首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we show that hydroxyl radical (•OH) generated through the Fenton reaction alters metaphase-II mouse oocyte microtubules (MT) and chromosomal alignment (CH). Metaphase-II mouse oocytes, obtained commercially, were grouped as follows: control, hydrogen peroxide (H2O2), Fe(II), and combined (Fe(II) +H2O2) treatments. After 7–10 min of incubation at 37 °C, MT and CH were evaluated on fixed and stained oocytes and scored by two blinded observers. Pearson χ2 test and Fisher exact test were used to compare outcomes between controls and treated groups and also among the treated groups. Our results showed that poor scores for MT and CH increased significantly in oocytes treated with a combination of H2O2 and Fe(II) (p<0.001); oocytes treated with H2O2 alone or Fe(II) alone showed no or few changes compared to control. Comparison of oocyte groups that received increasing concentrations of H2O2 and a fixed amount of Fe(II) showed that 70–80% demonstrated poor scores in both MT and CH when pretreated with 5 μM H2O2, and this increased up to 90–100% when treated with 10–20 μM H2O2. Hydroxyl radical generated by H2O2-driven Fenton reaction deteriorates the metaphase-II mouse oocyte spindle and CH alignment, which is thought to be a potential cause of poor oocyte quality. Thus, free iron and/or ROS scavengers could attenuate the OH-mediated spindle and chromosomal damage, thereby serving as a possible approach for further examination as a therapeutic option in inflammatory states.  相似文献   

2.
《Life sciences》1994,56(4):PL89-PL96
Hydroxylation reactions of aromatic compounds have been used to detect hydroxyl radicals produced by gamma irradiation and ultrasound. The present study investigated the suitability of terephthalic acid (THA) as a hydroxyl radical dosimeter for general use in biologically relevant reactions. Hydroxyl radicals were generated by: (1) irradiating, THA with a 254 nm ultraviolet; (2) irradiating with gamma rays from a cesium source; and (3) generating hydroxyl radicals with 1 mM H2O2 and 10 μM Cu+2. In each of the three experiments, a fluorescent product was generated which exhibited identical fluorescent excitation and emission spectra. THA is non-fluorescent, eliminating the problem of a high initial background. Because THA has four ring hydrogens, only one mon-hydroxylated isomer was formed. The hydrogen peroxide reaction was dependent on the presence of a metal and cupric ions were effective in enhancing the reaction. With a Cu+2 concentration of 10 μM, the reation was linear between 0–30 mM H2O2. Catalase abolished the reaction at a concentration of 100 μg/ml and the effects could still be observed at 10 ng/ml, consistent with the very high rate at which catalase destroys hydrogen peroxide. Tertbutyl- hydroperoxide did not generate any fluorescence in this system which makes THA a very specific detector of hydroxyl radicals.  相似文献   

3.
Humid tropical forests have the fastest rates of organic matter decomposition globally, which often coincide with fluctuating oxygen (O2) availability in surface soils. Microbial iron (Fe) reduction generates reduced iron [Fe(II)] under anaerobic conditions, which oxidizes to Fe(III) under subsequent aerobic conditions. We demonstrate that Fe (II) oxidation stimulates organic matter decomposition via two mechanisms: (i) organic matter oxidation, likely driven by reactive oxygen species; and (ii) increased dissolved organic carbon (DOC) availability, likely driven by acidification. Phenol oxidative activity increased linearly with Fe(II) concentrations (< 0.0001, pseudo R2 = 0.79) in soils sampled within and among five tropical forest sites. A similar pattern occurred in the absence of soil, suggesting an abiotic driver of this reaction. No phenol oxidative activity occurred in soils under anaerobic conditions, implying the importance of oxidants such as O2 or hydrogen peroxide (H2O2) in addition to Fe(II). Reactions between Fe(II) and H2O2 generate hydroxyl radical, a strong nonselective oxidant of organic compounds. We found increasing consumption of H2O2 as soil Fe(II) concentrations increased, suggesting that reactive oxygen species produced by Fe(II) oxidation explained variation in phenol oxidative activity among samples. Amending soils with Fe(II) at field concentrations stimulated short‐term C mineralization by up to 270%, likely via a second mechanism. Oxidation of Fe(II) drove a decrease in pH and a monotonic increase in DOC; a decline of two pH units doubled DOC, likely stimulating microbial respiration. We obtained similar results by manipulating soil acidity independently of Fe(II), implying that Fe(II) oxidation affected C substrate availability via pH fluctuations, in addition to producing reactive oxygen species. Iron oxidation coupled to organic matter decomposition contributes to rapid rates of C cycling across humid tropical forests in spite of periodic O2 limitation, and may help explain the rapid turnover of complex C molecules in these soils.  相似文献   

