首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of the concentrations of Cr, Zn, Cd, Pb, Ni, and Cu in soils under different land uses in rural, semi-urban, and urban zones in the Niger Delta was carried out with a view to providing information on the effects of the different land uses on the concentrations of trace elements in soils. Our results indicate significant variability in concentrations of these metals in soils under different land uses in rural, semi-urban, and urban zones. The maximum concentrations of metals in the examined soil samples were 707.5 mg.kg?1, 161.0 mg.kg?1, 2.6 mg.kg?1, 59.6 mg.kg?1, 1061.3 mg.kg?1, and 189.2 mg.kg?1 for Cr, Zn, Cd, Pb, Ni, and Cu, respectively. In the rural zone, the cassava processing mill is a potent source of Ni, Cr, Cu, and Zn while agricultural activities are a source of Cd, and automobile emissions and the use of lead oxide batteries constitute the major sources of Pb. In the urban zone, soils around the wood processing mill showed elevated concentrations of Cu, Cr, Zn, and Ni, while soils around automobile mechanic works and motor parks showed elevated levels of Pb. Elevated Cd concentrations were observed in soils under the following land uses: urban motor park, playground, welding and fabrication sheds, and metallic scrap dump. The contamination/pollution index of metals in the soil follows the order: Ni > Cd > Cr > Zn > Cu > Pb. The multiple pollution index of metals at different sites were greater than 1, indicating that these soils fit into “slight pollution” to “excessive pollution” ranges with significant contributions from Cr, Zn, Cd, Ni, and Cu.  相似文献   

2.
Heavy metal contamination of agricultural soils resulting from rapid industrialization and urbanization is of great concern because of potential health risk due to dietary intake of contaminated vegetables. The present study aims to evaluate the status of heavy metals contamination of agricultural soils and food crops around an urban-industrial region in India. Transfer factor values of Cu, Cr, Pb, Cd, Zn, and Ni from soil to vegetable was estimated. The mean heavy metal concentrations (mg/kg) in agricultural soils (Cu: 17.8, Cr: 27.3, Pb: 29.8, Cd: 0.43, Zn: 87, Mn: 306.6, Fe: 16984, and Ni: 53.8) were within allowable concentrations for Indian agricultural soil. The concentrations of Pb, Cd, Zn, and Ni in crops/vegetables exceeded the World Health Organization/Food and Agriculture Organization safe limits. Relative orders of transfer of metals from soil to edible parts of the crops/vegetables were Cd > Pb > Ni > Zn > Cu > Cr. The enrichment factors of heavy metals in soil indicated minor to moderately severe enrichment for Pb, Cd, and Ni; minor to moderate enrichment for Zn; no enrichment to minor enrichment for Mn; and no enrichment to moderate enrichment for Cu at different sites. Ecological risk index of soil showed considerable contamination in one of the wastewater irrigated sites.  相似文献   

3.
An incubation experiment was executed on applying biochar as a soil remediation amendment to discuss an effect of the various addition rates on the speciation and bioavailability of heavy metals in mining-contaminated soil. The result showed that the content of Cd in soil was 9.51 times higher than the Huainan soil background values. The contents of Cu, Zn and As were 2.97, 1.60 and 1.42 times the background values, respectively, and the total contents of all heavy metals were higher than the standard values of soil environment quality GB15618-1995 set by the China Ministry of Environmental Protection. Speciation analysis indicated that Cu and Cd were mainly associated with the reducible fraction, while Zn and As were dominated by the residual fraction. After biochar was added to contaminated soil, the residual fractions of heavy metals increased, while the acid-soluble fractions reduced. According to the results of CaCl2 extraction experiment, CaCl2-extractable concentrations of Cu, Zn, As, and Cd were observed with a biochar dosage rate of 10%, which were 57.26%, 51.37%, 6.94% and 42.04% lower than those of control soil samples, respectively, but there were no obvious changes of CaCl2-extractable As.  相似文献   

4.

Aims and methods

Concentrations of heavy metals such as Cd, As, Hg, Pb, Cr, Cu, Zn and Ni in different tissues (seeds, roots and shoots) of the mature canola (Brassica napus L.) plants and in the associated rhizosphere soils from Yangtze River Delta (YRD) region of China, were determined to evaluate the heavy metals’ pollution in the soils and the canola seeds, and to discuss their accumulation and translocation characteristics in canola plants. At the same time, the phytoextraction potential of the canola plant for the above heavy metals was theoretically calculated and discussed on the basis of above measured data.

