首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The pathway of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum has been investigated by long term labelling of the organism with isotopic acetate and pyruvate while exponentially growing on H2 plus CO2. Maximally 2% of the cell carbon were derived from exogeneous tracer, 98% were synthesized from CO2. Since growth was obviously autotrophic the labelled compounds functioned as tracers of the cellular acetyl CoA and pyruvate pool during cell carbon synthesis from CO2. M. thermoautotrophicum growing in presence of U-14C acetate incorporated 14C into cell compounds derived from acetyl CoA (N-acetyl groups) as well as into compounds derived from pyruvate (alanine), oxaloacetate (aspartate), -ketoglutarate (glutamate), hexosephosphates (galactosamine), and pentosephosphates (ribose). The specific radioactities of N-acetylgroups and of the three amino acids were identical. The hexosamine exhibited a two times higher specific radioactivity, and the pentose a 1.6 times higher specific radioactivity than e.g. alanine. M. thermoautotrophicum growing in presence of 3-14C pyruvate, however, did not incorporate 14C into cell compounds directly derived from acetyl CoA. Those compounds derived from pyruvate, dicarboxylic acids and hexosephosphates became labelled. The specific radioactivities of alanine, aspartate and glutamate were identical; the hexosamine had a specific radioactivity twice as high as e.g. alanine.The finding that pyruvate was not incorporated into compounds derived from acetyl CoA, whereas acetate was incorporated into derivatives of acetyl CoA and pyruvate in a 1:1 ratio demonstrates that pyruvate is synthesized by reductive carboxylation of acetyl CoA. The data further provide evidence that in this autotrophic CO2 fixation pathway hexosephosphates and pentosephosphates are synthesized from CO2 via acetyl CoA and pyruvate.  相似文献   

2.
The Gram positive anaerobeAcetobacterium woodii is able to grow autotrophically with a mixture of H2 and CO2 as the energy and carbon source. The question, by which pathway CO2 is assimilated, was studied using long term isotope labeling.Autotrophically growing cultures produced acetate parallel to cell proliferation, and, when U-[14C]acetate was present as tracer, incorporated radioactivity into all cell fractions. The specific radioactivity and the label positions were determined for those representative cell compounds which biosynthetically originated directly from acetyl CoA (N-acetyl groups), pyruvate (alanine), oxaloacetate (aspartate), -ketoglutarate (glutamate), and hexosephosphates (glucosamine). Per mol compound the same amount of labeled acetate was incorporated into N-acetyl groups, alanine (C-2, C-3), aspartate (C-2, C-3), and twice the amount into glutamate (C-2, C-3, C-4, C-5) and into glucosamine. Consequently, the unlabeled carbon atoms of the C3–C6 compounds must have been derived from CO2 by carboxylation subsequent to acetyl CoA synthesis. When 0.2 mM 2-[14C]pyruvate was added to autotrophically growing cultures, also a substantial amount of radioactivity was incorporated. Two important differences in comparison to the acetate experiment were observed: The N-acetyl groups were almost unlabeled and glutamate contained the same specific radioactivity as alanine or aspartate.These data showed that acetyl CoA is the central intermediate for biosynthesis and excluded the operation of the Calvin cycle inA. woodii. The results were consistent with the operation of a different autotrophic CO2 fixation pathway in which CO2 is converted into acetyl CoA by total synthesis via methyltetrahydrofolate; acetyl CoA is then further reductively carboxylated to pyruvate.  相似文献   