4.
Utilizing an electron paramagnetic resonance (EPR) spin-trapping technique it was demonstrated that the di- and triphosphate nucleotides of adenosine, cytidine, thymidine, and guanosine in the presence of Fe(II) catalyze hydroxyl free radical formation from H2O2. The triphosphate nucleotides in general were about 20% more effective than the diphosphate nucleotides. The amount of ?H produced from H2O2 as a function of nucleotide level tended to increase in a sigmoidal fashion beginning at a nucleotide/Fe(II) ratio of 2 but then rose rapidly up to a ratio of 5 at which point the increase became more gradual. The monophosphate nucleotides did not cause an increase in the amount of hydroxyl free radical produced from H2O2 over the low level obtained in the buffer system only. The cations, Mg2+ and Ca2+, even at much higher than physiological levels and much higher than the level of added Fe(II), did not cause a substantial diminution of the Fe(II)-nucleotide-catalyzed breakdown of H2O2 to yield ?H. A study of the time course of the effectiveness of Fe(II)-nucleotide-mediated ?H formation from H2O2 demonstrated that Fe(II) in the presence of nucleotides remained in an effective catalytic state with a halftime of about 160 s whereas in the absence of the nucleotides the halftime was 7.5 s. All observations indicate that Fe(II) ligates with di- and triphosphate nucleotides and remains in the ferrous state which is then capable of catalyzing ?H formation from H2O2; but with time, oxidation of the metal ion to the ferric state occurs, which either ligated to the nucleotide or to buffer ions, is ineffective in H2O2 catalysis to yield ?H. Iron-nucleotide complexes may be of importance in mediating oxygen free radical damage to biological systems. The observations presented here indicate that hydroxyl free radicals will be produced when H2O2 is present with ferrous-nucleotide complexes.  相似文献   

5.
It is widely accepted that photosynthetic bacteria played a crucial role in Fe(II) oxidation and the precipitation of iron formations (IF) during the Late Archean–Early Paleoproterozoic (2.7–2.4 Ga). It is less clear whether microbes similarly caused the deposition of the oldest IF at ca. 3.8 Ga, which would imply photosynthesis having already evolved by that time. Abiological alternatives, such as the direct oxidation of dissolved Fe(II) by ultraviolet radiation may have occurred, but its importance has been discounted in environments where the injection of high concentrations of dissolved iron directly into the photic zone led to chemical precipitation reactions that overwhelmed photooxidation rates. However, an outstanding possibility remains with respect to photochemical reactions occurring in the atmosphere that might generate hydrogen peroxide (H2O2), a recognized strong oxidant for ferrous iron. Here, we modeled the amount of H2O2 that could be produced in an Eoarchean atmosphere using updated solar fluxes and plausible CO2, O2, and CH4 mixing ratios. Irrespective of the atmospheric simulations, the upper limit of H2O2 rainout was calculated to be <106 molecules cm?2 s?1. Using conservative Fe(III) sedimentation rates predicted for submarine hydrothermal settings in the Eoarchean, we demonstrate that the flux of H2O2 was insufficient by several orders of magnitude to account for IF deposition (requiring ~1011 H2O2 molecules cm?2 s?1). This finding further constrains the plausible Fe(II) oxidation mechanisms in Eoarchean seawater, leaving, in our opinion, anoxygenic phototrophic Fe(II)‐oxidizing micro‐organisms the most likely mechanism responsible for Earth's oldest IF.  相似文献   