Results

The results showed that the concentration ranges of Cd, As, Hg, Pb, Cr, Cu, Zn and Ni in the rhizosphere soils were 0.115–0.481, 3.40–20.5, 0.069–0.682, 9.92–27.4, 46.8–86.6, 17.7–253.3, 65.2–511.7 and 16.0–37.8?mg?kg?1, respectively. The concentrations of Cu, Zn and Hg at some sampling sites exceeded the 2nd grade threshods of Chinese national environmental quality standard for soils. The potential ecological risk of heavy metals in the canola rhizosphere soils decreased in the order of Zhejiang > Shanghai > Jiangsu provinces. The concentration ranges of above heavy metals in the canola seeds were 0.032–0.067, 0.002–0.005, 0.001–0.005, 0.053–0.165, 0.191–0.855, 3.01–13.20, 34.82–96.95 and 0.343–2.86?mg?kg?1, respectively, with Cu and Zn at some sampling sites exceeding the permissible concentrations in foods of China. Heavy metals’ concentrations in canola seeds didn’t increase with their increasing concentrations in the rhizosphere soils. The bioconcentration factors (BCFs) of most heavy metals in the canola seeds decreased with their increasing concentrations in the associated rhizosphere soils. The average BCFs of heavy metals decreased in the order of Zn (0.488)>Cd (0.241)>Cu (0.145)>Ni (0.038)>Hg (0.021)>Pb (0.005)=Cr (0.005)>As (0.000) in the canola seeds, Cd (1.550)>Cu (0.595)>Zn (0.422)>Hg (0.138)>Ni (0.085)>Pb (0.080)>As (0.035)>Cr (0.031) in the roots, and Cd (0.846)>Zn (0.242)>Cu (0.205)>Hg (0.159)>Ni (0.031)>Pb (0.025)>As (0.012)>Cr (0.007) in the shoots, respectively. The accumulation capacity for most of the above heavy metals in the mature canola tissues was root > shoot > seed, with the exceptions of seed > root > shoot for Zn and shoot > root > seed for Hg. Except Hg from root to shoot and Zn from root to seed, translocation factors (TFs) of above heavy metals were lower than 1.0.

Conclusions

The concentrations, BCFs and TFs of above heavy metals in the canola tissues indicated that the investigated canola plants did not meet the criteria of hyperaccumulators for the above heavy metals. The phytoextracton potential of the studied canola plants for the above heavy metals from the polluted soils was very limited. It would take 920, 3,170 and 3,762?years (assuming two crops per year) to reduce the initial soil Zn, Cu and Hg concentrations, respectively, from the most polluted soil concentrations to the 2nd grade thresholds of Chinese national environmental quality standard for soils.  相似文献   

5.
In this study, sediment samples were collected from Kabul River (Pakistan) and analyzed for heavy metals including zinc (Zn), cadmium (Cd), chromium (Cr), nickel (Ni) and lead (Pb). The physico-chemical characteristics were also determined which are known to influence the metal accumulation within the sediment matrix. Heavy metal concentrations (mg kg?1, dry weight basis) in the sediment were in the order of Zn > Cr > Ni > Pb > Cd. Heavy metal concentrations were found in moderately polluted category set by U. S. Environmental Protection Agency (USEPA). However, Cr and Ni concentrations exceeded the screening levels at the sites where a larger volume of industrial effluents enter into Kabul River. Higher concentrations of almost all the tested metals were detected at locations of greater industrial and sewage entry points. Sediment organic matter (OM) exhibited strong correlation with Pb (R2 = 0.80), Ni (R2 = 0.67) and Zn (R2 = 0.46), indicating that OM plays a significant role in metal retention and accumulation. The findings of this study showed that Kabul River is reasonably contaminated with selected heavy metals released from anthropogenic sources. In the study area, sewage discharge was the major source of heavy metals including Zn and Pb, which were observed at locations where sewage effluents enter into the river.  相似文献   

