首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
ABSTRACT?The co-metabolism of benzo[a]pyrene (B[a]P) and the capacity of the fungus Trichoderma reesei FS10-C to bioremediate an aged polycyclic aromatic hydrocarbon (PAH)-contaminated soil were investigated. The fungal isolate removed about 54% of B[a]P (20 mg L?1) after 12 days of incubation with glucose (10 g L?1) supplementation as a co-metabolic substrate. Bioaugmented microcosms showed a 25% decrease in total PAH concentrations in soil after 28 days, and the degradation percentages of 3-, 4-, and 5(+6)-ring PAHs were 36%, 35%, and 25%, respectively. In addition, bioaugmented microcosms exhibited higher dehydrogenase (DHA) and fluorescein diacetate hydrolysis (FDAH) activities and increased average well-color development (AWCD), Shannon-Weaver index (H), and Simpson index (D) significantly. Principal component analysis (PCA) also distinguished clear differentiation between treatments, indicating that bioaugmentation restored the microbiological function of the PAH-contaminated soil. The results suggest that bioaugmentation by T. reesei FS10-C might be a promising bioremediation strategy for aged PAH-contaminated soils.  相似文献   

2.
The objectives of this work were to isolate the microorganisms responsible for a previously observed degradation of polycyclic aromatic hydrocarbons (PAH) in soil and to test a method for cleaning a PAH-contaminated soil. An efficient PAH degrader was isolated from an agricultural soil and designated as Mycobacterium LP1. In liquid culture, it degraded phenanthrene (58%), pyrene (24%), anthracene (21%) and benzo(a)pyrene (10%) present in mixture (initial concentration 50 μg ml−1 each) and phenanthrene (92%) and pyrene (94%) as sole carbon sources after 14 days of incubation at 30°C. In soil, Mycobacterium LP1 mineralised 14C-phenanthrene (45%) and 14C-pyrene (65%) after 10 days. The good ability of this Mycobacterium was combined with the benzo(a)pyrene oxidation effect obtained by 1% w/w rapeseed oil in a sequential treatment of a PAH-spiked soil (total PAH concentration 200 mg kg−1). The first step was incubation with the bacterium for 12 days and the second step was the addition of the rapeseed oil after this time and a further incubation of 22 days. Phenanthrene (99%), pyrene (95%) and anthracene (99%) were mainly degraded in the first 12 days and a total of 85% of benzo(a)pyrene was transformed during the whole process. The feasibility of the method is discussed.  相似文献   

3.
This study was carried out to assess the dissipation of 17 selected polychlorinated biphenyl (PCBi) congeners in a transformer oil-contaminated soil using bioaugmentation with 2 PCB-degrading bacterial strains, i.e., Pseudomonas spp. S5 and Alcaligenes faecalis, assisted or not by the maize (Zea mays L.) plantation. After 5 and 10 weeks of treatment, the remaining concentrations of the target PCBi congeners in the soil were extracted and measured using GC-MS. Results showed that the bacterial augmentation treatments with Pseudomonas spp. S5 and A. faecalis led to 21.4% and 20.4% reduction in the total concentration of the target PCBs (ΣPCBi), respectively, compared to non-bioaugmented unplanted control soil. The ΣPCBi decreased by 35.8% in the non-bioaugmented planted soil compared with the control. The greatest degradation of the PCB congeners was observed over a 10-week period in the soil inoculated with Pseudomonas spp. S5 and cultivated with maize. Under this treatment, the ΣPCBi decreased from 357 to 119 ng g?1 (66.7% lower) and from 1091 to 520 ng g?1 (52.3% lower). Overall, the results suggested that the combined application of phytoremediation and bioaugmentation was an effective technique to remove PCBs and remediate transformer oil-contaminated soils.  相似文献   

4.
The ability of different local fungal isolates to degrade kerosene in liquid medium was studied. The results showed that the percent of kerosene degradation varied among the different tested fungi and that 60–96% of kerosene was degraded after 7 days in the presence of 0.2% (v/v) of Tween 80. The absence of the surfactant led to about 28.34% decrease of biodegradation. The degradation of 2% (v/v) of kerosene by the most efficient fungus (Aspergillus flavus) was significantly influenced by the incubation period and the composition of culture medium. Statistical experimental designs were used to optimize the process of kerosene degradation by the fungus. Under optimized medium compositions and culture conditions, A. flavus degraded kerosene (100%) after 111.3 h of incubation. Optimal conditions obtained in this work provided a solid foundation for further use of A. flavus in treatment of kerosene-polluted soil. The optimized conditions were applied to bioremediate 2.5% (v/w) kerosene-polluted soil by A. flavus, and the fungus efficiently degraded kerosene after 35 days of incubation.  相似文献   