3.
The incorporation of 14CO2 by an exponentially growing culture of the autotrophic bacterium Methanobacterium thermoautotrophicum has been studied. The distribution of radioactivity during 2s–120s incubation periods has been analyzed by chromatography and radioautography. After a 2 s incubation most of the radioactivity of the ethanolsoluble fraction was present in the amino acids alanine, glutamate, glutamine and aspartate, whereas phosphorylated compounds were only weakly labelled. The percentage of the total radioactivity fixed, which was contained in the principal early labelled amino acid alanine, increased in the first 20 s and only then decreased, indicating that alanine is derived from primary products of CO2 fixation.The labelling patterns of alanine produced during various incubation times have been determined by degradation. After a 2 s 14CO2 pulse, 61% of the radioactivity was located in C-1, 23% in C-2, and 16% in C-3. The results are consistent with the operation of a previously proposed autotrophic CO2 assimilation pathway which involves the formation of acetyl CoA from 2 CO2 via one-carbon unit intermediates, followed by the reductive carboxylation of acetyl CoA to pyruvate.  相似文献   

4.
The activity of two carboxylating enzymes was studied in the green filamentous bacteriumChloroflexus aurantiacus. The carboxylation reaction involving pyruvate synthase was optimized using14CO2 and cell extracts. Pyruvate synthase was shown to be absent from cells ofCfl. aurantiacus OK-70 and present (in a quantity sufficient to account for autotrophic growth) in cells ofCfl. aurantiacus B-3. Differences in the levels of acetyl CoA carboxylase activity were revealed between cells of the strains studied grown under different conditions. The data obtained confirm the operation of different mechanisms of autotrophic CO2 assimilation inCfl. aurantiacus B-3 andCfl. aurantiacus OK-70: in the former organism, it is the reductive cycle of dicarboxylic acids, and in the latter one, it is the 3-hydroxypropionate cycle.  相似文献   

5.
Chlorobium limicola was grown on a mineral salts medium with CO2 as the main carbon source supplemented with specifically labeled 14C propionate and the incorporation of 14C into alanine ( intracellular pyruvate), aspartate ( oxaloacetate), and glutamate ( -ketoglutarate) was studied in long term labeling experiments. During growth in presence of propionate 30% of the cell carbon were derived from propionate and 70% from CO2. Propionate was not oxidized to CO2.All three amino acids were found to be labeled. The labeling patterns indicate that propionate was assimilated via propionyl CoA, methylmalonyl CoA and succinyl CoA. When 1-14C propionate was the labeled precursor no radioactivity was found in the carboxyl group(s) of alanine, aspartate and glutamate, excluding the incorporation of propionate into the amino acids via succinate oxidation to fumarate. With 1-14C propionate preferentially aspartate (C-3) and glutamate (C-2) became labeled, with 2-14C propionate alanine (C-3) and glutamate (C-4). These findings indicate that propionate was incorporated into the amino acids via succinyl CoA, -ketoglutarate, isocitrate, and citrate, followed by a si-type cleavage of citrate to oxaloacetate and acetyl CoA (or acetate). Similar experiments with U-14C acetate confirm these conclusions. Thus, all reactions of the proposed reductive tricarboxylic acid cycle could be demonstrated in autotrophically growing cells.  相似文献   

6.
RNA synthesis during morphogenesis of the fungusMucor racemosus   总被引:6,自引:0,他引:6  
Bacteroides succinogenes produces acetate and succinate as major products of carbohydrate fermentation. An investigation of the enzymes involved indicated that pyruvate is oxidized by a flavin-dependent pyruvate cleavage enzyme to acetyl-CoA and CO2. Active CO2 exchange is associated with the pyruvate oxidation system. Reduction of flavin nucleotides is CoASH-dependent and does not require ferredoxin. Acetyl-CoA is further metabolized via acetyl phosphate to acetate and ATP. Reduced flavin nucleotide is used to reduce fumarate to succinate by a particulate flavin-specific fumarate reductase reaction which may involve cytochrome b. Phosphoenolpyruvate (PEP) is carboxylated to oxalacetate by a GDP-specific PEP carboxykinase. Oxalacetate, in turn, is converted to malate by a pyridine nucleotide-dependent malate dehydrogenase. The organism has a NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. The data suggest that reduced pyridine nucleotides generated during glycolysis are oxidized in malate formation and that the electrons generated during pyruvate oxidation are used to reduce fumarate to succinate.  相似文献   