6.
The input of heavy metals by atmospheric deposition to forested watersheds substantially decreased during the last decades in many areas. The goal of our study was to identify the present sinks and sources of metals and factors influencing metal mobility at the catchment and soil profile scale. We determined concentrations and fluxes of Cd, Zn, Cu, Cr and Ni in precipitation, litterfall, soil solutions (Oi, Oe, Oa horizon percolates, 20 and 90?cm soil depth) and runoff in a forest ecosystem in NE-Bavaria, Germany for 1?year. The metal concentrations in solutions were mostly <10???g?l?1 beside Zn (<1200???g?l?1). The present total deposition was estimated at 1.0, 560, 30, 1.2 and 10.4?g?ha?1?year?1 for Cd, Zn, Cu, Cr and Ni, respectively. The mass balance (total deposition minus runoff) at the catchment scale indicated actual retention of Zn, Cu and Ni, but an almost balanced budget for Cr and Cd. Considering the soil profile scale, the Oi horizon still acted as a sink, whereas the Oe and Oa horizons were presently sources for all metals. The solid?Csolution partitioning coefficients indicated higher mobility of Cd and Zn than of Cu, Cr and Ni in forest soils. In the mineral soil horizons, Kd values derived from field measurements were substantially larger than those predicted with empirical regression equations from Sauv?? et al. (Environ Sci Technol 34:1125?C1131, 2000; Environ Sci Technol 37:5191?C5196, 2003). The mineral soil acted as a sink for all metals beside Cd. Dissolved organic C and pH influenced the metal mobility, as indicated by significant correlations to metal concentrations in Oa percolates and runoff. The solid?Csolution partitioning coefficients indicated higher mobility of Cd and Zn than of Cu, Cr and Ni in forest soils. Overall, the decreased deposition rates have obviously induced a source function of the Oe and Oa horizon for metals. Consequently, mobilization of metals from forest floor during heavy rain events and near surface flow conditions may lead to elevated concentrations in runoff.  相似文献   

7.
In this study, the content characteristics, comprehensive pollution assessment, and morphological distribution characteristics of heavy metals (Mn, Cd, Cr, Pb, Ni, Zn, and Cu) were researched based on the processes of field investigation, sample collection, and experimental analysis. Results showed that the mean concentrations of Mn, Pb, Cr, Cu, Cd, Zn, and Ni in surface soils were 522.77, 22.56, 55.10, 25.41, 0.25, 57.02, and 48.47 mg kg?1, respectively. The surface soil from Sunan mining area was contaminated by Cu, Cd, and Ni in different degrees, and high CV values of Cd, Zn, Pb, and Ni were influenced by local human activities possibly. The evaluation results suggested that the mean Igeo values were in the sequence of Cd (0.657) > Ni (0.052) > Cu (?0.293) > Mn (?0.626) > Zn (?0.761) > Cr (?0.884) > Pb (?0.899). Besides, Cd was the most significant potential risk factor among all elements. Nevertheless, the Cd of bioavailable speciations with higher proportion had stronger migration and toxicity, and was more easier to be absorbed and enriched than other elements by some crops (e.g., vegetables, rice), and being at a relatively higher potential ecological risk in soil.  相似文献   

8.
Accumulation of heavy metals (HMs) in cultivated soils is a continuing environmental problem in many parts of the world. An increase in HM concentration can enhance uptake of toxic metals by crops and enter the human food chain. In this study, the uptake behavior of wheat and safflower was evaluated in a calcareous soil by using 12 undisturbed columns in which half were artificially contaminated. Heavy metals in the form of CdCl2 (15 mg Cd kg? 1), CuSO4 (585 mg Cu kg? 1), Pb(NO3)2 (117 mg Pb kg? 1), and ZnCl2 (1094 mg Zn kg? 1) were sprayed on the soil surface and completely mixed in the top 10 cm. The background total concentrations of Cd, Cu, Pb and Zn were 1.6, 29.5, 17.5 and 61.2 mg kg? 1, respectively. After metal application, half of the columns (3 contaminated and 3 uncontaminated) were sown with wheat (Triticum aestivum) and the other half with safflower (Carthamus tinctorious) and grown for 74 days until maturity. After harvesting, soil columns were cut into 10-cm sections and analyzed for HNO3- and DTPA-extractable metal concentrations. Metal concentrations were also measured in different plant tissues. The results showed that artificial contamination of topsoil decreased the transpiration rate of wheat by 12% and that of safflower by 6%. In contaminated columns, Cd, Cu, Pb, and Zn accumulation in wheat shoot was greater by 8.0-, 1.9-, 3.0-, and 2.1-fold than the control, respectively. Accordingly, these numbers were 46.0-, 1.3-, 1.7-, and 1.6-fold in safflower shoot. Soil contamination with HMs resulted in a 55% decrease in shoot dry matter yield of wheat while it had no significant effect on shoot dry matter of safflower. The normalized water consumption for safflower was therefore not affected by metal contamination (≈ 13 mm H2O g? 1 of dry weight for all safflower and uncontaminated wheat treatments), while contaminated wheat was much less water efficient at about 27 mm H2O g? 1 dry weight. It was concluded that although artificial contamination had a negative effect on wheat growth, it did not affect safflower's normal growth and water efficiency.  相似文献   