5.
Iron and aluminum (oxyhydr)oxides are ubiquitous in the soil environment and have the potential to strongly affect the properties of dissolved organic matter. We examined the effect of oxide surfaces on soluble nutrient dynamics and microbial community composition using an incubation of forest floor material in the presence of (1) goethite and quartz, (2) gibbsite and quartz, and (3) quartz surfaces. Forest floor material was incubated over a period of 154 days. Aqueous extracts of the incubations were harvested on days 5, 10, 20, 30, 60, 90, and 154, and concentrations of P, N, PO4 3?, NO2 ?, NO3 ?, and organic C were measured in the solutions. Microbial community composition was examined through pyrosequencing of bacterial and fungal small subunit ribosomal RNA genes on selected dates throughout the incubation. Results indicated that oxide surfaces exerted strong control on soluble nutrient dynamics and on the composition of the decomposer microbial community, while possibly having a small impact on system-level respiration. Goethite and gibbsite surfaces showed preferential adsorption of P-containing and high molar mass organic solutes, but not of N-containing compounds. On average, organic C concentrations were significantly lower in water extractable organic matter (WEOM) solutions from oxide treatments than from the control treatment (P = 0.0037). Microbial community composition varied both among treatments and with increasing time of incubation. Variation in bacterial and fungal community composition exhibited strong-to-moderate correlation with length of incubation, and several WEOM physiochemical characteristics including apparent (weight averaged) molar mass, pH and electrical conductivity. Additionally, variation in bacterial community composition among treatments was correlated with total P (r = 0.60, P < 0.0001), PO4 3? (r = 0.79, P < 0.0001), and organic C (r = 0.36, P = 0.015) concentrations; while variation in fungal communities was correlated with organic C concentrations (r = ?0.48, P = 0.0008) but not with phosphorus concentrations. The relatively small impact of oxide surfaces on system-level microbial respiration of organic matter despite their significant effects on microbial community composition and WEOM dynamics lends additional support to the theory of microbial functional redundancy.  相似文献   

6.
Humans are visiting Antarctica in increasing numbers, and the ecological effect of rapid soil habitat alteration due to human-induced physical disturbance is not well understood. An experimental soil disturbance trial was set up near Scott Base on Ross Island, to investigate the immediate and short-term changes to bacterial community structure, following surface soil disturbance. Three blocks, each comprising an undisturbed control, and an area disturbed by removing the top 2 cm of soil, were sampled over a time series (0, 7, 14, 21, and 35 days), to investigate changes to bacterial community structure using DNA profiling by terminal restriction fragment length polymorphism. The simulated disturbance did not cause any major shifts in the structure of the bacterial communities over the 35-day sampling period. Ordination showed that the bacterial community composition correlated strongly with soil EC (R 2 = 0.55) and soil pH (R 2 = 0.67), rather than the removal of the top 2 cm of surface material. Although the replicate blocks were visually indistinguishable from one another, high local spatial variability of soil chemical properties was found at the study site and different populations of bacterial communities occurred within 2 m of one another, within the same landscape unit. Given the current knowledge of the drivers of bacterial community structure, that is, soil EC, soil pH, and soil moisture content, a follow-up investigation incorporating DNA and RNA-based analyses over a time frame of 2–3 years would lead to a greater understanding of the effects of soil disturbance on bacterial communities.  相似文献   