6.
We have studied the effects of 1 mM solutions of L-amino acids on the X-ray- and heat-induced generation of hydrogen peroxide and hydroxyl radicals in phosphate buffer (5 mM, pH 7.4). Hydrogen peroxide was estimated by enhanced chemiluminescence in the luminol/p-iodophenol/peroxidase system; hydroxyl radicals were detected with a fluorescent probe coumarin-3-carboxylic acid. We demonstrate that amino acids can be grouped into three categories by their effect on X-ray-induced H2O2 production: those that reduce, increase, and have no influence on H2O2 yield. Similar amino acid effects were observed upon heating; however, the composition of respective amino acid groups was different. All amino acids lowered the X-ray-induced hydroxyl radical production, and the most effective were Cys > His > Phe = Met = Trp > > Tyr (in descending order). Hydroxyl radical generation induced by heating was inhibited by Met, His, and Phe; enhanced by Ser; and not affected by Tyr and Pro. Thus, amino acids have different effects on the production of reactive oxygen species by X-rays and heating, and some amino acids appear to be effective natural antioxidants.  相似文献   

7.
《Free radical research》2013,47(3-6):337-342
The purpose of this study was to use electron paramagnetic resonance (EPR) spectroscopy to determine if ibuprofen, [2–(4-isobutylphenyl) propanoic acid], a potent nonsterodial anti-inflammatory agent, could modify hydroxyl radicals generation in vim. Ibuprofen (IBU; 0.1–50 mM) in water or water alone was added to EPR tubes containing ferrous sulfate (0.5–2.0mM). and either 5.5-dimethyl-l-pyrroline-N-oxide (DMPO; 40mM) or a-phenyl N-tert-butyl nitrone (PBN; 48 mM). Hydrogen peroxide (l mM) was added to inititate the Fenton reaction, and the systems were then analyzed by EPR spectroscopy to determine the type and relative quantity of free radical(s) produced. IBU caused a dose-dependent decrease of signal intensity of the hydroxyl radical adduct of DMPO (DMPO-OH) which is an indication that IBU either scavenges the hydroxyl radical and/or chelates iron. In addition, other radicals (presumably IBU radicals) produced in these systems were trapped by both DMPO (aN = 16.1G, aHβ = 24.0G) and PBN (aN = 15.7G. aHβ = 4.4G and aN = 17.0G, aHβ = 2.1 G). The signal height of these IBU radicals increased in systems containing ferrous sulfate (l mM), hydrogen peroxide (lmM), PBN (48mM), and increasing IBU concentrations. Therefore. we conclude that IBU scavenges the hydroxyl radical. If IBU chelated iron, then less hydroxyl radicals would be generated, less IBU radicals formed and the signal height of IBU radicals trapped by PBN would have decreased. However, these data do not fully exclude the possiblity that IBU may, to some extent. also chelate iron. Scavenging of hydroxyl radicals may be one of the mechanisms responsible for the beneficial action of IBU during the management of several rheumatic diseases. However, the IBU radicals produced when IBU scavenges hydroxyl radicals are reactive. and may be associated with the reported toxicity of this therapeutic agent.  相似文献   

8.
The objective of this research is to investigate Fenton and persulfate oxidation with zero-valent iron [Fe(0)] as a batch type ex-situ remediation technology for the treatment of diesel-contaminated soil. Results from batch experiments indicate that Fe(0) is a better catalyst for H2O2 and persulfate than Fe2+ for the enhancement of Fenton and persulfate oxidation in a batch system. Maximum removal was obtained after 12 h when 1 and 2 g of Fe(0) were added to hydrogen peroxide (250 mg/L) and persulfate (250 mg/L), respectively, in a soil-water system. As the amounts of Fe(0) and persulfate were increased three times at the optimal ratio, the removal of total petroleum hydrocarbon (TPH) was enhanced accordingly. More than 90% of the TPH was removed in 3 h, and the treated soil met the Korean regulation level (500 mg/kg) for TPH. Increased amounts of Fe(0) and hydrogen peroxide (up to 10 g and 1250 mg/L, respectively) also significantly enhanced degradation under the optimal conditions. The results of our study suggest that Fe(0)-assisted Fenton and persulfate oxidation in a batch reactor may be an alternative option to treat diesel-contaminated soil.  相似文献   