7.
Pyruvate fermentation inRhodospirillum rubrum (strains F1, S1, and Ha) was investigated using cells precultured on different substrates anaerobically in the light and than transferred to anaerobic dark conditions. Pyruvate formate lyase was always the key enzyme in pyruvate fermentation but its activity was lower than in cells which have been precultured aerobically in darkness. The preculture substrate also had a clear influence on the pyruvate formate lyase activity. Strains F1 and S1 metabolized the produced formate further to H2 and CO2. A slight production of CO2 from pyruvate, without additional H2-production, could also be detected. It was concluded from this that under anaerobic dark conditions a pyruvate dehydrogenase was also functioning. On inhibition of pyruvate formate lyase the main part of pyruvate breakdown was taken over by pyruvate dehydrogenase.When enzyme synthesis was inhibited by chloramphenicol, propionate production in contrast to formate production was not affected. Protein synthesis was not significant during anaerobic dark culture. Bacteriochlorophyll. however, showed, after a lag phase, a clear rise.Abbreviations Bchl Bacteriochlorophyll - CoA Coenzyme A - DSM Deutsche Sammlung von Mikroorganismen (Göttingen) - OD optical density - PHBA poly--hydroxybutyric acid - R Rhodospirillum  相似文献   

8.
Chlorobium limicola has been proposed to assimilate CO2 autotrophically via a reductive tricarboxylic acid cycle rather than via the Calvin cycle. This proposal has been a matter of considerable controversy. In order to determine which pathway is operative, the bacterium was grown on a mineral salts medium with CO2 as the main carbon source supplemented with specifically labeled 14C-pyruvate, and the incorporation of 14C into alanine (intracellular pyruvate), aspartate (oxaloacetate), glutamate (-ketoglutarate), and glucose (hexosephosphate) was measured in exponentially growing cells in long term labeling experiments. During growth in presence of pyruvate, 20% of the cell carbon were derived from pyruvate in the medium, 80% from CO2. Since pyruvate was not oxidized to CO2, only those compounds should become labeled which were synthesized from CO2 via pyruvate.The three amino acids and glucose were found to be labeled. Alanine had one fifth the specific radioactivity of the extracellular pyruvate, indicating that 20% of the intracellular pyruvate pool were derived from pyruvate in the medium, 80% were synthesized from CO2. Glucose had twice the specific radioactivity of alanine, showing that hexosephosphate synthesis from CO2 proceeded via the pyruvate pool. The latter finding is not consistent with the operation of the Calvin cycle, in which pyruvate is not an intermediate. The specific radioactivities of aspartate (oxaloacetate) and of glutamate (-ketoglutarate) were practically identical but considerably lower than that of alanine ( intracellular pyruvate). These findings are compatible with the operation of a reductive tricarboxylic acid cycle as mechanism of autotrophic CO2 fixation. Degradation studies of the cell components support this interpretation. Offprint requests to: G. Fuchs  相似文献   

9.
Cultures of the autotrophic bacteriumMethanobacterium thermoautotrophicum were shown to assimilate acetate when grown on CO2 and H2 in the presence of acetate. At 1 mM acetate 10% of the cell carbon came from acetate, the rest from CO2. At higher concentrations the percentage increased to reach a maximum of 65%at acetate concentrations higher than 20 mM. The data suggest that acetate may be an important carbon source under physiological conditions.The incorporation of acetate into alanine, aspartate and glutamate was studied in more detail. The cells were grown on CO2 and H2 in the presence of 1 mM U-14C-acetate. The three amino acids were isolated from the labelled cells by a simplified procedure. Alanine, aspartate and glutamate were found to have the same specific radioactivity. Degradation studies showed that C1 of alanine C1 and C4 of aspartate, and C1 and C5 of glutamate were exclusively derived from CO2, whereas C2 and C3 alamine and aspartate, and C3 and C4 of glutamate were partially derived from acetate. These findings and the presence of pyruvate synthase, phosphoenolpyruvate carboxylase and -ketoglutarate synthase inM. thermoautotrophicum indicate that CO2 is assimilated into the three amino acids via acetyl CoA carboxylation to pyruvate, phosphoenolpyruvate carboxylation to oxaloacetate, and succinyl CoA carboxylation to -ketoglutarate.  相似文献   

