首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene-based silver nanoparticles (Ag NPs–GE) material has been developed and demonstrated antibacterial effect against Escherichia coli and Pseudomonas aeruginosa. In this study, the antibacterial activity and mechanism on P. aeruginosa were investigated. The experiments results showed the minimum bactericidal concentration of Ag NPs–GE to P. aeruginosa is 20 μg/ml. When P. aeruginosa were exposed to 20 μg/ml Ag NPs–GE for 1 h, the cell wall was breakdown. In order to study the mechanism of antibacterial effect of Ag NPs–GE, two-dimensional electrophoresis was carried out to compare the protein expressional profiles of P. aeruginosa exposed to 5 μg/ml Ag NPs–GE or 5 μg/ml AgNO3 with the untreated bacteria. Identification of differentially expressed protein was performed by MALDI–TOF/TOF MS. The change of proteomic profile induced by Ag NPs–GE was distinct from that induced by AgNO3. Seven identified proteins were found induced and nine proteins were suppressed by Ag NPs–GE. Five identified proteins were found induced and twenty proteins were suppressed by AgNO3. In addition, either Ag NPs–GE or AgNO3 suppressed the expression of eight proteins, amidotransferase, 30S ribosomal protein S6, bifunctional proline dehydrogenase/pyrroline-5-carboxylate dehydrogenase, arginyl-tRNA synthetase, nitroreductase, acetolactate synthase 3, methionyl-tRNA synthetase and periplasmic tail-specific protease. Furthermore, gene ontology analysis and KEGG pathway analysis were used to characterize the functions of those proteins.  相似文献   

2.
The levels of mineral element Na, Mg, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Mo, Al, As, Ag, Cd, and Tl were quantified in the whole shells of the freshwater bivalve Anodonta woodiana at three different growth stages (i.e. J1 juveniles of 1 month old, J2 juveniles of 3.5 months old, and adults of 36 months old). The concentrations of Na and Al were different between different growth stages (p < 0.05). The highest Na concentrations (2715 ± 86 μg/g dry weight) were found in J2 juveniles. The highest Al concentrations (303.9 ± 5.95 μg/g dry weight) were found in J1 juveniles. Manganese concentrations (517.0 ± 47.98 μg/g dry weight) were significantly higher in J2 juveniles than in J1 juveniles (432.3 ± 9.87 μg/g dry weight) (p < 0.05). Copper concentrations (27.32 ± 0.15 μg/g dry weight) were significantly higher in J1 juveniles than in J2 juveniles (26.21 ± 0.86 μg/g dry weight) and adults (24.74 ± 1.43 μg/g dry weight) (p < 0.05). Burdens of Na, Ca, Mn, Fe, Co, Cu, Mo, Ag, and Tl were positively correlated with the shell length (p < 0.05). These findings can possibly contribute to an understanding of elemental requirements for shell growth and, hence, facilitate improvement of survival and growth rates during artificial mussel culture.  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAHs) contamination has been considered as one of the major environmental concerns for farmland soil all over the world including China. Due to small per capita land area, to find crops or vegetable, which could not only degrade the PAHs contaminants but also would not concentrate PAHs, was particularly important. Celery was selected as the phytoremediator in this experiment, and the soil enzyme activity, PAHs-degrading microorganisms, and the speciation of PAHs in soil were studied. The results showed that celery could significantly enhance the remediation of PAHs compared with the controlled experiment after 90 days (p< 0.01), and the removal efficiency were 31.29%, 30.79%, and 50.21% in the soil, non-rhizosphere soil, and rhizosphere soil, respectively. The soil enzyme activity and PAHs-degrading microorganisms significantly increased in rhizosphere soil compared with non-rhizosphere soil (p< 0.05), and the bioaccessibility of PAHs in soil could have been enhanced in the presence of celery root exudates. Those would help the bioremediation of PAHs by soil microorganisms. Meanwhile, the concentration of PAHs in the edible portion of celery was only 17.13 ± 1.24 μg/kg, and the bioconcentration factors in the aboveground part of celery were only 0.025. This study provides a potential in-site farmland soil phytoremediation technology that could have practical utility.  相似文献   