7.
8.
Evaluation of enzyme activities in combination with taxonomic analyses may help define the mechanisms involved in microbial decomposition of orgaic amendments and biological control of soilborne pathogens. In this study, powdered pine bark was added to nematode-infested soil at rates of 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 g kg–1. Total fungal populations did not differ among treatments immediately after application of pine bark. After 7 days, fungal populations were positively correlated with increasing levels of pine bark. This increase was sustained through 14 and 21 days.Penicillium chrysogenum andPaecilomves variotii were the predominant fungal species isolated from soil amended with pine bark. Total bacterial populations did not change with addition of pine bark at 0, 7, and 14 days after treatment. At 21 and 63 days, total bacterial populations declined in soil receiving the highest rates of pine bark. Addition of pine bark powder to soil caused a shift in predominant bacterial genera fromBacillus spp. in nonamended soil, toPseudomonas spp. in amended soil. Soil enzyme activities were positively correlated with pine bark rate at all sampling times. Trehalase activity was positively correlated with total fungal populations and with predominant fungal species, but was not related to bacterial populations. The number of non-parasitic (non-stylet bearing) nematodes andMeloidogyne arenaria in soil and roots were not correlated with pine bark rate. However,Heterodera glycines juveniles in roots, and the number of cysts g–1 root, declined with increasing levels of pine bark.Journal Series Series No. 18-933598 Alabama Agricultural Experiment Station  相似文献   

9.
In an 182‐d lightroom experiment, annual ryegrass (Lolium multiflorum Lam.) was grown in two soils under conditions of high and low fertility to examine the effect of pyrene (500 mg kg‐1) on plant shoot biomass, mycorrhizal colonization, and soil microbial community structure. Treatments were destructively sampled every 14 d. Plant shoot biomass remained relatively unaffected by pyrene in either soil. Mycorrhizal colonization was only briefly affected by pyrene in one soil, but was unaffected in the other. Changes in soil microbial community structure were measured with whole soil fatty acid methyl ester (FAME) profiles. Differences in soil microbial community structure were observed between planted and nonplanted treatments at both fertility levels, but these differences were unrelated to the presence of pyrene. The bulk soil was associated primarily with fatty acid biomarkers for Gram‐positive bacteria, while the rhizosphere was associated primarily with the fatty acid biomarkers associated with protozoa. Differences in microbial community structure were observed between the two soils. Methylene chloride‐extractable pyrene decreased in nonplanted and planted treatments of one soil, but decreased only in nonplanted treatments of the other soil. These results suggest the potential for phytoremediation to differ among soils.  相似文献   

10.
Aims: To test whether bioaugmentation with genetically modified Pseudomonas sp. JS150 strain could be used to enhance phenol degradation in contaminated soils. Methods and Results: The efficiency of phenol removal, content of humic carbon, survival of inoculant, number of total culturable autochthonous bacteria and changes in fatty acid methyl esters (FAME) profiling obtained directly from soils were examined. Bioaugmentation significantly accelerated phenol biodegradation rate in tested soils. Phenol applied at the highest concentration (5·0 mg g?1 soil) was completely degraded in clay soil (FC) within 65 days, whereas in sand soil (FS) within 72 days. In comparison, phenol biodegradation proceeded for 68 and 96 days in nonbioaugmented FC and FS soils, respectively. The content of humic carbon remained at the same level at the beginning and the end of incubation time in all soil treatments. The number of introduced bacteria (2·50 × 109 g?1 soil) markedly decreased during the first 4 or 8 days depending on contamination level and type of soil; however, inoculant survived over the experimental period of time. Analysis of FAME patterns indicated that changes in the percentages of cyclopropane fatty acids 17:0 cy and 19:0 cyω10c and branched fatty acids might be useful markers for monitoring the progress of phenol removal from soil. Conclusions: It was confirmed that soil bioaugmentation with Pseudomonas sp. JS150 significantly enhanced soil activity towards phenol degradation. Cyclopropane and branched fatty acids were sensitive probes for degree of phenol utilization. Significance and Impact of the Study: In future, genetically modified Pseudomonas sp. JS150 strain could be of use in the bioaugmentation of phenol‐contaminated areas.  相似文献   

