首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The objective of this research was to use a counter-current leaching process (CCLP) with leachate treatment to develop a remediation process for contaminated soils at a small-arms shooting range (SASR). The soil contaminant concentrations were 245 mg Cu kg?1, 3,368 mg Pb kg?1, 73 mg Sb kg?1, and 177 mg Zn kg?1. The CCLP includes three acid leaching steps (1M H2SO4 + 4M NaCl, t = 1 h, T = 20°C, soil suspension = 100 g L?1), followed by one water rinsing step (1 h). Seven counter-current remediation cycles were completed, and the average resulting metal removals were 93.2 ± 3.5% of Cu, 91.5 ± 5.7% of Pb, 82.2 ± 10.9% of Sb, and 30.0 ± 11.4% of Zn. The metal leaching performances decreased with the number of completed cycles. Soil treated with the CCLP with leachate treatment process met the USEPA threshold criteria of 5 mg Pb L?1 in the TCLP leachate. The CCLP allows a decrease of the water use by 32.9 m3 t?1 and the chemicals’ consumption by approximately 2,650 kg H2SO4, 6,014 kg NaCl, and 1,150 kg NaOH per ton of treated soil, in comparison to standard leaching processes. This corresponds to 78%, 69%, 83%, and 67% of reduction, respectively.  相似文献   

2.
Despite many studies on phytoremediation of soils contaminated with either heavy metals or organics, little information is available on the effectiveness of phytoremediation of co-occurring metal and organic pollutants especially by using wetland species. Phragmites australis is a common wetland plant and its potential for phytoremediation of cadmium pentachlorophenol (Cd-PCP) co-contaminated soil was investigated. A greenhouse study was executed to elucidate the effects of Cd (0, 10, and 20 mg kg?1) without or with PCP (0, 50, and 250 mg kg?1) on the growth of the wetland plant P. australis and its uptake, accumulation and removal of pollutant from soils. After 75 days, plant biomass was significantly influenced by interaction of Cd and PCP and the effect of Cd on plant growth being stronger than that of PCP. Coexistence of PCP at low level lessened Cd toxicity to plants, resulting in improved plant growth and increased Cd accumulation in plant tissues. The dissipation of PCP in soils was significantly influenced by interactions of Cd, PCP and plant presence or absence. As an evaluation of soil biological activities after remediation soil enzyme was measured.  相似文献   

3.
ABSTRACT

The dissipation and detoxification of nicosulfuron (NS) by Pseudomonas aeruginosa B9 isolated from a cornfield soil was investigated. The fastest decline of NS occurred at 40 µg ml?1 in liquid media with 0.25% glucose plus 0.05% yeast extract (DT50 = 4 days) with a notable pH reduction (pH ? 5). Bioassay tests showed considerable phytotoxicity of NS for Cress (Lepidium sativum L.) with 50% shoot growth inhibition (SGI) at 40 µg ml?1. The dissipation of NS (40 µg ml?1) by the B9 isolate reduced the SGI significantly (SGI: up to 45 ± 3%) compared to the non-inoculated media (SGI: up to 58 ± 4%). In soils with the B9 isolate, NS dissipation, especially at 0.3 µg g?1, was faster with a more significant SGI reduction (k = 0.08 ± 0.00 day?1; SGI = 2 ± 1%) compared to non-inoculated samples (k = 0.03 ± 0.00 day?1; SGI = 8 ± 1%). NS initially inhibited soil respiration, microbial biomass carbon, and dehydrogenase activity. The effect was however transient, and these parameters recovered within 10 days, especially in the presence of the isolate. Overall, this study proves Pseudomonas aeruginosa B9 as a suitable candidate for bioremediation of NS in contaminated sites.  相似文献   