4.
Methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) are major soil contaminants, and they have been actively investigated for their toxic effects on living organisms in soil ecosystems. Although previous studies have been used as tools to evaluate the health of soil, they have been limited in scope and ability to analyze the overall microbial activity. In the present study, the effects of MTBE and TBA on the activity of soil exoenzymes including urease, acid phosphatase, arylsulfatase, β-glucosidase, dehydrogenase, and fluorescein diacetate hydrolase, which are involved in nutrient cycles and overall microbial activities, were investigated. Soil samples were treated with 0–2% of MTBE and TBA solutions, and the comparative effects and combined effects on quantity of active soil exoenzymes were determined. The activity of six exoenzymes exposed solely to MTBE and TBA did not significantly change with dose concentration or exposure time, but did show significant changes when exposed to high concentrations of MTBE and TBA combined, with dehydrogenase being the most affected. Therefore, we proposed dehydrogenase as a potential biomarker to assess the risk of co-contamination of MTBE and TBA.  相似文献   

5.
The levels of soil parameters and selected heavy metals around a solid waste dumpsite receiving untreated wastes from all sources and a control site within Port Harcourt, Nigeria have been examined. Top soil (0–15 cm) and sediment samples were collected and analysed for pH value, particle size, total nitrogen, potassium, available phosphorus, organic matter, effective cation exchange capacity, cadmium, nickel and lead using standard methods. The results showed that the waste dump contributed to the high levels of nutrients and heavy metals. The dry season mean concentrations were: organic matter (5.28 ± 1.34% or 132,422.4 kg ha?1), K (1.60 ± 0.52 meq per 100 g), N (0.09 ± 0.06% or 2257.2 kg ha?1), Av.P (15.11 ± 7.57 μg g?1), Cd (1.34 ± 0.72 μg g?1), Ni (4.10 ± 1.63 μg g?1) and Pb (38.85 ± 22.18 μg g?1) while the wet season mean concentrations were organic matter (5.46 ± 1.39% or 136,936.8 kg ha?1), K (2.79 ± 0.81 meq per 100 g), N (0.10 ± 0.05% or 2508 kg ha?1), Av.P (9.22 ± 2.69 μg g?1), Cd (1.72 ± 1.22 μg g?1), Ni (14.95 ± 14.94 μg g?1) and Pb (53.50 ± 40.09 μg g?1). There was efficient mineralization process in the area. The texture of soil on the main dumpsite was loamy sand, which suggests that the ground water in the area is susceptible to contamination by surface pollutants. The texture of soil at the control site is sandy loam while sediment has the textural class of sand. Decomposed organic materials and agricultural activities influenced the texture of soils. The soils from the main dump and sediment were slightly alkaline while the control soil was moderately acidic. In both seasons, a significant variation exists (P < 0.05) between the metal concentrations in soil at the main dump and those in the sediments with a positive correlation (r = 0.572149) in the wet season and (r = 0.956647) in the dry season. The presence of liming materials and activities of microorganisms on the waste dump increased the pH of the soils. The accumulation of nutrients results in the luxuriant growth of plants/crops on the waste dump.  相似文献   

6.
Cellulosic biofuel from forest thinning operations is a potential renewable energy source in regions with overstocked forests such as those in western United States. However, it is possible that biomass removal can deplete nutrients from soil, which can alter soil respiration (Rs) and exoenzyme properties, and potentially impact tree growth. This study evaluates the impact of biomass removal on Rs and exoenzyme properties and the capacity of soil amendments to counteract any potential effects. At two study locations, we created four post‐thinning biomass retention levels: full biomass removal (0×), full biomass retention (1×), double biomass retention (2×), and a no‐thin treatment. Four soil amendment treatments were applied to each biomass retention level: N fertilizer (F), biochar (B), fertilizer plus biochar (FB), and an untreated control (C). We evaluated treatment effects on Rs and activity of four exoenzymes to represent C‐cycling, N‐release, and P‐release processes. Biomass retention levels had no effect on Rs (p = .42) or exoenzyme activities (p > .29). Variation in exoenzyme activity was explained by location, season, soil organic matter, soil moisture content, and temperature. Variation in Rs was explained by the same variables, in addition to C‐cycling exoenzyme activity and soil pH. Soil amendments had no effect on exoenzyme activities (p > .49), and no main effect on Rs (p = .48), though amendments influenced Rs differently at each location (p = .02). Short‐term findings suggest small‐diameter biomass removal for cellulosic biofuel production will not impact Rs and exoenzyme properties, and paired with our tree growth study, provide evidence that biofuel systems are a feasible renewable energy source in the western North America.  相似文献   