11.
The organophosphate pesticide chlorpyrifos (CP) has been used extensively since the 1960s for insect control. However, its toxic effects on mammals and persistence in environment necessitate its removal from contaminated sites, biodegradation studies of CP-degrading microbes are therefore of immense importance. Samples from a Pakistani agricultural soil with an extensive history of CP application were used to prepare enrichment cultures using CP as sole carbon source for bacterial community analysis and isolation of CP metabolizing bacteria. Bacterial community analysis (denaturing gradient gel electrophoresis) revealed that the dominant genera enriched under these conditions were Pseudomonas, Acinetobacter and Stenotrophomonas, along with lower numbers of Sphingomonas, Agrobacterium and Burkholderia. Furthermore, it revealed that members of Bacteroidetes, Firmicutes, α- and γ-Proteobacteria and Actinobacteria were present at initial steps of enrichment whereas β-Proteobacteria appeared in later steps and only Proteobacteria were selected by enrichment culturing. However, when CP-degrading strains were isolated from this enrichment culture, the most active organisms were strains of Acinetobacter calcoaceticus, Pseudomonas mendocina and Pseudomonas aeruginosa. These strains degraded 6–7.4 mg L?1 day?1 of CP when cultivated in mineral medium, while the consortium of all four strains degraded 9.2 mg L?1 day?1 of CP (100 mg L?1). Addition of glucose as an additional C source increased the degradation capacity by 8–14 %. After inoculation of contaminated soil with CP (200 mg kg?1) disappearance rates were 3.83–4.30 mg kg?1 day?1 for individual strains and 4.76 mg kg?1 day?1 for the consortium. These results indicate that these organisms are involved in the degradation of CP in soil and represent valuable candidates for in situ bioremediation of contaminated soils and waters.  相似文献   

12.
The bacterial community in soil was screened by using various molecular approaches for bacterial populations that were activated upon addition of different supplements. Plasmodiophora brassicae spores, chitin, sodium acetate, and cabbage plants were added to activate specific bacterial populations as an aid in screening for novel antagonists to plant pathogens. DNA from growing bacteria was specifically extracted from the soil by bromodeoxyuridine immunocapture. The captured DNA was fingerprinted by terminal restriction fragment length polymorphism (T-RFLP). The composition of the dominant bacterial community was also analyzed directly by T-RFLP and by denaturing gradient gel electrophoresis (DGGE). After chitin addition to the soil, some bacterial populations increased dramatically and became dominant both in the total and in the actively growing community. Some of the emerging bands on DGGE gels from chitin-amended soil were sequenced and found to be similar to known chitin-degrading genera such as Oerskovia, Kitasatospora, and Streptomyces species. Some of these sequences could be matched to specific terminal restriction fragments on the T-RFLP output. After addition of Plasmodiophora spores, an increase in specific Pseudomonads could be observed with Pseudomonas-specific primers for DGGE. These results demonstrate the utility of microbiomics, or a combination of molecular approaches, for investigating the composition of complex microbial communities in soil.  相似文献   

13.
Pyrene and fluoranthene, when supplied as the sole carbon source, were not degraded by Burkholderia sp. VUN10013. However, when added in a mixture with phenanthrene, both pyrene and fluoranthene were degraded in liquid broth and soil. The amounts of pyrene and fluoranthene in liquid media (initial concentrations of 50 mg l−1 each) decreased to 42.1% and 41.1%, respectively, after 21 days. The amounts of pyrene and fluoranthene in soil (initial concentrations of 75 mg kg−1 dry soil each) decreased to 25.8% and 12.1%, respectively, after 60 days. None of the high molecular weight (HMW) polycylic aromatic hydrocarbons (PAHs) tested adversely affected phenanthrene degradation by this bacterial strain and the amount of phenanthrene decreased rapidly within 3 and 15 days of incubation in liquid broth and soil, respectively. Anthracene also stimulated the degradation of pyrene or fluoranthene by Burkholderia sp. VUN10013, but to a lesser extent than phenanthrene. The extent of anthracene degradation decreased in the presence of these HMW PAHs.  相似文献   

14.
Aims: To study how repeated applications of an herbicide bromoxynil to a soil, mimicking the regime used in the field, affected the degradation of the compound and whether such affects were reflected by changes in the indigenous bacterial community present. Methods and Results: Bromoxynil degradation was monitored in soil microcosms using HPLC. Its impact on the bacterial community was determined using denaturing gradient gel electrophoresis (DGGE) and quantitative PCR of five bacterial taxa (Pseudomonads, Actinobacteria, αProteobacteria, Acidobacteria and nitrifying bacteria). Three applications of 10 mg kg?1 of bromoxynil at 28‐day intervals resulted in rapid degradation, the time for removal of 50% of the compound decreasing from 6·4 days on the first application to 4·9 days by the third. Bacterial population profiles showed significant similarity throughout the experiment. With the addition of 50 mg kg?1 bromoxynil to soil, the degradation was preceded by a lag phase and the time for 50% of the compound to be degraded increased from 7 days to 28 days by the third application. The bacterial population showed significant differences 7 days after the final application of bromoxynil that correlated with an inhibition of degradation during the same period. Conclusions: These analyses highlighted that the addition of bromoxynil gave rise to significant shifts in the community diversity and its structure as measured by four abundant taxa, when compared with the control microcosm. These changes persisted even after bromoxynil had been degraded. Significance and Impact of the Study: Here we show that bromoxynil can exert an inhibitory effect on the bacterial population that results in decreased rates of degradation and increased persistence of the compound. In addition, we demonstrate that molecular approaches can identify statistically significant changes in microbial communities that occur in conjunction with changes in the rate of degradation of the compound in the soil.  相似文献   