4.
Biometric-based carbon flux measurements were conducted in a pine forest on lava flow of Mt. Fuji, Japan, in order to estimate carbon cycling and sequestration. The forest consists mainly of Japanese red pine (Pinus densiflora) in a canopy layer and Japanese holly (Ilex pedunculosa) in a subtree layer. The lava remains exposed on the ground surface, and the soil on the lava flow is still immature with no mineral soil layer. The results showed that the net primary production (NPP) of the forest was 7.3 ± 0.7 t C ha?1 year?1, of which 1.4 ± 0.4 t C ha?1 year?1 was partitioned to biomass increment, 3.2 ± 0.5 t C ha?1 year?1 to above-ground fine litter production, 1.9 t C ha?1 year?1 to fine root production, and 0.8 ± 0.2 t C ha?1 year?1 to coarse woody debris. The total amount of annual soil surface CO2 efflux was estimated as 6.1 ± 2.9 t C ha?1 year?1, using a closed chamber method. The estimated decomposition rate of soil organic matter, which subtracted annual root respiration from soil respiration, was 4.2 ± 3.1 t C ha?1 year?1. Biometric-based net ecosystem production (NEP) in the pine forest was estimated at 2.9 ± 3.2 t C ha?1 year?1, with high uncertainty due mainly to the model estimation error of annual soil respiration and root respiration. The sequestered carbon being allocated in roughly equal amounts to living biomass (1.4 t C ha?1 year?1) and the non-living C pool (1.5 t C ha?1 year?1). Our estimate of biometric-based NEP was 25 % lower than the eddy covariance-based NEP in this pine forest, due partly to the underestimation of NPP and difficulty of estimation of soil and root respiration in the pine forest on lava flows that have large heterogeneity of soil depth. However, our results indicate that the mature pine forest acted as a significant carbon sink even when established on lava flow with low nutrient content in immature soils, and that sequestration strength, both in biomass and in soil organic matter, is large.  相似文献   

5.
This paper focuses on the effectiveness of removing Pb(II) from aqueous solution using bioflocculant MBFR10543 and a series of experimental parameters including MBFR10543 dose, calcium ions concentration, solution pH, and temperature on Pb(II) uptake was evaluated. Meanwhile, the flocculation mechanism of MBFR10543 was discussed. Results have demonstrated that the removal efficiency of Pb(II) reached 94.7 % (with the sorption capacity of 81.2 mg?·?g?1) by adding MBFR10543 in two stages, separately, 3?×?10?2 % (w/w) in the 1.0 min’s rapid mixing (180 rpm) and 4?×?10?2 % (w/w) after 2.0 min’s slow mixing (80 rpm) with pH value fixed at 6. Pb(II) flocculation process could be described by the Langmuir isotherms model and pseudo-second-order kinetic model. The negative Gibbs free energy change indicated the spontaneous nature of the flocculation. Fourier transform infrared spectra analysis indicated that functional groups, such as –OH, C=O, and C–N, were existed in MBFR10543 molecular chains, which had strong capacity for removing Pb(II). Furthermore, both charge neutralization and bridging being the main mechanisms involved in Pb(II) removal by MBFR10543.  相似文献   

6.
Two native bacterial strains, FY1 and WZ2, that showed high chromium(VI)-reducing ability were respectively isolated from electroplating and tannery effluent–contaminated sites and identified as Bacillus and Arthrobacter. The objective of the present study was to evaluate their potential for future application in soil bioremediation. The results showed that both Bacillus sp. FY1 and Arthrobacter sp. WZ2 were tolerant to 1000 mg L?1 Cr(VI) and capable of reducing 78–85% and 75–82% of Cr(VI) (100–200 mg L?1) within 24 h, respectively. The Cr(VI) reduction rate decreased with increasing levels of Cr(VI) concentration (200–1000 mg L?1). The optimum pH, temperature, and inoculum concentration for Cr(VI) reduction were found to be between pH 7.0 and 8.0; 30 and 35°C; and 1 × 108 cells ml?1, respectively. Further evidence for the bioremediation potential of Bacillus sp. FY1 and Arthrobacter sp. WZ2 was provided by the high capacity to reduce 100, 200, and 500 mg kg?1 Cr(VI) in contaminated soil by 83–91%, 78–85%, and 71–78% within 7 days, respectively. These findings demonstrated the high potential of Bacillus sp. FY1 and Arthrobacter sp. WZ2 for application in future soil bioremediation.  相似文献   

7.
We investigated effect of farm yard manure (FYM) and compost applied to metal contaminated soil at rate of 1% (FYM-1, compost-1), 2% (FYM-2, compost-2), and 3% (FYM-3, compost-3). FYM significantly (P < 0.001) increased dry weights of shoots and roots while compost increased root dry weight compared to control. Amendments significantly increased nickel (Ni) in shoots and roots of maize except compost applied at 1%. FYM-3 and -1 caused maximum Ni in shoots (11.42 mg kg?1) and roots (80.92 mg kg?1), respectively while compost-2 caused maximum Ni (14.08 mg kg?1) and (163.87 mg kg?1) in shoots and roots, respectively. Plants grown in pots amended with FYM-2 and compost-1 contained minimum Cu (30.12 and 30.11 mg kg?1) in shoots, respectively. FYM-2 and compost-2 caused minimum zinc (Zn) (59.08 and 66.0 mg kg?1) in maize shoots, respectively. FYM-2 caused minimum Mn in maize shoots while compost increased Mn in shoots and roots compared to control. FYM and compost increased the ammonium bicarbonate diethylene triamine penta acetic acid (AB-DTPA) extractable Ni and Mn in the soil and decreased Cu and Zn. Lower remediation factors for all metals with compost indicated that compost was effective to stabilize the metals in soil compared to FYM.  相似文献   

