed in HL may enhance future therapeutic vaccine strategies. In this study, we have developed a novel replication-deficient adenoviral Ag presentation system that is designed to encode glycine alanine repeat-deleted EBV nuclear Ag 1 covalently linked to multiple CD8+ T cell epitopes from latent membrane proteins 1 and 2. A single stimulation of CD8+ T cells from healthy virus carriers, and patients with HL with this adenoviral construct in combination with IL-2, was sufficient to reverse the functional T cell impairment and restored both IFN-gamma production and cytolytic function. More importantly, these activated CD8+ T cells responded to tumor cells expressing membrane proteins and recognized novel EBNA1 epitopes. Flow cytometric analysis revealed that a large proportion of T cells expanded from patients with HL were CD62L(high) and CD27(high), and CCR7(low), consistent with early to mid effector T cells. These findings provide an important platform for translation of Ag-specific adoptive immunotherapy for the treatment of EBV-associated malignancies such as HL and nasopharyngeal carcinoma.  相似文献   

11.
It was hypothesized that the EBV-specific CD8(+) T cell response may be dysregulated in multiple sclerosis (MS) patients, possibly leading to a suboptimal control of this virus. To examine the CD8(+) T cell response in greater detail, we analyzed the HLA-A2-, HLA-B7-, and HLA-B8-restricted EBV- and CMV-specific CD8(+) T cell responses in a high number of MS patients and control subjects using tetramers. Content in cytolytic granules, as well as cytotoxic activity, of EBV- and CMV-specific CD8(+) T cells was assessed. We found that MS patients had a lower or a higher prevalence of HLA-A2 and HLA-B7, respectively. Using HLA class I tetramers in HLA-B7(+) MS patients, there was a higher prevalence of MS patients with HLA-B*0702/EBV(RPP)-specific CD8(+) T cells ex vivo. However, the magnitude of the HLA-B*0702/EBV(RPP)-specific and HLA-B*0702/CMV(TPR)-specific CD8(+) T cell response (i.e., the percentage of tetramer(+) CD8(+) T cells in a study subject harboring CD8(+) T cells specific for the given epitope) was lower in MS patients. No differences were found using other tetramers. After stimulation with the HLA-B*0702/EBV(RPP) peptide, the production of IL-2, perforin, and granzyme B and the cytotoxicity of HLA-B*0702/EBV(RPP)-specific CD8(+) T cells were decreased. Altogether, our findings suggest that the HLA-B*0702-restricted viral (in particular the EBV one)-specific CD8(+) T cell response is dysregulated in MS patients. This observation is particularly interesting knowing that the HLA-B7 allele is more frequently expressed in MS patients and considering that EBV is associated with MS.  相似文献   

12.
Two gammaherpesviruses, Epstein-Barr virus (EBV) (Lymphocryptovirus genus) and Kaposi''s sarcoma-associated herpesvirus (KSHV) (Rhadinovirus genus) have been implicated in the etiology of AIDS-associated lymphomas. Homologs of these viruses have been identified in macaques and other non-human primates. In order to assess the association of these viruses with non-human primate disease, archived lymphoma samples were screened for the presence of macaque lymphocryptovirus (LCV) homologs of EBV, and macaque rhadinoviruses belonging to the RV1 lineage of KSHV homologs or the more distant RV2 lineage of Old World primate rhadinoviruses. Viral loads were determined by QPCR and infected cells were identified by immunolabeling for different viral proteins. The lymphomas segregated into three groups. The first group (n = 6) was associated with SIV/SHIV infections, contained high levels of LCV (1–25 genomes/cell) and expressed the B-cell antigens CD20 or BLA.36. A strong EBNA-2 signal was detected in the nuclei of the neoplastic cells in one of the LCV-high lymphomas, indicative of a type III latency stage. None of the lymphomas in this group stained for the LCV viral capsid antigen (VCA) lytic marker. The second group (n = 5) was associated with D-type simian retrovirus-2 (SRV-2) infections, contained high levels of RV2 rhadinovirus (9–790 genomes/cell) and expressed the CD3 T-cell marker. The third group (n = 3) was associated with SIV/SHIV infections, contained high levels of RV2 rhadinovirus (2–260 genomes/cell) and was negative for both CD20 and CD3. In both the CD3-positive and CD3/CD20-negative lymphomas, the neoplastic cells stained strongly for markers of RV2 lytic replication. None of the lymphomas had detectable levels of retroperitoneal fibromatosis herpesvirus (RFHV), the macaque RV1 homolog of KSHV. Our data suggest etiological roles for both lymphocryptoviruses and RV2 rhadinoviruses in the development of simian AIDS-associated lymphomas and indicate that the virus-infected neoplastic lymphoid cells are derived from different lymphocyte lineages and differentiation stages.  相似文献   