9.
Summary This paper reviews the evidence for impacts of metals on the growth of selected plants and on the effects of metals on soil microbial activity and soil fertility in the long-term. Less is known about adverse long-term effects of metals on soil microorganisms than on crop yields and metal uptake. This is not surprising, since the effects of metals added to soils in sewage sludge are difficult to assess, and few long-term experiments exist. Controlled field experiments with sewage sludges exist in the UK, Sweden, Germany and the USA and the data presented here are from these long-term field experiments only. Microbial activity and populations of cyanobacteria,Rhizobium leguminosarum bv.trifolii, mycorrhizae and the total microbial biomass have been adversely affected by metal concentrations which, in some cases, are below the European Community's maximum allowable concentration limits for metals in sludge-treated soils. For example, N2-fixation by free living heterotrophic bacteria was found to be inhibited at soil metal concentrations of (mg kg–1): 127 Zn, 37 Cu, 21 Ni, 3.4 Cd, 52 Cr and 71 Pb. N2-fixation by free-living cyanobacteria was reduced by 50% at metal concentrations of (mg kg–1): 114 Zn, 33 Cu, 17 Ni, 2.9 Cd, 80 Cr and 40 Pb.Rhizobium leguminosarum bv.trifolii numbers decreased by several orders of magnitude at soil metal concentrations of (mg kg–1): 130–200 Zn, 27–48 Cu, 11–15 Ni, and 0.8–1.0 Cd. Soil texture and pH were found to influence the concentrations at which toxicity occurred to both microorganisms and plants. Higher pH, and increased contents of clay and organic carbon reduced metal toxicity considerably. The evidence suggests that adverse effects on soil microbial parameters were generally found at surpringly modest concentrations of metals in soils. It is concluded that prevention of adverse effects on soil microbial processes and ultimately soil fertility, should be a factor which influences soil protection legislation.  相似文献   

10.
The mobility of heavy metals in contaminated soils is dependent on the kinetics release from soils. Metal extraction over time is commonly used to distinguish two or more fractions of metal based on differences of extraction or release rates. Kinetic studies using 0.01 M CaCl2, 0.01 M malic acid, and 0.01 M EDTA extractions were performed to characterize nickel (Ni) and lead (Pb) kinetic release in 10 contaminated calcareous soils. Proportions of Ni and Pb extracted with EDTA were higher than when using malic acid and CaCl2, respectively. The release of Ni and Pb was characterized by an initial fast rate followed by a slower rate and could best be described by a two first-order reactions model with rate constants k1 and k2 and two metal pools: readily labile (Q 1) and less labile (Q 2). In an EDTA extractant, different Q1 /Q2 ratios for Ni and Pb were observed, indicating binding energies to soil constituents is not comparable. The k1 of the model for Ni (average of 10 soils: 0.2204 h?1 and 0.2359 h?1 for 0.01 M CaCl2 and 0.01 EDTA, respectively) was higher than Pb (0.1044 h?1 and 0.1631 h?1 for 0.01 M CaCl2 and 0.01 M EDTA, respectively), indicating a higher potential of Ni for leaching and groundwater contamination in contaminated calcareous soils. Relationships between the fraction of Ni and Pb determined with the two first-order reactions model and the soil composition and Pb fractions were established. The results indicated that the efficiency of the extractions Ni and Pb from soils depends both on the Ni and Pb content and soil composition. Overall, the results indicated that the use of a 0.01 M malic acid washing solution would be preferred in the field condition.  相似文献   