15.
Assessment of the Bacterial Diversity in Fenvalerate-Treated Soil   总被引:4,自引:0,他引:4  
The impact of the pesticide fenvalerate on the diversity of the bacterial community in soil was investigated in this study. After treatment with 0.1, 0.5 or 1.0 mg fenvalerate g–1 soil in three soils and incubation for a 40-day period, the changes in diversity were monitored by two different methods. The cultivable heterotrophic diversity was investigated by colony morphology on solid LB medium. Genetic diversity was measured as bands on denaturing gradient gel electrophoresis (DGGE) gels by total genomic DNA extraction and purification, PCR-amplification of bacterial 16S rDNA fragments. The Shannon–Wiener index of diversity (H), richness (S) and evenness (E H) were used to measure changes in the bacterial community in the soils. The results of the cultivable heterotrophic diversity and genetic diversity showed that there was an obvious decrease in diversity due to the application of fenvalerate to the soils, and the different amounts added had different impacts on the diversity. Bands appearing to be either enhanced or inhibited as a result of the fenvalerate treatments were excized and sequenced. Sequencing of excized DGGE bands indicated that application of fenvalerate had an obvious impact on several Pseudomonas spp., or Xanthomonas campestrisor Streptomyces avermitilis. This revealed that microbial community changes can occur due to the application of fenvalerate to soil.  相似文献   

16.
Kai Sun  Juan Liu  Li Jin  Yanzheng Gao 《Plant and Soil》2014,374(1-2):251-262

Aims

Endophytic bacteria are ubiquitous in plants, but little information is available on the influence of endophytic bacteria on the uptake and metabolism of PAH by plants. Thus, we seek to investigate whether the colonization of a target plant by a PAH-degrading endophytic bacterium would improve the PAH metabolism of the plant and reduce the risk of plant PAH contamination.

Methods

A pyrene-degrading endophyte was isolated from PAH-contaminated plants using enrichment culture. After root inoculation with the isolated bacterium, greenhouse container experiments were conducted. Pyrene residues in soil and plant samples were analyzed by HPLC.

Results

A pyrene-degrading endophytic bacterium, Staphylococcus sp. BJ06, was isolated from Alopecurus aequalis and could degrade 56.0 % of pyrene (50 mg?·?L?1) within 15 days. BJ06 grew and degraded pyrene efficiently under environmental conditions. The bacterium significantly promoted ryegrass growth and pyrene removal from contaminated soil in container experiments. The pyrene concentrations in ryegrass roots and shoots in endophyte-inoculated planted soil were reduced by 31.01 % and 44.22 %, respectively, compared with endophyte-free planted soil.

Conclusions

We have provided new perspectives on the regulation and control of plant uptake of organic contaminants with endophytic bacteria. The results of this study will be valuable to risk assessments of plant PAH contamination.  相似文献   

17.
生姜作为常见的调味品和传统中药材,是我国重要的经济作物之一。作为取食部分的生姜块茎与根系直接相连,其产量、品质与根相关细菌群落密切相关。然而,关于生姜根系微环境中细菌群落的特点仍鲜有报道,土壤环境能否衍生出宿主特异性内生菌群落尚不清楚。以生姜根系不同生态位细菌群落为研究对象,采用高通量测序技术,对非根际、根际及根内细菌进行16S rRNA基因测序。结果表明,不同生态位细菌群落多样性存在显著差异,其中非根际及根际细菌群落多样性(Shannon index, Observed species, Faith′s PD)显著高于内生菌群落。同时,各生态位共现网络稳定性和复杂度表现为非根际>根际>根内细菌群落。而在组成上,细菌群落在不同生态位差异显著(R2=0.57,P=0.001)。其中变形菌门(Proteobacteria)是根内的优势门,该门类下假单胞菌属(Pseudomonas)、短波单胞菌属(Brevundimonas)、寡养单胞菌属(Stenotrophomonas)及泛菌属(Pantoea)在根内显著富集。在根际细菌中,拟杆菌门(Bacteroid...  相似文献   