10.
The pivotal role of acetyl coenzyme A in CO2 assimilation by autotrophic methanogenic bacteria has been demonstrated by pulse-labelling of growing Methanobacterium thermoautotrophicum with 14CO2. After very short incubation with 14CO2 (1.5 s) approximately 1% of label incorporated into the soluble cell fraction was contained in acetyl coenzyme A. The percentage distribution of 14C within acetyl CoA markedly decreased with time, which is indicative for acetyl CoA being an immediate 14CO2 fixation product. Label in the acetate molecule first appeared in the carboxyl carbon, but the methyl carbon became equally labelled within only 10 s. The acetyl CoA was compared with authentic material by various criterions and its cellular concentration was determined to be 52 M. This small cellular pool size of acetyl CoA as compared to e.g. alanine (6.4 mM) provides an explanation for the observed labelling kinetics. The data are fully consistent with autotrophic carbon assimilation via a total synthesis of acetyl coenzyme A from 2 CO2.Dedicated to Professor Dr. Gerhart Drews on occasion of his 60th birthday  相似文献   

11.
The active species of CO2 , i.e. CO2 or HCO 3 –(H2CO3) utilized by enzymes catalyzing ferredoxin-linked carboxylation reactions was determined. The enzyme investigated was pyruvate synthase from Clostridium pasteurianum (EC 1.2.7.1; Pyruvate: ferredoxin oxidoreductase). Data were obtained which were compatible with those expected if CO2 is the active species.The dissociation constant (K S) of the enzyme-CO2 complex was measured. At pH 7.2 K Sfor CO2 of pyruvate synthase was found to be approximately 5 mM.Abbreviations Fd ferredoxin No distinctions are made between CO2, H2CO3, HCO 3 and CO 3 = when the symbol CO2 is used.  相似文献   

12.
Formate was formed in extracts of Chlorogonium elongatum via direct cleavage of pyruvate by a pyruvate formate-lyase (PFL, EC 2.3.1.54). The conversion of PFL to the catalytically active form required S-adenosylmethionine, ferric (2+), photoreduced deazariboflavin as reductant, pyruvate as allosteric effector and strict anaerobic conditions. At the optimum pH (pH 8.0), PFL catalyzed formate formation, pyruvate synthesis and the isotope exchange from [14C]formate into pyruvate with rates of 30.0, 1.5 and 1.2 nmol min-1 mg-1 protein, respectively. Treatment of the active enzyme with O2 irreversibly inactivated PFL activity (half-time 2 min). In addition to PFL, the activities of phosphotransacetylase (EC 2.3.1.8), acetate kinase (EC 2.7.2.1), aldehyde dehydrogenase (CoA acetylating, EC 1.2.1.10) and alcohol dehydrogenase (EC 1.1.1.1) were also detected in extracts of C. elongatum. The occurrence of these enzymes indicates pyruvate degradation via a formate-fermentation pathway during anaerobiosis of algal cells in the dark.Abbreviations DTT dithiothreitol - Hepes 4-(2-hydroxyethyl)-1-piperazine+ethane sulfonic acid - PFL pyruvate formate-lyase  相似文献   