11.
A physiologically based extraction test (PBET) was run for the extraction of six metals (Cu, Zn, Cd, Cr, Ni and Pb) in four composts containing high concentrations of heavy metals. An aqueous solution of pepsin plus citric, acetic, and malic acids buffered to pH 2 was used to simulate the gastric mixture, and an extraction of 1 h at 37 °C was run with a solid:liquid ratio of 1:100. The results were compared to those obtained using water and CaCl2–DTPA solution. The PBET extracted far more metals than water, but less than CaCl2–DTPA for Cu, Pb and Cr, while giving similar or slightly lower results for Cd, Zn, and Ni.  相似文献   

12.
This article discusses the mineralogy and geochemical characteristics of the fresh copper-flotation waste samples. The mobility of As, Cd, Cr, Cu, Ni, Pb, Tl, Zn was investigated by leaching tests. The main mineral phases identified concerned dolomite, quartz, clay minerals, feldspars, and copper-bearing minerals. Chemically, CaO and silica were dominating, along with a significant concentration of precious (Cu), refractory (Cr, Ti, V, Zr), and toxic (As, Cd, Pb) metals. Elements were bound mainly to the residual fraction and sulphides in the following order: Pb > Cu ≈ Tl > As ≈ Zn > Ni ≈ Cr > Cd. The metal mobility patterns expressed as a percentage of total concentrations, were as follows: Cd (42%) > Cr (26%)> Ni (24%) > Zn (23%) > As (22%) > Tl (20%) > Cu (18%) > Pb (2%). Those constituents were released earlier in lower pH values, although Cu, Cr, and Pb were also released in higher alkaline pH values. However, Zn release was not dependent on pH. When L/S values decreased, elements like As, Cr, Cu, Pb, and Tl were released. That process caused decrease of Cd, Ni, and Zn release.  相似文献   

13.
The plant cytoskeleton orchestrates such fundamental processes in cells as division, growth and development, polymer cross-linking, membrane anchorage, etc. Here, we describe the influence of Cd2+, Ni2+, Zn2+, and Cu2+ on root development and vital organization of actin filaments into different cells of Arabidopsis thaliana line expressing GFP-FABD2. CdSO4, NiSO4, CuSO4, and ZnSO4 were used in concentrations of 5–20 µM in this study. It was found that Cd, Ni, and Cu cause dose-dependent primary root growth inhibition and alteration of the root morphology, whereas Zn slightly stimulates root growth and does not affect the morphology of Arabidopsis roots. This growth inhibition/stimulation correlated with the various sensitivities of microfilaments to Cd, Ni, Cu, and Zn action. It was established that Cd, Ni, and Cu affected predominantly the actin filaments of meristematic cells. Cells of transition and elongation zones demonstrated strong actin filament sensitivity to Cd and Cu. Microfilaments of elongating root cells were more sensitive to Ni and Cu. Although Cd, Ni, and Cu stimulated root hair growth after long-term treatment, actin filaments were destroyed after 1 h exposure with these metals. Zn did not disrupt native actin filament organization in root cells. Thus, our investigation shows that microfilaments act as sensitive cellular targets for Cd, Ni, and Cu. More data on effects on native actin filaments organization would contribute to a better understanding of plant tolerance mechanisms to the action of these metals.  相似文献   

14.
Dissolved organic matter in poultry litter could contribute organic ligands to form complexes with heavy metals in soil. The soluble complexes with heavy metals can be transported downward and possibly deteriorate groundwater quality. To better understand metal mobilization by soluble organic ligands in poultry litter, soil columns were employed to investigate the movement of zinc (Zn), cadmium (Cd), and lead (Pb). Uncontaminated soil was amended with Zn, Cd, and Pb at rates of 400, 8, and 200 mg kg ? 1 soil, respectively. Glass tubes, 4.9-cm-diameter and 40-cm-long, were packed with either natural or metal-amended soil. The resulting 20-cm-long column of soils had bulk density of about 1.58 g cm ? 3 . Columns repacked with natural or amended soil were leached with distilled water, 0.01 M EDTA, 0.01 M CaCl 2 , or poultry litter extract (PLE) solutions. Low amounts of Zn, Cd, and Pb were leached from natural soil with the solutions. Leaching of Zn, Cd, or Pb was negligible with distilled water. In the metal-amended soil, EDTA solubilized more Zn, Cd, and Pb than CaCl 2 and PLE. The breakthrough curves of Zn and Pb in the PLE and CaCl 2 were similar, indicating they have similar ability to displace Zn and Pb from soils. Compared with Zn and Cd the PLE had a small ability to solubilize Pb from metal-amended soil. Thus, the application of poultry litter on metal-contaminated soils might enhance the mobility of Zn and Cd.  相似文献   