7.
Zinc oxide nanoparticles (ZnO NPs) can be ingested directly when used in food, food packaging, drug delivery, and cosmetics. This study evaluated the cellular effects of ZnO NPs (50 and 100 nm diameter particle sizes) on the function of osteoblastic MC3T3-E1 cells. ZnO NPs showed cytotoxicity at concentrations of above 50 μg/ml, and there was no significant effect of the size on the cytotoxicity of ZnO NPs. Within the testing concentrations of 0.01~1 μg/ml, which did not cause a marked drop in cell viability, ZnO NPs (0.1 μg/ml) caused a significant elevation of alkaline phosphatase activity, collagen synthesis, mineralization, and osteocalcin content in the cells (P?<?0.05). Moreover, pretreatment with ZnO NPs (0.01~1 μg/ml) significantly reduced antimycin A-induced cell damage by preventing mitochondrial membrane potential dissipation, complex IV inactivation, and ATP loss. Measurement of reactive oxygen species (ROS) indicated decrease in ROS level upon exposure to ZnO nanoparticles (0.01 μg/ml). Hence, our study indicated that ZnO nanoparticles can have protective effects on osteoblasts at low concentrations where there are little or no observable cytotoxic effects.  相似文献   

8.
L. Zhang  L. Song  C. Shao  M. Li  M. Liu 《Plant biosystems》2013,147(3):403-409
In coastal sandy soils, the establishment of a plant cover is fundamental to avoid degradation and desertification processes. A better understanding of the ability of plants to promote soil microbial process in these conditions is necessary for successful soil reclamation. The current study was to investigate the ability of four different plant species to regenerate the microbiological processes in the rhizosphere soil and to discuss which species were the most effective for the reclamation of the coastal zone. The rhizosphere soils were studied by measuring microbial abundance (bacteria, fungi, actinomycetes, and ammonifiers), enzyme activities (invertase, catalase, urease, and phosphatase) and their relationship. Microbial abundance greatly varied among rhizospheres of different plant species (p < 0.05). Phragmites australis supported the highest amount of bacterial, actinomycetes, and ammonifiers abundance, and Echinochloa crusgalli supported the highest fungi abundance. In addition, the significant differences in rhizosphere enzyme activities of different plant species were also observed. There was a significant linear correlation between rhizosphere soil microbial abundances and enzyme activities between bacteria and urease and between fungi and catalase, but no such significant relationship was found between all rhizosphere soil microbial abundance and phosphatases. It was concluded that different plant species in coastal areas have different rhizosphere soils due to the impact of the different root exudates and plant residues of the microbial properties. In addition, natural grasslands (P. australis and E. crusgalli) are the most effective for revegetating coastal sandy soils.  相似文献   

9.
When grown in soils with sparingly available phosphorus (P), white lupin (Lupinus albus L.) forms special root structures, called cluster roots, which secrete large amounts of organic acids and concomitantly acidify the rhizosphere. Many studies dealing with the understanding of this P acquisition strategy have been performed in short time experiments either in hydroponic cultures or in small microcosm designs with sand or sand:soil mixtures. In the present study, we applied an experimental design which came nearer to the natural field conditions: we performed a one-year experiment on large microcosms containing 7 kg of soil and allowing separation of rhizosphere soil and bulk soil. We planted six successive generations of lupins and analysed P uptake, organic P desorption, phosphatase activities and organic acid concentrations in different soil samples along a spatio-temporal gradient. We compared the rhizosphere soil samples of cluster (RSC) and non-cluster roots (RSNC) as well as the bulk soil (BS) samples. A total shoot biomass of 55.69 ± 1.51 g (d.w.) y−1 was produced and P uptake reached 220.59 ± 5.99 mg y−1. More P was desorbed from RSC than from RSNC or BS (P < 0.05). RSC and RSNC showed a higher activity of acid and alkaline phosphatases than BS samples and a higher acid phosphatase activity was observed in RSC than in RSNC throughout the one-year experiment. Fumarate was the most abundant organic acid in all rhizosphere soil samples. Citrate was only present in detectable amounts in RSC while malate and fumarate were recovered from both RSC and RSNC. Almost no organic acids could be detected in the BS samples. Our results demonstrated that over a one-year cultivation period in the absence of an external P supply, white lupin was able to acquire phosphate from the soil and that the processes leading to this P uptake took place preferentially in the rhizosphere of cluster roots.  相似文献   