13.
Desulfovibrio vulgaris (Marburg) was grown on hydrogen plus sulfate as sole energy source and acetate plus CO2 as the sole carbon sources. The incorporation of U-14C acetate into alanine, aspartate, glutamate, and ribose was studied. The labelling data show that alanine is synthesized from one acetate (C-2 + C-3) and one CO2 (C-1), aspartate from one acetate (C-2 + C-3) and two CO2 (C-1 + C-4), glutamate from two acetate (C-1–C-4) and one CO2 (C-5), and ribose from 1.8 acetate and 1.4 CO2. These findings indicate that in Desulfovibrio vulgaris (Marburg) pyruvate is formed via reductive carboxylation of acetyl-CoA, oxaloacetate via carboxylation of pyruvate or phosphoenol pyruvate, and -ketoglutarate from oxaloacetate plus acetyl-CoA via citrate and isocitrate. Since C-5 of glutamate is derived from CO2, citrate must have been formed via a (R)-citrate synthase rather than a(S)-citrate synthase. The synthesis of ribose from 1.8 mol of acetate and 1.4 mol of CO2 excludes the operation of the Calvin cycle in this chemolithotrophically growing bacterium.  相似文献   

14.
Chlorofluexus aurantiacus OK-70 fl was grown photoautotrophically with hydrogen as the electron source. The lowest doubling time observed was 26 h.The mechanism of CO2 fixation in autotrophically grown cells was studied. The presence of ribulose-1,5-bis-phosphate carboxylase and phosphoribulokinase could not be demonstrated. Carbon isotope fractionation (13C) was small, and alanine and aspartate but not 3-phosphoglycerate were the major labelled compounds in short term 14CO2 labelling. Thus CO2 is not fixed by the Calvin cycle.Fluoroacetate (FAc) completely inhibited protein synthesis in cultures and caused a slight citrate accumulation. However, CO2 fixation continued and increased polyglucose formation occurred. Under these conditions added acetate was metabolized to polyglucose, as were glycine, serine, glyoxylate and succinate, but to a lesser extent; little or no formate or CO was utilised.Glyoxylate inhibited CO2 fixation in vivo, indicating that pyruvate is formed from acetyl-CoA and CO2 by pyruvate synthase. Two key enzymes of the reductive TCA cycle, citrate lyase and -ketoglutarate synthase were not detected in cell free extracts, but pyruvate synthase and phosphoenolpyruvate carboxylase were demonstrated. It is concluded that acetyl-CoA is a central intermediate in the CO2 fixation process, but the mechanism of its synthesis is not clear.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase - TCA cycle tricarboxylic acid cycle - FAc monofluoroacetate - PEP phosphoenolpyruvate - MV methyl viologen - TTC triphenyltetrazolium chloride - PMS phenazine methosulfate  相似文献   

15.
The hyperthermophilic anaerobe Pyrococcus furiosus was found to grow on pyruvate as energy and carbon source. Growth was dependent on yeast extract (0.1%). The organism grew with doublings times of about 1 h up to cell densities of 1–2×108 cells/ml. During growth 0.6–0.8 mol acetate and 1.2–1.5 mol CO2 and 0.8 mol H2 were formed per mol of pyruvate consumed. The molar growth yield was 10–11 g cells(dry weight)/mol pyruvate. Cell suspensions catalyzed the conversion of 1 mol of pyruvate to 0.6–0.8 mol acetate, 1.2–1.5 mol CO2, 1.2 mol H2 and 0.03 mol acetoin. After fermentation of [3-14C]pyruvate the specific radioactivities of pyruvate, CO2 and acetate were equal to 1:0.01:1. Cellfree extracts contained the following enzymatic activities: pyruvate: ferredoxin (methyl viologen) oxidoreductase (0.2 U mg-1, T=60°C, with Clostridium pasteurianum ferredoxin as electron acceptor; 1.4 U mg-1 at 90°C, with methyl viologen as electron acceptor); acetyl-CoA synthetase (ADP forming) [acetyl-CoA+ADP+Piacetate+ATP+CoA] (0.34 U mg-1, T=90°C), and hydrogen: methyl viologen oxidoreductase (1.75 U mg-1). Phosphate acetyl-transferase activity, acetate kinase activity, and carbon monoxide:methyl viologen oxidoreductase activity could not be detected. These findings indicate that the archaebacterium P. furiosus ferments pyruvate to acetate, CO2 and H2 involving only three enzymes, a pyruvate:ferredoxin oxidoreductase, a hydrogenase and an acetyl-CoA synthetase (ADP forming).Non-standard abbreviations DTE dithioerythritol - MV methyl viologen - MOPS morpholinopropane sulfonic acid - Tricine N-tris(hydroxymethyl)-methylglycine Part of the work was performed at the Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karlvon-Frisch-Strasse, W-3550 Marburg/Lahn, Federal Republic of Germany  相似文献   