8.
Polycyclic aromatic hydrocarbons (PAHs) in the surface urban soils of Shenyang in Northeastern China were investigated. The total concentration of the PAHs ranged from 0.09 to 8.35 mg kg?1, with an average value of 1.51 ± 1.64 mg kg?1. 3–5-ring PAHs accounted for 90% of total PAHs. The functional areas, such as the industrial regions (4.95 mg kg?1) and main roads (1.56 mg kg?1), as well as the administrative divisions, including the districts of Shenhe (1.49 mg kg?1), Heping (2.08 mg kg?1), and Tiexi (2.14 mg kg?1), were heavily polluted by PAHs. The diagnostic ratios and principal component analysis (PCA) for PAHs indicate that the pollutants probably originated primarily from coal combustion and petroleum sources. The Nemerow composite index, used to assess environmental quality, shows that the soil samples were heavily polluted with PAHs, and although 52.8% of the soil sampling sites were safe, 47.2% of the soil sampling sites registered different grades of PAH pollution. The PAH contamination in Shenyang emphasizes the need for controlling fossil fuel combustion and traffic exhaust.  相似文献   

9.
Prediction of soil organic C sequestration with adoption of various conservation agricultural management approaches is needed to meet the emerging market for environmental services provided by agricultural land stewardship. The soil conditioning index (SCI) is a relatively simple model used by the USDA?CNatural Resources Conservation Service to predict qualitative changes in soil organic matter. Our objective was to develop a quantitative relationship between soil organic C derived from published field studies in the southeastern USA and SCI scores predicted from matching management conditions. We found that soil organic C sequestration (at 20?±?5 cm depth) could be reliably related to SCI across a diversity of studies in the region using the regression slope: 1.65 Mg C ha?1 SCI?1 [which translated into a rate of 0.25?±?0.04 Mg C ha?1 yr?1 SCI?1 (mean±standard error of 31 slope estimates)]. The calibration of soil organic C on SCI scores will allow SCI to become a quantitative tool for natural resource professionals to predict soil organic C sequestration for farmers wanting to adopt conservation practices.  相似文献   

10.
Herein, we conducted a study toward understanding the impact of composting of the diesel-contaminated soil with some locally available bulking agents (rice husks (RHs), sawdust (SD), and wood chips (WCs)). In order to ascertain the effectiveness of petroleum degradation by the process assayed, we compared the protocols with monitored natural attenuation (MNA). The overall degradation pattern was modeled with non-linear regression by comparing the experimental data with first and second-order kinetic equations. At the end of the six-week study, the amount of total petroleum hydrocarbon removed from contaminated soil was 98.26 ± 1.33% (amendment with SD + RHs + WCs), 96.89 ± 1.20 (RHs amendment), 96.55 ± 1.29% (amendment with SD), 90.01 ± 0.22% (WCs amendment), and 85.02 ± 0.21% (MNA). The degradation of TPH trends followed a second-order kinetic model for all the four compost treatments while the MNA was found to follow a first-order (slower) degradation pattern. In general, the results of the parameter estimate showed that amendment with mixture of the three bulking agents was 1.08 (8%) slower (k2 = (1.289 ± 0.16) × 10?5 (g mg?1 d?1), r2 = 0.991) than SD amendment alone (k2 = (1.392 ± 0.14) × 10?5 (g mg?1 d?1), r2 = 0.995). However, the mixture of the bulking agents was found to be 1.67, 1.41, and 2.4 times faster than amendments with WCs, rice, and MNA, respectively. The phytotoxicity test revealed that all the compost treatments except WCs resulted in germination index of ≥80% after six weeks of bioremediation tests. The outcome of the current investigation confirms the effectiveness of bulking agents (especially when combined) in the supply of nutrients for the bioremediation of diesel-impacted soil.  相似文献   