9.
The copper complex of 2,9-dimethyl-1,10-phenanthroline(2,9-dmp) is accumulated by a variety of organisms and is highly toxic. Bioaccumulation depends on reduction of copper(II) to (I), since only the copper(I)-2,9-dmp complex is lipophilic. In the case of the marine diatom, Nitzschia closterium, it is proposed that hydrogen peroxide, produced by the algae during photosynthesis, is the in vivo reductant. Hydrogen peroxide rapidly reduces copper(II)-2,9-dmp, but an excess of H2O2 leads to destruction of the yellow copper(I) complex. Rate constants for the formation and degradation of the yellow complex are reported. Oxygen, light, and a hydroxylating agent are released during the degradation reaction. A reaction mechanism is proposed for the destruction of copper-2,9-dmp by excess H2O2, involving attack on the 5, 6 positions of the phenanthroline ring by hydroxyl radical, then further oxidation by singlet oxygen and H2O2. These in vivo degradation reactions are believed to be the cause of the extreme toxicity of the complex.  相似文献   

10.
BackgroundIron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics.MethodsHerein, we compared the effect of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on Fe-catalyzed lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H2O2) and the absence or presence of ascorbate.ResultsIn the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H2O2 demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H2O2. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H2O2. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin.Conclusions and general significanceAscorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity.  相似文献   

11.
The biological effects of ultraviolet radiation (UV), such as DNA damage, mutagenesis, cellular aging, and carcinogenesis, are in part mediated by reactive oxygen species (ROS). The major intracellular ROS intermediate is hydrogen peroxide, which is synthesized from superoxide anion (O2) and further metabolized into the highly reactive hydroxyl radical. In this study, we examined the involvement of mitochondria in the UV‐induced H2O2 accumulation in a keratinocyte cell line HaCaT. Respiratory chain blockers (cyanide‐p‐trifluoromethoxy‐phenylhydrazone and oligomycin) and the complex II inhibitor (theonyltrifluoroacetone) prevented H2O2 accumulation after UV. Antimycin A that inhibits electron flow from mitochondrial complex III to complex IV increased the UV‐induced H2O2 synthesis. The same effect was seen after incubation with rotenone, which blocks electron flow from NADH‐reductase (complex I) to ubiquinone. UV irradiation did not affect mitochondrial transmembrane potential (ΔΨm). These data indicate that UV‐induced ROS are produced at complex III via complex II (succinate‐Q‐reductase). J. Cell. Biochem. 80:216–222, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

12.
Immune cells kill invading microbes by producing reactive oxygen and nitrogen species, primarily hydrogen peroxide (H2O2) and nitric oxide (NO). We previously found that NO inhibits catalases in Escherichia coli, stabilizing H2O2 around treated cells and promoting catastrophic chromosome fragmentation via continuous Fenton reactions generating hydroxyl radicals. Indeed, H2O2-alone treatment kills catalase-deficient (katEG) mutants similar to H2O2+NO treatment. However, the Fenton reaction, in addition to H2O2, requires Fe(II), which H2O2 excess instantly converts into Fenton-inert Fe(III). For continuous Fenton when H2O2 is stable, a supply of reduced iron becomes necessary. We show here that this supply is ensured by Fe(II) recruitment from ferritins and Fe(III) reduction by flavin reductase. Our observations also concur with NO-mediated respiration inhibition that drives Fe(III) reduction. We modeled this NO-mediated inhibition via inactivation of ndh and nuo respiratory enzymes responsible for the step of NADH oxidation, which results in increased NADH pools driving flavin reduction. We found that, like the katEG mutant, the ndh nuo double mutant is similarly sensitive to H2O2-alone and H2O2+NO treatments. Moreover, the quadruple katEG ndh nuo mutant lacking both catalases and efficient respiration was rapidly killed by H2O2-alone, but this killing was delayed by NO, rather than potentiated by it. Taken together, we conclude that NO boosts the levels of both H2O2 and Fe(II) Fenton reactants, making continuous hydroxyl-radical production feasible and resulting in irreparable oxidative damage to the chromosome.  相似文献   

13.
Oxidative depolymerization of chitosan induced by oxygen radical-generating systems was studied. Chitosan, but not chitin, was susceptible to oxidative depolymerization by hydroxyl radical generated through Cu(II)–ascorbate and ultraviolet–H2O2 systems in time- and concentration-dependent manners. Superoxide, H2O2, and singlet oxygen did not cause depolymerization. Metal ion chelators inhibited depolymerization by Cu(II)–ascorbate system, suggesting that the formation of chitosan–copper ion complex is important in the oxidative depolymerization. The molecular weight of the initial product during depolymerization was similar to that of glucosamine. The results suggest that copper ion could tend to coordinate to the NH2-groups at the terminal of chitosan and hydroxyl radical generated at its binding site cut off chitosan at the near position.  相似文献   