16.
In Acetobacter aceti growing on pyruvate as the only source of carbon and energy, oxaloacetate (OAA) is produced by a phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31). The enzyme was purified 122-fold and a molecular weight of about 380,000 was estimated by gel filtration.The optimum pH was 7.5 and the K m values for PEP and NaHCO3 were 0.49 mM and about 3 mM, respectively. The enzyme needed a divalent cation; the K m for Mn2+, Co2+ and Mg2+ were 0.12, 0.26 and 0.77 mM, respectively. Maximal activity was only obtained with Mg2+. Mn2+ and Co2+ became inhibitory at high concentrations.The activity was inhibited by succinate and, to a lesser extent, by fumarate, citrate, -ketoglutarate, aspartate and glutamate.As compared with the corresponding enzyme from A. xylinum, the PEP carboxylase of A. aceti showed the following differences: a) It had an absolute requirement for acetyl CoA (K a 0.18 mM) or propionyl CoA (K a 0.2 mM). b) It was not affected by ADP. c) It was sensitive to thiol blocking agents.Abbreviations PEP phosphoenolpyruvate - OAA oxaloacetate - MW molecular weight - TEMG buffer 50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 5 mM MgCl2, 1 mM glutathione - HEPES N-2-hydroxyethylpiperazine-N-ethanesulfonic acid  相似文献   

17.
SYNOPSIS. The growth of Tetrahymena pyriformis strain HSM was strongly inhibited by 4-pentenoic acid. Supplementing the medium with acetate reversed the growth inhibition, but pyruvate was ineffective. Glycogen content was much lower in cells grown with 4-pentenoic acid than in controls; this effect was not reversed by acetate or by pyruvate. There was little effect of 4-pentenoic acid on the incorporation of label from [1-14C]acetate, [2-14C]glycerol, [1-34]ribose, [U-14C]fructose, or [1-14C]glucose into CO2, but incorporation of label into glycogen was inhibited, the strongest inhibition being on acetate and the weakest (~ 20%) on ribose, fructose, and glucose. A 3-compartment model for quantitation of labeled acetyl CoA fluxes was shown to be applicable to Tetrahymena grown in the presence of 4-pentenoic acid, and experiments were performed to establish the flux of [1-14C]acetyl CoA into glycogen, lipids, CO2, glutamate, and alanine. It was evident from the results of these experiments that 4-pentenoic acid did not appreciably inhibit β-oxidation or lipogenesis, but markedly decreased the glyconeogenic flux of labeled acetyl-CoA from the peroxismal and outer mitochondrial compartments. At least 2 mechanisms have been proposed for the action of 4-pentenoic acid: (a) reduction of the levels of acetyl CoA or free CoA and (b) direct inhibition of enzymes by 4-pentenoyl CoA or its metabolites. Although 4-pentenoic acid has little effect on acetyl-CoA metabolism in the inner mitochondrial compartment, the present data suggest that the flux through the outer mitochondrial compartment of acetyl-CoA derived from pyruvate is inhibited largely by the first, and that the glyconeogenic flux of acetyl-CoA is inhibited largely by the 2nd mechanism.  相似文献   