11.
The organophosphate pesticide chlorpyrifos (CP) has been used extensively since the 1960s for insect control. However, its toxic effects on mammals and persistence in environment necessitate its removal from contaminated sites, biodegradation studies of CP-degrading microbes are therefore of immense importance. Samples from a Pakistani agricultural soil with an extensive history of CP application were used to prepare enrichment cultures using CP as sole carbon source for bacterial community analysis and isolation of CP metabolizing bacteria. Bacterial community analysis (denaturing gradient gel electrophoresis) revealed that the dominant genera enriched under these conditions were Pseudomonas, Acinetobacter and Stenotrophomonas, along with lower numbers of Sphingomonas, Agrobacterium and Burkholderia. Furthermore, it revealed that members of Bacteroidetes, Firmicutes, α- and γ-Proteobacteria and Actinobacteria were present at initial steps of enrichment whereas β-Proteobacteria appeared in later steps and only Proteobacteria were selected by enrichment culturing. However, when CP-degrading strains were isolated from this enrichment culture, the most active organisms were strains of Acinetobacter calcoaceticus, Pseudomonas mendocina and Pseudomonas aeruginosa. These strains degraded 6–7.4 mg L?1 day?1 of CP when cultivated in mineral medium, while the consortium of all four strains degraded 9.2 mg L?1 day?1 of CP (100 mg L?1). Addition of glucose as an additional C source increased the degradation capacity by 8–14 %. After inoculation of contaminated soil with CP (200 mg kg?1) disappearance rates were 3.83–4.30 mg kg?1 day?1 for individual strains and 4.76 mg kg?1 day?1 for the consortium. These results indicate that these organisms are involved in the degradation of CP in soil and represent valuable candidates for in situ bioremediation of contaminated soils and waters.  相似文献   

12.
This is the first report on optimization of process variables for simultaneous bioremediation of pentachlorophenol (PCP) and Cr6+ employing traditional and response surface methodology (RSM). In a one-factor-at-a-time approach, the effect of PCP level exhibited maximum bacterial growth and Cr6+ (82%) and PCP (91.5%) removal at initial 100 mg PCP L?1 with simultaneous presence of 200 mg Cr6+ L?1 within a 36-h incubation. However, at varied Cr6+ concentrations, maximum growth and Cr6+ (97%) and higher PCP (59%) removal were achieved at 50 mg Cr6+ L?1 with simultaneous presence of 500 mg PCP L?1 within a 36-h incubation. The Box-Behnken design suggested 100% Cr6+ and 95% PCP remediation at 36 h under optimum conditions of 75?mg PCP and 160 mg Cr6+ L?1, pH 7.0, and 35°C; Cr6+ removal was further enhanced to 97% in bioreactor trial. Fourier transform infrared (FT-IR) analysis revealed the likely involvement of hydroxyl, amide, and phosphate groups in Cr3+ binding. Scanning electron microscopy and energy-dispersive x-ray spectroscopy (SEM-EDS) showed biosorption of reduced chromium on bacterial cell surface. This isolate can be employed for eco-friendly and effective in situ bioremediation of Cr6+ and PCP simultaneously.  相似文献   

13.
This study was conducted to investigate the uptake, accumulation and the enhanced dissipation of di(2-ethylhexyl) phthalate (DEHP) spiked in soil (with a concentration of 117.4 ± 5.2 mg kg?1) by eleven plants including eight maize ( Zea mays) cultivars and three forage species (alfalfa, ryegrass and teosinte). The results showed that, after 40 days of treatment, the removal rates of DEHP ranged from 66.8% (for the control) to 87.5% (for the maize cultivar of Huanong-1). Higher removal rate was observed during the first 10 days than the following days. Plants enhanced significantly the dissipation of DEHP in soil. Enhanced dissipation amount in planted soil was 13.3–122 mg pot?1 for DEHP, and a net removal of 2.2%–20.7% of the initial DEHP was obtained compared with non-plant soil. The contribution of plant uptake to the total enhanced dissipation was <0.3%, and the enhanced dissipation of soil DEHP might be derived from plant-promoted biodegradation and sorption stronger to the soil. Nevertheless, the capability in accumulation and enhanced dissipation of DEHP from spiked soils varied within different species and cultivars.  相似文献   