14.
Ascorbic acid (vitamin C) induced hydrogen peroxide (H2O2) formation was measured in household drinking water and metal supplemented Milli-Q water by using the FOX assay. Here we show that ascorbic acid readily induces H2O2 formation in Cu(II) supplemented Milli-Q water and poorly buffered household drinking water. In contrast to Cu(II), iron was not capable to support ascorbic acid induced H2O2 formation during acidic conditions (pH: 3.5–5). In 12 out of the 48 drinking water samples incubated with 2 mM ascorbic acid, the H2O2 concentration exceeded 400 μM. However, when trace amounts of Fe(III) (0.2 mg/l) was present during incubation, the ascorbic acid/Cu(II)-induced H2O2 accumulation was totally blocked. Of the other common divalent or trivalent metal ions tested, that are normally present in drinking water (calcium, magnesium, zinc, cobalt, manganese or aluminum), only calcium and magnesium displayed a modest inhibitory activity on the ascorbic acid/Cu(II)-induced H2O2 formation. Oxalic acid, one of the degradation products from ascorbic acid, was confirmed to actively participate in the iron induced degradation of H2O2. Ascorbic acid/Cu(II)-induced H2O2 formation during acidic conditions, as demonstrated here in poorly buffered drinking water, could be of importance in host defense against bacterial infections. In addition, our findings might explain the mechanism for the protective effect of iron against vitamin C induced cell toxicity.  相似文献   

15.
《Free radical research》2013,47(1):499-508
The hydrogen peroxide dependent oxidation of the epinephrinecopper complex to adrenochrome is mediated by free copper ions. The oxidation is enhanced by chloride ions and by the presence of serum albumin. The reaction is not inhibited by SOD or by hydroxyl radical scavengers.

The 2:1 epinephrine or dopamine:Cu(II) complexes are able to bind to DNA and to catalyze its oxidative destruction in the presence of hydrogen peroxide. The DNA-epinephrine-Cu(II) terenary complex has characteristic spectral properties. It has the capacity to catalyze the reduction of oxygen or H2O2 and it preserves the capacity over a wide range of comp1ex:DNA ratios. The rate of DNA cleavage is proportional to the rate of epinephrine oxidation and the rate determining step of the reaction Seems to be the reduction of free Cu(II) ions. The ability to form redox active stable DNA ternary complexes, suggests that under specific physiological conditions, when “free” copper ions are available. catecholamina may induce oxidative degradation of DNA and other biological macromolecules.  相似文献   

16.
The microbial retardation of the spin adduct, DMPO-OH, formed in a copper(II)–hydrogen peroxide–DMPO (5,5-dimethyl-1-pyrroline N-oxide) solution was examined in relation to copper biosorption. A hydroxyl radical is formed in the solution through two steps, the reduction of Cu(II) to Cu(I) by H2O2 and the Fenton-type reaction of Cu(I) with H2O2. The resultant radical is trapped by DMPO to form DMPO-OH. Microbial cells retarded the DMPO-OH in the Cu(II)–H2O2–DMPO far more significantly than in the UV-irradiated H2O2–DMPO solution. Egg albumin showed a higher DMPO-OH retardation than microbial cells both in the Cu(II)–H2O2–DMPO and the UV-irradiated H2O2–DMPO solutions. These results indicated that the retardation effect is related to organic matter and not to microbial activity. Microorganisms having higher affinities for copper ion retarded DMPO-OH more significantly. The linear relationship between the amounts of copper biosorption and the inverse of the median inhibitory doses for DMPO-OH indicated that the microbial cells inhibited the reduction of Cu(II) to Cu(I) by H2O2, followed by the decrease of hydroxyl radical formation and the retardation of DMPO-OH. These results also suggest that the coupling between microbial cells and Cu(II) ion can be estimated from their ability to retard DMPO-OH.  相似文献   