15.
Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects.  相似文献   

16.
The issue of heavy metal pollution is of high concern due to its potential health risks and detrimental effects on human beings, animals, and plants. In this study, farmland soil samples from 79 sampling sites were collected in Karashahar–Baghrash oasis, northwest China, and the contents of eight heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) were determined by standard methods. The spatial distribution, pollution, and ecological risks of heavy metals were analyzed based on Geographical Information System (GIS) technology, contamination factor (CF), pollution load index (PLI), and potential ecological risk index (RI). Results indicated that: (1) The average contents of Cd, Cr, Ni, Pb, and Zn exceeded the background values of irrigation soils of Xinjiang by 54.0, 1.34, 1.39, 3.44, and 5.01 times, respectively. The average contents of Cd exceeded the national standard of China by 10.80 times; (2) The pollution order of CF was ranked as Cd > Zn > Pb > Ni > Cr > Cu > As > Mn, and the ecological risk order of Eri was ranked as Cd > Ni > As > Cu > Ni > Pb > Cr > Zn. The average PLI of the study area showed heavy pollution level, and the average RI of the study area fell into considerable risk; (3) The moderately polluted areas with moderate potential ecological risks distributed in the northern parts, whereas heavily polluted areas with considerable potential ecological risks distributed in the southern parts of the study area; (4) Cr, Cu, and Mn of farmland soils were mainly originated from natural factors. Cd, Ni, and Pb were mainly originated from anthropogenic factors. As and Zn may be associated with both natural and anthropogenic factors. Cd contributed most to the PLI and RI of the farmland soils in the study area.  相似文献   

17.
Abstract

Sequential extraction or fractionation of heavy metals in the solid phase and their speciation in soil solution are important tools for assessing changes resulting from land use and/or pollution. The distribution of the various forms of Ba, Cu, Ni, Pb and Zn was evaluated in soil samples taken from a polluted area, and the speciation of cations and anions in a soil solution contaminated with automotive industry waste. We evaluated the sequential extraction and speciation of Ba, Cu, Ni, Pb and Zn in a Leptosol associated with a Cambisol and contaminated with automotive industry waste. Soil samples were collected at 0-0.2 m (a mix of soil and waste); 0.2-0.4 m (waste only), and 0.4-0.6 m (soil only) both in the polluted area and in two contiguous unpolluted areas: a sugarcane plantation and a forest fragment. Total concentrations of metals in the polluted area were above limits for intervention established by European Community regulations. Cu was mostly distributed in the residual and in the oxide-bonded fractions, except for the waste-only sample, in which the carbonate-bonded fraction was significant. Zn was concentrated in the residual and carbonate-bonded fractions, while Ba, Ni and Pb predominated in the residual fraction of the contaminated samples. Metals in the soil solution were predominantly in the hydroxyl forms, except for Ba, which was mostly in the ionic form (Ba2+).  相似文献   