10.
Impact of phosphate solubilizing bacteria along with soil phosphatase activity on phosphorous cycle was found to be quiet interesting in the Sundarban mangrove ecosystem. Soil phosphatase activity showed a decreasing pattern with increase in depth [soil phosphatase activity (μg pnp produced g?1 dry wt of soil) = 906.85 – 5.6316 Depth (cm)] from the deep forest region of the Sundarban forest ecosystem. Soil salinity showed a very little effect on soil phosphatase activity whereas soil temperature and pH was found to show significant impact on the soil phosphatase activity. This ensured that the microbes associated with phosphate mineralization present in the Sundarban forest ecosystem are more tolerant to fluctuation in salinity than that of temperature and pH. A direct correlation was perceptible between the number of phosphate solubilizing bacteria and phosphatase activity in the soil during the study period from 2007 to 2012. Soil phosphate concentration was found to be directly governed by the soil phosphatase activity [The regression equation is: avg PO4?3-P (μg g?1 dry wt of soil) = 0.0311 + 0.000606 soil phosphatase activity (μg pnp produced g?1 dry wt of soil); R2 = 63.2%, p < 0.001, n = 62].  相似文献   

11.
以陕西延长县石油污染区常见的13种人工种植林木为材料,测定了各人工种植林木根际丛枝菌根(AM)真菌发育状况、污染土壤的理化性质、土壤酶活性和球囊霉素含量,探讨AM真菌在石油污染土壤生态修复中的作用。结果表明,13种林木均能形成AM,其定殖率平均为63.2%,孢子密度平均为1.93个.g-1干土,其中受污染程度最低的柠条AM真菌定殖率和孢子密度最高,分别为91.6%和4.73个.g-1干土;毛白杨、狼牙刺和刺槐的根际土壤养分(有机碳、碱解氮、速效磷)含量相对较高;各种人工种植林木的根际土壤球囊霉素含量、多酚氧化酶和过氧化氢酶活性随根际土壤石油烃污染浓度的增加而明显升高,其中刺槐、狼牙刺和酸枣根际土壤的过氧化氢酶和多酚氧化酶活性都较高,同时这3种林木的球囊霉素含量也较高。因此,林木根际土壤球囊霉素含量、多酚氧化酶和过氧化氢酶活性可以作为石油污染的敏感指标。  相似文献   

12.
A rapid and sensitive method was developed for the determination of 51 herbicides in soil by ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC–ESI–MS). Using acetonitrile effectively extracted 22 kinds of triazine and other basic herbicides, and using 90:10 v/v acetonitrile-phosphate buffer (pH = 7.5) effectively extracted another 29 herbicides. The extract has not cleaned up further. Chromatographic separation was achieved within 10 min using gradient elution with acetonitrile–water as a mobile phase for 22 triazine and phenylurea herbicides, and with 5 mM ammonium acetate containing 0.1% formic acid aqueous solution–acetonitrile as a mobile phase for another 29 herbicides. The response was linear over two orders of magnitude with correlation coefficients (r2) higher than 0.99. The limits of quantification for the herbicides varied from 0.2 to 20 µg kg?1. The intra- and inter-day precisions (relative standard deviation, RSD) were 2.2–9.3% and 5.7–17.1%, respectively. The average recovery varied from 61.6 to 112% with the RSD of 1.6–11.3%. Analyzing 51 soil samples from 17 counties formed the basis of this method. Three herbicide residues were found in four counties. Atrazine residue in soil for 17 counties was found; its content was 0.4–9.8 μg kg?1. Nicosulfuron residue in soil for two counties was found, with a high up to 133 or 1317 μg kg?1. Propazine (0.3 and 1.34 μg kg?1), atratone (2.14 and 3.93 μg kg?1), and cynanazine (0.34 μg kg?1) in soils for some counties were also found. The validated method can ensure the rapid multi-class, multi-residue analysis at low μg kg?1 level for 47 herbicides in soil. The developed method provides an effective analytical basis for controlling herbicide dosage, investigating their distribution and degradation, and evaluating their hazards on the environment and human health.  相似文献   