13.
The origin of the increased numbers of CD8+ atypical lymphocytes, expressing activated markers such as HLA-DR or CD45RO, in the peripheral blood of patients with infectious mononucleosis (IM) has been debated. Using a recently developed assay to detect intracellular accumulation of IFN-gamma in EBV-reactive T cells by FACS, we have demonstrated that 34-54% of HLA-DR+/CD8+ and 34-60% of CD45RO+/CD8+ T cells in the PBMCs of febrile patients suffering from IM are EBV-specific. The EBV-specific CD8+ T cell counts in the PBMCs of four febrile patients suffering from IM ranged between 2,260 and 8,200/microl, decreasing to 5.1% and 7.9% of the counts in the first samples over 10 days in two donors. The decline of CD8+ T cell subpopulations, namely HLA-DR+, CD45RO+, and EBV-specific T cells, was in parallel with the drop in the EBV genome load. These data indicate that the Ag-driven expansion of CD8+ T cells and subsequent contraction with the Ag decline in vivo in humans is effective for clearing virus-infected cells with minimal disturbance of the homeostasis of the immune system.  相似文献   

14.
The Epstein-Barr virus (EBV) is a gamma-herpes virus which establishes latent, life-long infection in more than 95% of the human adult population. Despite its growth transforming capacity, most carriers control EBV associated malignacies efficiently and remain free of EBV+ tumors. Though EBV is controlled by a potent immune response, this virus uses latency to persist in vivo. This review summarizes work which has been done to characterize T cell responses to EBV. The CD8 T cell responses are rather well characterized and have been shown by several groups to be highly focused towards early lytic antigens. Much less is known about CD4 T cell epitopes, due to the small size of the CD4 compartment. However, recent data indicate a control of lytic and latent cycles of EBV by specific CD4+ T cells. A clear understanding of the T cell response to EBV is important with a view to developing immunotherapies for the virus and its related malignancies.  相似文献   

15.
Orlova N  Wang F  Fogg MH 《Journal of virology》2011,85(23):12821-12824
We examined the CD8(+) T cell repertoire against lytic infection antigens in rhesus macaques persistently infected with the Epstein-Barr virus (EBV)-related lymphocryptovirus (rhLCV). CD8(+) T cells specific for late (L) antigens were detected at rates comparable to those for early antigens and were associated with increasing duration of infection. L antigen-specific CD8(+) T cells were also readily detected in adult, EBV-positive humans. Thus, viral major histocompatibility complex class I (MHCI) immune evasion genes expressed during lytic LCV infection do not prevent L-specific CD8(+) T cell development over time during persistent infection.  相似文献   

16.
Serial EBV load monitoring of clinically asymptomatic pediatric thoracic organ transplant patients has identified three groups of children who exhibit undetectable (<100 copies/ml), chronic low (100-16,000 copies/ml), or chronic high (>16,000 copies/ml) EBV loads in peripheral blood. Chronic high EBV load patients have a 45% rate of progression to late-onset posttransplant lymphoproliferative disorders. In this article, we report that asymptomatic patients carrying EBV loads (low and high) expressed increased frequencies of EBV-specific CD8(+) T cells, as compared with patients with undetectable EBV loads. Although patients with low viral load displayed EBV-specific CD8(+) T cells with moderate signs of activation (CD38(+/-)/CD127(+/-)), programmed death 1 upregulation and effective IFN-γ secretion, high EBV load carriers showed significant CD38(+) upregulation, features of cellular exhaustion (programmed death 1(+)/CD127(-)) accompanied by a decline in IFN-γ release. Immunopolarization of EBV-specific CD8(+) T cells was skewed from the expected type 1 (IFN-γ) toward type 0 (IFN-γ/IL-5) in patients, and Tr1 (IL-10) in high load carriers. These results indicate the importance of chronic EBV load and of the levels of antigenic pressure in shaping EBV-specific memory CD8(+) T cells. Concomitant phenotypic and functional EBV monitoring is critical for identifying the complex "functional" versus "exhausted" signature of EBV-specific CD8(+) T cells, with implications for immunologic monitoring in the clinic.  相似文献   