18.
Desulfovibrio baarsii is a sulfate reducing bacterium, which can grown on formate plus sulfate as sole energy source and formate and CO2 as sole carbon sources. It is shown by 14C labelling studies that more than 60% of the cell carbon is derived from CO2 and the rest from formate. The cells thus grow autotrophically. Labelling studies with [14C]acetate, 14CO and [14C]formate indicate that CO2 fixation does not proceed via the Calvin cycle. The labelling patterns of alanine, aspartate, glutamate, and glucosamine indicate that acetate (or activated acetic acid) is an early intermediate in formate and CO2 assimilation; the methyl group of acetate is derived from formate, and the carboxyl group from CO2 via CO; pyruvate is formed from acetyl-CoA by reductive carboxylation. The capacity to synthesize an acetate unit from two C1-compounds obviously distinguishes D. baarsii from those Desulfovibrio species, which require acetate as a carbon source in addition to CO2.  相似文献   

19.
Acetate uptake by strains of Synechococcus and Aphanocapsa in short experiments required light, and was strongly inhibited by m-dichlorocarbonyl cyanide phenylhydrazone and dichlorophenyl dimethyl urea. Acetate carbon was distributed in amino acids and in the acyl portion of lipids in the same way as during growth experiments when CO2 was available, but the reduced incorporation in the absence of CO2 was primarily into the lipid fraction. An apparent K m for uptake by Synechococcus and for Aphanocapsa 6308 of 20 and 180 M at pH 7.4 was obtained; corresponding V max values were 6 and 11 nmol x min-1 x mg protein-1. Uptake with Synechococcus was affected by pH, with affinity decreased and maximal rate increase with rising pH. Acetate uptake was not affected by propionate or butyrate when both were added at the same time, but a light and concentration dependent inhibition developed if suspensions were preincubated with propionate. Acetate carbon moved rapidly into acid insoluble material, but after 10–15 s 75% or more of the recovered intracellular counts were in acetyl CoA. Counts in this compound were reduced by preincubation with propionate.Kinetic measurements of acetyl CoA synthetase in fractionated cell extracts gave values for K m of about 50 M for acetate, 5 mM for propionate, 100 M for CoA and 0.38 mM for ATP. The internal pool of free CoA was measured to be about 20 M, and was reduced by preincubation with propionate. This suggests that the activity of CoA-mediated reactions may be regulated by the availability of this cofactor.Abbreviations Used CCCP m-Dichlorocarbonyl cyanide phenyl hydrazone - DCMU dichlorophenyl dimethyl urea - TCA trichloroacetic acid - Tris trishydroxymethyl amino methane - HEPES N-2-hydroxyethylpiperazine-N-2-ethane-sulfonic acid  相似文献   

20.
The morphology, the general physiological characteristics, and the energy-yielding metabolism of an obligately anaerobic spirochete isolated from the colon of a swine were studied. Electron microscopy showed that the helical spirochetal cells possessed an outer sheath, a protoplasmic cylinder, and 4 periplasmic fibrils in a 2-4-2 arrangement. The spirochete grew in an atmosphere of N2 in prereduced media containing a carbohydrate, NaHCO3, rumen fluid, yeast extract, peptone, l-cysteine, and inorganic salts. The spirochete fermented carbohydrates and required substrate amounts of CO2 (HCO 3 - ) for growth. Amino acids were not fermented. Major fermentation products of cells growing with glucose as the substrate and in the presence of CO2 were acetate, formate, succinate, and lactate. Small amounts of 2,3-butanediol, pyruvate, and acetoin were also formed. Determinations of enzymatic activities in cell extracts, and of radioactivity in products formed by growing cells from [1-14C]glucose, indicated that this sugar was dissimilated to pyruvate via the Embden-Meyerhof pathway. The spirochetes used a coliform-type clastic reaction to metabolize pyruvate. Determinations of radioactivity in products formed from [14C]NaHCO3 indicated that CO2 was assimilated and used in succinate production. The guanine+cytosine content of the DNA was 36 mol%. This study indicates that this intestinal spirochete represents a new species of Treponema. It is proposed that the new species be named Treponema succinifaciens.Abbreviations cpm counts per minute - DTT dithiothreitol - EM Embden-Meyerhof - GC guanine plus cytosine - IgG immunoglobulin G - PC protoplasmic cylinder - PF periplasmic fibrils (axial fibrils) - OS outer sheath  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号