18.
Willows occur as volunteer vegetation on sediment-derived soils, such as dredged sediments, landfill cover or stockpile deposits, and are used as phytoremediators on such soils. The present study evaluates growth and metal uptake by Salix alba grown on a contaminated dredge sediment for 209 days under greenhouse conditions. At the end of the study, the aerial parts of the S. alba plants had grown to heights of between 80 and 117 cm. Biomass and Cd and Zn concentration in the roots, stems and leaves, at 70, 112 and 209 days, showed that Cd and Zn had been bioaccumulated, especially in the leaves.At the three sampling dates, Cd and Zn extractability and pH measurements were also carried out on samples of two soil layers (0–15 and 15–30 cm) from both the planted and the control pots. Cd and Zn extractability were assessed using single extraction procedures (0.01 M CaCl2; 1 M HNO3; CaCl2–TEA–DTPA). The two metals showed similar variations in CaCl2 and HNO3 extractabilities, but this was not the case for DTPA extractability. The greatest variations were observed in the upper soil layers of the control pots. In the planted pots, the CaCl2 extractability of Zn decreased in the upper layer, and the HNO3 extractability of Zn increased in the lower layer. The pH of the upper soil layer was always higher than the pH of the bottom layer. In addition, we monitored several parameters of the percolates from both the planted and the control sediments, including pH, Eh, conductivity, dissolved organic carbon, Zn and Cd concentrations, and presence of certain cations/anions. Dissolved organic carbon, and Cd and Zn concentrations increased steadily over time. There were no significant differences between the planted and the control pots. After 209 days, the characteristics of the control sediment reflected the effects of ageing in that the CaCl2-extractable Cd and Zn concentrations had decreased compared with the initial concentrations. Conversely, the concentrations of HNO3-extractable Cd and Zn had increased. A fraction of the metal initially extracted by CaCl2 (considered as exchangeable) became less available with time. After 112 days, the plants had extracted approximately 2.8 mg of Zn. At the same time, the CaCl2 extractability of Zn in the upper, rooted layer decreased by 2.6 mg. We can assume that S. alba extracted Zn from the pool of CaCl2-extractable Zn.  相似文献   

19.
In order to assess their practical capability for the absorption and accumulation of Pb, Zn, and Cu, five common crop plants, i.e. maize (Zea mays), sunflower (Helianthus annuus), canola (Brassica napus), barley (Hordeum vulgare) and White lupine (Lupinus albus) were tested in pot experiments using six soil samples taken from mine tailings, pasture and arable soils around an old Pb-Zn mine in Spain. Metal concentration ranges of the soils were 76.2–785 mg kg?1, 127–1652 mg kg?1, and 12.4–82.6 mg kg?1 for Zn, Pb, and Cu, respectively. With the exception of the highest polluted sample, soil total metal concentration did not influence significantly biomass yields of each crop for the different growth substrates. The order found for the total metal accumulation rate (TMAR) in the crops was Zn>>Pb > Cu, with maize reaching the highest metal concentrations. Pb root concentrations were markedly higher than those of shoots for all the crops, while Zn and Cu were translocated to shoots more efficiently. Concentrations of metals extracted by EDTA and BCR sequential extraction were well correlated, in general, with both root metal content and TMAR. CaCl2-extracted Zn was well correlated with root concentrations, TMAR and, in some cases, with shoot contents. Our study showed that the test crops were not feasible to remediate the heavily or moderately contaminated soils studied here in order to achieve the total metal soil concentrations required by the current European laws.  相似文献   

20.
The fractionation and distribution with depth of Cd, Cr, Cu, Ni, Pb, and Zn in 26 soils of Northern Kentucky were determined through a sequential extraction procedure in response to environmental concerns about increasing anthropogenic inputs in a fast-paced, urbanizing area. The selected sites have not received any biosolid- or industrial-waste applications. Average total concentrations per metal in soil profiles derived from alluvial, glacial till, and residual materials ranged from 0.43 to 56.00 mg kg?1 in the sequence Zn > Ni > Pb > Cr > Cu > Cd, suggesting relatively small anthropogenic inputs. The distribution of Cu, Cr, Ni, and Zn increased with soil depth, whereas Cd and Pb remained stable, indicating a strong geological or pedogenic influence. Residual forms were most important for the retention of Cu, Zn, and Ni. Cadmium and Pb exhibited a strong affinity for the Fe-Mn oxide fraction, while Cr showed the strongest association with the organic fraction. In terms of metal mobility and toxicity potential inferred from metal concentrations in labile fractions, Cd posed the greatest risk, followed by Cr ~ Pb > Ni > Zn > Cu. Soil pH, OM, and clay content were the most important parameters explaining the partitioning of metals in labile and residual fractions, emphasizing the importance of metal fractionation in soil management decisions. Alluvial soils generally contained the highest total and labile metal concentrations, suggesting potential metal enrichment through anthropogenic additions and depositional processes. These environments exhibit the highest risk for metal mobilization due to drastic changes in redox conditions, which can destabilize existing metal retention pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号