17.
Exopolysaccharides (EPS) are important food and drug additives with beneficial antioxidant, anticancer, and immune-related effects on human health. However, the EPS is limited by low yields and the need for complex culture conditions in fermentation. Here, we report that hydrogen peroxide and calcium stimulated probiotic activity and production of crude exopolysaccharide (c-EPS) by Lactobacillus rhamnosus ZY. Accordingly, supplementation with 3 mM H2O2 allowed c-EPS biosynthesis to reach 567 mg/L after 24 h. Addition of both CaCl2 and H2O2 resulted in a c-EPS yield of 2498 mg/L after 12 h, over 9-fold higher than that of an anaerobic culture. We observed that exposure to calcium and hydrogen peroxide made the cells more hydrophobic and led to the over-expression of GroEL, NADH peroxidase, and glyceraldehyde 3-phosphate dehydrogenase, thus increasing energy storage and EPS production. Chromatographic analysis revealed c-EPS was composed mainly of mannose (5.1%), galactose (15.3%), glucose (20–30%), and rhamnose (50–60%). Preliminary in vitro tests revealed that H2O2 and CaCl2 enhanced the 2,2-diphenyl-1-picrylhydrazyl and hydroxyl radical scavenging capacities, resulting in a notable protective effect against oxidative damage in NIH/3T3 cells. Our study provides a simple and cost-effective approach for achieving high yields of good quality EPS using Lactobacillus rhamnosus.  相似文献   

18.
Generation of hydroxyl radicals by soybean nodule leghaemoglobin   总被引:4,自引:0,他引:4  
Alain Puppo  Barry Halliwell 《Planta》1988,173(3):405-410
Leghaemoglobin, a protein present in root nodules of soybean (Glycine max (L.) Merr.), generates the highly reactive hydroxyl radical (·OH) upon incubation with hydrogen peroxide (H2O2). The H2O2 appears to cause breakdown of the haem, releasing iron ions that convert H2O2 into ·OH outside the protein. Oxyleghaemoglobin (oxygenated ferrous protein) is more sensitive to attack by H2O2 than is metleghaemoglobin (ferric protein). The possibility of oxyleghaemoglobin breakdown by H2O2 and formation of damaging ·OH may explain why the root nodule is equipped with iron-storage proteins and enzymes that can remove H2O2.  相似文献   

19.
Substantial evidence suggests that transient production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) is an important signaling event triggered by the activation of various cell surface receptors. Major targets of H2O2 include protein tyrosine phosphatases (PTPs). Oxidation of the active site Cys by H2O2 abrogates PTP catalytic activity, thereby potentially furnishing a mechanism to ensure optimal tyrosine phosphorylation in response to a variety of physiological stimuli. Unfortunately, H2O2 is poorly reactive in chemical terms and the second order rate constants for the H2O2-mediated PTP inactivation are ~ 10 M− 1 s− 1, which is too slow to be compatible with the transient signaling events occurring at the physiological concentrations of H2O2. We find that hydroxyl radical is produced from H2O2 solutions in the absence of metal chelating agent by the Fenton reaction. We show that the hydroxyl radical is capable of inactivating the PTPs and the inactivation is active site directed, through oxidation of the catalytic Cys to sulfenic acid, which can be reduced by low molecular weight thiols. We also show that hydroxyl radical is a kinetically more efficient oxidant than H2O2 for inactivating the PTPs. The second-order rate constants for the hydroxyl radical-mediated PTP inactivation are at least 2–3 orders of magnitude higher than those mediated by H2O2 under the same conditions. Thus, hydroxyl radical generated in vivo may serve as a more physiologically relevant oxidizing agent for PTP inactivation. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.  相似文献   

20.
《Free radical research》2013,47(4):263-272
Free radical formation from VP 16-213 was studied by ESR spectroscopy. Incubation of VP 16-213 with the one-electron oxidators persulphate-ferrous, myeloperoxidase (MPO)/hydrogen peroxide and horseradish peroxidase (HRP)/hydrogen peroxide readily led to the formation of a free radical. The ESR spectra obtained in the last two cases, were in perfect accord with that of a product obtained by electrochemical oxidation of VP 16-213 at +550 mV. The half-life of the free radical in 1 mM Tris (pH 7.4), 0.1 MNaClat 20°C, was 257 ± 4 s. The signal recorded on incubation with HRP/H2O2 or MPO/H2O2 did not disappear on addition of 0.3 - 1.2 mg/ml microsomal protein. From incubations with rat liver microsomes in the presence of NADPH, no ESR signals were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号