14.
Changes in bacterial CO2 fixation with depth in agricultural soils   总被引:1,自引:0,他引:1  
Soils were incubated continuously in an atmosphere of 14CO2 and the distribution of labeled C into soil organic carbon (14C-SOC) was determined at 0–1, 1–5, and 5–17 cm down the profile. Significant amounts of 14C-SOC were measured in paddy soils with a mean of 1,180.6?±?105.2 mg kg–1 at 0–1 cm and 135.3?±?47.1 mg kg?1 at 1–5 cm. This accounted for 5.9?±?0.7 % and 0.7?±?0.2 %, respectively, of the total soil organic carbon at these depths. In the upland soils, the mean 14C-SOC concentrations were 43 times (0–1 cm) and 11 times (1–5 cm) lower, respectively, than those in the paddy soils. The amounts of 14C incorporated into the microbial biomass (MBC) were also much lower in upland soils (5.0?±?3.6 % and 2.9?±?1.9 % at 0–1 and 1–5 cm, respectively) than in paddy soils (34.1?±?12.4 % and 10.2?±?2.1 % at 0–1 and 1–5 cm, respectively). Similarly, the amount of 14C incorporated into the dissolved organic carbon (DOC) was considerably higher in paddy soils (26.1?±?6.9 % and 6.9?±?1.3 % at 0–1 and 1–5 cm, respectively) than in upland soils (6.0?±?2.7 % and 4.3?±?2.2 %, respectively). The observation that the majority of the fixed 14C-SOC, RubisCO activity and cbbL gene abundance were concentrated at 0–1 cm depth and the fact that light is restricted to the top few millimeters of the soil profiles highlighted the importance of phototrophs in CO2 fixation in surface soils. Phylogenetic analysis of the cbbL genes showed that the potential for CO2 fixation was evident throughout the profile and distributed between both photoautotrophic and chemoautotrophic bacteria such as Rhodopseudomonas palustris, Bradyrhizobium japonicum, Rubrivivax gelatinosus and Ralstonia eutropha.  相似文献   

15.
Atriplex nummularia is a halophyte widely employed to recover saline soils and was used as a model to evaluate the water potentials in the soil-plant system under drought and salt stresses. Potted plants grown under 70 and 37% of field capacity irrigated with solutions of NaCl and of a mixture of NaCl, KCl, MgCl2 and CaCl2 reproducing six electrical conductivity (EC): 0, 5, 10, 20, 30, and 40 dS m?1. After 100 days, total water (Ψw, plant) and osmotic (Ψo, plant) potentials at predawn and midday and Ψo, soil, matric potential (Ψm, soil) and Ψw, soil were determined. The type of ion in the irrigation water did not influence the soil potential, but was altered by EC. The soil Ψo component was the largest contributor to Ψw, soil. Atriplex is surviving ECs close to 40 dS m?1 due to the decrease in the Ψw. The plants reached a Ψw of approximately ?8 MPa. The water potentials determined for different moisture levels, EC levels and salt types showed huge importance for the management of this species in semiarid regions and can be used to recover salt affected soils.  相似文献   

16.
Heterotrophic respiration is a major component of the soil C balance however we critically lack understanding of its variation upon conversion of peat swamp forests in tropical areas. Our research focused on a primary peat swamp forest and two oil palm plantations aged 1 (OP2012) and 6 years (OP2007). Total and heterotrophic soil respiration were monitored over 13 months in paired control and trenched plots. Spatial variability was taken into account by differentiating hummocks from hollows in the forest; close to palm from far from palm positions in the plantations. Annual total soil respiration was the highest in the oldest plantation (13.8 ± 0.3 Mg C ha?1 year?1) followed by the forest and youngest plantation (12.9 ± 0.3 and 11.7 ± 0.4 Mg C ha?1 year?1, respectively). In contrast, the contribution of heterotrophic to total respiration and annual heterotrophic respiration were lower in the forest (55.1 ± 2.8%; 7.1 ± 0.4 Mg C ha?1 year?1) than in the plantations (82.5 ± 5.8 and 61.0 ± 2.3%; 9.6 ± 0.8 and 8.4 ± 0.3 Mg C ha?1 year?1 in the OP2012 and OP2007, respectively). The use of total soil respiration rates measured far from palms as an indicator of heterotrophic respiration, as proposed in the literature, overestimates peat and litter mineralization by around 21%. Preliminary budget estimates suggest that over the monitoring period, the peat was a net C source in all land uses; C loss in the plantations was more than twice the loss observed in the forest.  相似文献   