13.
Degradation of Metolachlor in Tobacco Field Soil   总被引:2,自引:0,他引:2  
The extensive use of metolachlor to control weeds in tobacco fields in China has aroused concern about its environmental fate. The aim of this study was to investigate the degradation and residue fate of metolachlor in tobacco field soil (silt loam) under laboratory and field conditions. In laboratory experiments, metolachlor in bulk soil exhibited fast degradation in a temperature range from 10 to 35°C and a soil moisture level of 20–80%, with half-lives (T1/2) from 66.7 to 28.8 days. The degradation rate of metolachlor decreased as the application dose increased. Owing to higher microbial populations and enzymatic activities, metolachlor rapidly dissipated in rhizosphere soil as compared to bulk soil. Field persistence of metolachlor was evaluated in the same soil during the tobacco (Nicotiana tabacum K326) growing season in 2012 and 2013. The dissipation of metolachlor followed the first-order kinetics and its T1/2 values were 11.7–13.5 days in soil and 9.0–9.6 days in green tobacco leaves, respectively. At harvest time, the residual levels of metolachlor in soil and green tobacco leaves were in the range of 0.626–1.623 and 0.083-0.481 mg kg?1, respectively. These findings might have practical implications for the fate of metolachlor residue in tobacco fields. Environmental factors, especially temperature and moisture, should be considered in combination with the appropriate application dose of metolachlor for achieving satisfactory weed-control efficacy, reducing runoff, and minimizing effects on environmental quality.  相似文献   

14.
In the present investigation we studied the extent of variation among barley genotypes (Hordeum vulgare L. cv. Alexis, Canut, Digger, Etna, Peel) in their ability: i) to induce activity of soluble extracellular phosphatase in rhizosphere soil. ii) to withdraw bicarbonate extractable organic phosphorus (NaHCO3-P0). All the genotypes induced 3–4 times higher phosphatase activities in rhizosphere soil as compared to bulk soil. Among the genotypes, there were significant (p>0.01) differences in soluble extracellular and non-soluble phosphatase activities and depletion of NaHCO3-P0 in soil near their root mats. Etna induced highest phosphatase activities and depleted most NaHCO3-P0 from the rhizosphere soil. A high correlation (r=0.79) was found between the activity of soluble extracellular phosphatase and the quantity of NaHCO3-P0 withdrawn from the rhizosphere soil by the barley genotypes.  相似文献   

15.
子午岭典型植被凋落叶-土壤养分与酶活性特征   总被引:6,自引:0,他引:6  
对黄土高原子午岭任家台林区内刺槐、油松、侧柏等3种人工林以及桦树、辽东栎等两种天然次生林的凋落叶C、N、P含量、林下土壤基本理化性质和碱性磷酸酶、脲酶、蔗糖酶3种酶的活性进行分析,并研究凋落叶C、N、P含量与土壤C、N、P含量之间的相关关系,以及土壤基本理化性质与酶活性之间的相关关系,为该区植被恢复效果评价提供科学依据与参考。结果发现:刺槐、辽东栎凋落叶碳氮比值显著低于其他植被,凋落叶分解速率相对较快;辽东栎土壤有机碳、全氮含量最高,分别为19.18、1.60g/kg,刺槐土壤全磷含量最高(0.61g/kg);土壤酶活性主要受土壤有机碳、全氮、容重及p H影响,与土壤全磷相关性不显著;人工林中,侧柏土壤中3种酶活性均高于其他植被,且侧柏凋落叶碳氮比值相对较低,分解速率较快,相比于刺槐作为造林树种更占优势。  相似文献   

16.
The present study was conducted to determine the nitrogen transformation test of abamectin 3.6 g/L EC. This study was conducted as per OECD Guidelines for the Testing of Chemicals OECD 216. The test item abamectin 3.6 g/L emulsifiable concentrate (EC) was applied in a loamy sand soil and incubated over a period of 28 days for nitrogen transformation test at concentrations of 3.2 μL/kg soil dry weight and 16 μL/kg soil dry weight. The concentrations tested were based on one and five times the maximum recommended field application rates of 1200 mL/ha and 6000 mL/ha of abamectin 3.6 g/L EC, respectively. The deviation in soil nitrate content determined at 28 days after application of the test item to soil compared to the control was 0.14% and ? 9.25% for the single and five times test concentrations, respectively. There is no significant variation between the treatment groups and control sample. The rate of nitrate formation between 14 and 28 days after application of the test item to soil deviate from control by 10.41% and 13.74% for 3.2 and 16 μL/kg soil dry weight, respectively. Deviations in nitrate levels and nitrate formation rates in soil treated with up to and including 16 μL/kg of test item/kg soil dry weight were < 25%, compared to control indicating no significant effect occurred in nitrogen transformation.  相似文献   