18.
Carbon dioxide (CO2) assimilation by autotrophic bacteria is an important process in the soil carbon cycle with major environmental implications. The long-term impact of fertilizer on CO2 assimilation in the bacterial community of paddy soils remains poorly understood. To narrow this knowledge gap, the composition and abundance of CO2-assimilating bacteria were investigated using terminal restriction fragment length polymorphism and quantitative PCR of the cbbL gene [that encodes ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO)] in paddy soils. Soils from three stations in subtropical China were used. Each station is part of a long-term fertilization experiment with three treatments: no fertilizer (CK), chemical fertilizers (NPK), and NPK combined with rice straw (NPKM). At all of the stations, the cbbL-containing bacterial communities were dominated by facultative autotrophic bacteria such as Rhodopseudomonas palustris, Bradyrhizobium japonicum, and Ralstonia eutropha. The community composition in the fertilized soil (NPK and NPKM) was distinct from that in unfertilized soil (CK). The bacterial cbbL abundance (3–8?×?108 copies g soil?1) and RubisCO activity (0.40–1.76 nmol CO2 g soil?1 min?1) in paddy soils were significantly positively correlated, and both increased with the addition of fertilizer. Among the measured soil parameters, soil organic carbon and pH were the most significant factors influencing the community composition, abundance, and activity of the cbbL-containing bacteria. These results suggest that long-term fertilization has a strong impact on the activity and community of cbbL-containing bacterial populations in paddy soils, especially when straw is combined with chemical fertilizers.  相似文献   

19.
The effects of malachite green (MG) on the bacterial community in Antarctic soil were assessed. Culture-independent community analysis using 16S rRNA gene pyrosequencing showed that, in the presence of MG, the relative abundance of Pseudomonas dramatically increased from 2.2 % to 36.6 % (16.6-fold), and Pseudomonas became the predominant genus. The reduction in bacterial biodiversity was demonstrated by diversity indices and rarefaction curves. MG-degrading Pseudomonas sp. MGO was isolated from Antarctic soil. MG tolerance and decolorization activity were confirmed by growth, spectrophotometric, high-performance liquid chromatography, and thin-layer chromatography analyses in high MG concentrations. Our data showed that the decolorization process occurred via biodegradation, while biosorption also occurred after some time during the fed-batch decolorization process. Significant inductions in laccase, nicotinamide adenine dinucleotide–2,6 dichlorophenol indophenol reductase, and MG reductase activities suggested their involvement in the decolorization process. We also showed that the high tolerance of strain MGO to toxic MG might be mediated by upregulation of oxidative stress defense systems such as superoxide dismutase and protease. Collectively, these results demonstrated the response of the Antarctic soil bacterial community to MG and provided insight into the molecular mechanism of MG-tolerant Pseudomonas strains isolated from Antarctic soil.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants of the environment. But is their microbial degradation equally wide in distribution? We estimated the PAH degradation capacity of 13 soils ranging from pristine locations (total PAHs ≈ 0.1 mg kg?1) to heavily polluted industrial sites (total PAHs ≈ 400 mg kg?1). The size of the pyrene- and phenanthrene-degrading bacterial populations was determined by most probable number (MPN) enumeration. Densities of phenanthrene degraders reflected previous PAH exposure, whereas pyrene degraders were detected only in the most polluted soils. The potentials for phenanthrene and pyrene degradation were measured as the mineralization of 14C-labeled spikes. The time to 10% mineralization of added 14C phenanthrene and 14C pyrene was inversely correlated with the PAH content of the soils. Substantial 14C phenanthrene mineralization in all soils tested, including seven unpolluted soils, demonstrated that phenanthrene is not a suitable model compound for predicting PAH degradation in soils. 14C pyrene was mineralized by all Danish soil samples tested, regardless of whether they were from contaminated sites or not, suggesting that in industrialized areas the background level of pyrene is sufficient to maintain pyrene degradation traits in the gene pool of soil microorganisms. In contrast, two pristine forest soils from northern Norway and Ghana mineralized little 14C pyrene within the 140-day test period. Mineralization of phenanthrene and pyrene by all Danish soils suggests that soil microbial communities of inhabited areas possess a sufficiently high PAH degradation capacity to question the value of bioaugmentation with specific PAH degraders for bioremediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号