17.
EBV infection in humans induces CD8+ T cell memory to viral epitopes derived from both lytic and latent cycle Ags. We have analyzed the relationship between the phenotype and function of the memory pool of T cells specific for these Ags. Lytic epitope-specific populations were heterogeneous in terms of CD45RO/RA and CD28 expression, whereas latent epitope-specific populations were uniformly CD45RO+ and CD28+, consistent with the higher antigenic challenge from lytic epitopes driving some memory cells toward a CD45RA+, CD28- phenotype. However, both types of memory population showed immediate epitope-specific cytotoxicity and type 1 cytokine production in ex vivo assays. Cytotoxic function was not associated with preactivated T cells, as EBV-specific populations were negative for activation markers such as CD69 or CD38, nor could cytotoxic function be ascribed to CD27- or CD56+ subsets, as such cells were not detected in EBV-specific memory. Furthermore, cytotoxicity was not limited to CD45RA+ and/or CD28- fractions, but also was observed in CD45RO+, CD28+ populations in lytic and latent epitope-specific memory. Cytokine (IFN-gamma, TNF-alpha) responses, measured by intracytoplasmic staining after peptide stimulation, also were detectable in CD45RO+ and RA+ subsets as well as CD28+ and CD28- subsets. Of other markers that were heterogeneous in both lytic and latent epitope populations, CCR7 gave the best discrimination of functionality; thus, CCR7+ cells consistently failed to give an IFN-gamma or TNF-alpha response, whereas many CCR7- cells were responsive. Our data are consistent with effector functions having a broad distribution among phenotypically distinct subsets of "effector memory" cells that have lost the CCR7 marker.  相似文献   

18.
Epstein-Barr virus (EBV)-specific T cells have been successfully used to treat or prevent EBV-positive lymphoproliferative disease in hematopoietic stem cell transplant recipients, but the antigens recognized by the infused CD4+ T cells have remained unknown. Here, we describe a simple procedure that permits the identification of viral T-helper (TH)-cell antigens and epitopes. This direct antigen identification method is based on the random expression of viral polypeptides fused to chloramphenicol acetyltransferase (CAT) in bacteria, which are subsequently fed to major histocompatibility complex class II+ antigen-presenting cells and probed with antigen-specific T cells. The fusion of antigenic fragments to CAT offers several advantages. First, chloramphenicol treatment allows the selection of bacteria expressing antigen-CAT fusion proteins in frame, which greatly reduces the number of colonies to be screened. Second, antigenic fragments fused to CAT are expressed at high levels, even when derived from proteins that are toxic to bacteria. Third, the uniformly high expression level of antigen-CAT fusion proteins permits the establishment of large and representative pool sizes. Finally, antigen identification does not require knowledge of the restriction element and often leads directly to the identification of the T-cell epitope. Using this approach, the BALF4 and BNRF1 proteins were identified as targets of the EBV-specific T-helper-cell response, demonstrating that lytic cycle antigens are a relevant component of the EBV-specific TH-cell response.  相似文献   

19.
Following activation of Epstein-Barr virus (EBV)-infected B cells from latent to productive (lytic) infection, there is a concomitant reduction in the level of cell surface major histocompatibility complex (MHC) class I molecules and an impaired antigen-presenting function that may facilitate evasion from EBV-specific CD8+ cytotoxic T cells. In some other herpesviruses studied, most notably human cytomegalovirus (HCMV), evasion of virus-specific CD8+ effector responses via downregulation of surface MHC class I molecules is supplemented with specific mechanisms for evading NK cells. We now report that EBV differs from HCMV in this respect. While latently infected EBV-positive B cells were resistant to lysis by two NK lines and by primary polyclonal NK cells from peripheral blood, these effectors efficiently killed cells activated into the lytic cycle. Susceptibility to NK lysis coincided not only with downregulation of HLA-A, -B, and -C molecules that bind to the KIR family of inhibitory receptors on NK cells but also with downregulation of HLA-E molecules binding the CD94/NKG2A inhibitory receptors. Conversely, ULBP-1 and CD112, ligands for the NK cell-activating receptors NKG2D and DNAM-1, respectively, were elevated. Susceptibility of the virus-producing target cells to NK cell lysis was partially reversed by blocking ULBP-1 or CD112 with specific antibodies. These results highlight a fundamental difference between EBV and HCMV with regards to evasion of innate immunity.  相似文献   

20.
Epstein-Barr virus (EBV) establishes lifelong persistent infections in humans and has been implicated in the pathogenesis of several human malignancies. Protective immunity against EBV is mediated by T cells, as indicated by an increased incidence of EBV-associated malignancies in immunocompromised patients, and by the successful treatment of EBV-associated post-transplant lymphoproliferative disease (PTLD) in transplant recipients by the infusion of polyclonal EBV-specific T cell lines. To implement this treatment modality as a conventional therapeutic option, and to extend this protocol to other EBV-associated diseases, generic and more direct approaches for the generation of EBV-specific T cell lines enriched in disease-relevant specificities need to be developed. To this aim, we studied the poorly defined EBV-specific CD4+ T cell response during acute and chronic infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号