17.
This work describes integrated nutrient management for cultivation of Allium hookeri by using phosphate solubilizing bacteria (PSB) applied in rhizosphere, along with tricalcium phosphate (TCP). Arthrobacter luteolus S4C7, Enterobacter asburiae S5C7, Klebsiella pneumoniae S4C9, S4C10 and S6C1, and K. quasipneumoniae S6C2, were isolated from rhizosphere of Allium hookeri Thwaites, and were found to release substantial amount of soluble phosphate (124.8–266.4?μg/mL) from TCP in vitro conditions. These isolates were experimented for plant growth promoting attributes, including IAA, siderophore, and nitrogen-fixation. Treatment with PSB resulted in enhanced growth of A. hookeri Th., which was even better with TCP amendment with PSB. K.quasipneumoniae  S6C2 resulted in 39.1% and 533.3% increase (p?≤?0.05) of root length and weight respectively. The treatment with these isolates, in TCP amended soil also resulted in 200–250% increase in available P in soil, which was maximum for K. quasipneumoniae (1.866?mg/g).  相似文献   

18.
The paper presents the results of research on mercury in the soil and leaves of maple (Acer plantanoides) and linden (Tilia platyphyllos) collected in the four districts of the city of Poznań (Poland), which differ in terms of anthropogenic pressure. The average concentration of mercury in soil was 132 μg kg?1. The highest concentration of mercury was determined in Tilia platyphyllos (233 μg kg?1), whereas in Acer plantanoides it amounted to 207 μg kg?1. Based on the study, it was found that the highest concentration of mercury in the investigated leaf species was observed in the samples collected in the districts of Grunwald, Je?yce, and Old Town. The lowest concentration was observed in the samples collected in the district of New Town. The comparison of the obtained results of mercury concentration in soil and leaf samples was made in terms of anthropogenic pressure in the investigated areas and depending on the studied leaf species. Based on the statistical analysis, it was found that there is no statistically significant relationship between mercury concentration in both studied species of trees. There was, however, a relationship between the mercury concentration in leaves and soil.  相似文献   

19.
This study evaluated the effects of native plants (Sorghum halepense and Aeluropus littoralis), total petroleum hydrocarbons (TPH) concentrations, and nutrients on the removal of TPHs from a highly saline clay soil. For a period of 180 days, rhizosphere microbial number, plant biomass, and residual TPHs were determined monthly. Results showed that TPH removal from soil in the rhizosphere was 13% higher than that in the control (unplanted soil). In addition, the number of heterotrophic bacteria in the rhizosphere and non-rhizosphere soil was 7.407 and 6.629 log10CFU/g, respectively. The maximum TPH removal, microbial numbers, and plant biomass were measured in the treated soil, polluted with 0.86% (w/w) of TPH. The high clay and salinity of the experimental soil had a negative effect on the phytoremediation efficiency. Hence, it was necessary to improve the physicochemical properties of the soil to provide a good condition for plants and microbes, thereby increasing the phytoremediation efficiency.  相似文献   

20.

Key message

Ectomycorrhizal (ECM) fungal community structure and potential exoenzymatic activity change after clearcut harvesting, but functional complementarity and redundancy among those ECM fungal species remaining support growth of regenerating seedlings.

Abstract

Ectomycorrhizal (ECM) fungal community composition is altered by forest harvesting, but it is not clear if this shift in structure influences ECM fungal physiological function at the community level. In this study, we characterized activities of extracellular enzymes in the ectomycorrhizospheres of Picea engelmannii seedlings grown in forest and clearcut plots. These exoenzymes are critical for the breakdown of large organic molecules, from which nutrients are subsequently absorbed and translocated by ECM fungi to host plants. We found that ectomycorrhizae on seedlings planted in forests had different exoenzyme activity profiles than those on seedlings planted in clearcuts. Specifically, the activities of glucuronidase, laccase, and acid phosphatase were higher on forest seedlings (P ≤ 0.006). These differences may have been partly driven by soil properties. Total carbon, total nitrogen (N), extractable phosphorus, extractable ammonium-N, and mineralizable N were higher, while pH was lower in forest plots (P ≤ 0.01). However, we also found that enzyme activity only shifted where community composition also changed. Functional complementarity can be inferred within ECM fungal communities in both forests and clearcuts because ectomycorrhizae formed by different species in the same environment had distinct enzyme profiles (P < 0.0001). However, ectomycorrhizae of Thelephora terrestris exhibited high levels of N- and P-mobilizing exoenzyme activities. Seedling biomass did not differ between forest and clearcut environments, so the high abundance of T. terrestris ectomycorrhizae in the clearcuts may have sustained nutrient acquisition by clearcut seedlings even in soils with lower N and P and with reduced ECM fungal species richness.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号