17.
The growth and total lipid content of four green microalgae (Chlorella sp., Chlorella vulgaris CCAP211/11B, Botryococcus braunii FC124 and Scenedesmus obliquus R8) were investigated under different culture conditions. Among the various carbon sources tested, glucose produced the largest biomass or microalgae grown heterotrophically. It was found that 1 % (w/v) glucose was actively utilized by Chlorella sp., C. vulgaris CCAP211/11B and B. braunii FC124, whereas S. obliquus R8 preferred 2 % (w/v) glucose. No significant difference in biomass production was noted between heterotrophic and mixotrophic (heterotrophic with light illumination/exposure) growth conditions, however, less production was observed for autotrophic cultivation. Total lipid content in cells increased by approximately two-fold under mixotrophic cultivation with respect to heterotrophic and autotrophic cultivation. In addition, light intensity had an impact on microalgal growth and total lipid content. The highest total lipid content was observed at 100 μmol m?2s?1 for Chlorella sp. (22.5 %) and S. obliquus R8 (23.7 %) and 80 μmol m?2s?1 for C. vulgaris CCAP211/11B (20.1 %) and B. braunii FC124 (34.9 %).  相似文献   

18.
The role of same amendment on phytoremediating different level contaminated soils is seldom known. Soil pot culture experiment was used to compare the strengthening roles of cysteine (CY), EDTA, salicylic acid (Sa), and Tween 80 (TW) on hyperaccumulator Solanum nigrum L. phytoremediating higher level of single cadmium (Cd) or Benzo(a)pyrene (BAP) and their co-contaminated soils. Results showed that the Cd capacities (ug pot?1) in shoots of S. nigrum in the combined treatment T0.1EDTA+0.9CY were the highest for the 5 and 15 mg kg?1 Cd contaminated soils. When S. nigrum remediating co-contaminated soils with higher levels of Cd and BAP, that is, 5 mg kg?1 Cd + 1 mg kg?1 BAP and 15 mg kg?1 Cd + 2 mg kg?1 BAP, the treatment T0.9CY+0.9Sa+0.3TW showed the best enhancing remediation role. This results were different with co-contaminated soil with 0.771 mg kg?1 Cd + 0.024 mg kg?1 BAP. These results may tell us that the combine used of CY, SA, and TW were more useful for the contaminated soils with higher level of Cd and/or BAP. In the combined treatments of Sa+TW, CY was better than EDTA.  相似文献   

19.
The River Yamuna originates from the Yamunotri glacier of the Himalayas and travels 22 km in the Delhi region. The river is used for various purposes in Delhi including drinking water supply. Twenty-eight polychlorinated biphenyls (PCBs) congeners were measured in bank sediments along the river, and their ecotoxicological risk was evaluated. Concentrations of ∑28PCBs varied from 0.20–21.16 ng g?1 (dry wt.) with mean and median values of 6.63 ng g?1 and 5.84 ng g?1 (±0.69 ng g?1), respectively. The concentration of 12 dl-PCBs concentrations varied from 0.04–2.86 ng g?1 with a mean of 1.04 ± 0.11 ng g?1, and their toxic equivalency ranged between <0.01–28.67 pg WHO-TEQ g?1 with a mean of 10.77 ± 1.06 pg WHO-TEQ g?1. CB-37, CB-44, CB-114, and CB-118 congeners were dominant among all PCBs congeners. The tri-PCBs (49%) were the main contributors to the PCB homolog followed by tetra-PCBs (35%), and penta-PCB (14%). Because there are no environmental guidelines in India for PCBs in river and marine sediments, concentrations of PCBs and their toxic equivalents were compared in a screening-level assessment with established freshwater sediment quality guidelines and found lower than those guideline values, which suggests no adverse ecotoxicological effect.  相似文献   

20.
A functional response study of Chrysoperla carnea (Stephens) larvae to different densities of sugar cane whitefly Aleurolobus barodensis (Maskell) was conducted in test tubes at 26?±?2 °C, 65?±?5 % RH. Chrysoperla carnea showed two different types of functional response in larval instars. First instar exhibits type II. However, second and third larval instars revealed type III functional response. Based on modified Holling’s disk equation, the highest searching rates (a) of 0.82?±?0.0247 h?1 was found for first instar larva. For second and third larval instars, the attack coefficient (b) were 0.002?±?0.030 and 0.0025?±?0.0424 respectively. The shortest handling time (Th) per prey was observed at third instar stage (1.574?±?0.0568 h) followed by second and first instar with 1.72?±?0.0411 h and 1.919?±?0.0568 h respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号