首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schwann cell motility was observed on laminin‐coated quartz cylinders with different curvatures over an 18 hour period. A new analysis based on difference images helped to determine the minimal radius of curvature, 46 μm, which restricted motility along the cylinder axis. The migration speed, measured by calculating differences between successive images in the time series, ranged between 0.3 to 0.8 μm per minute and is similar to previously reported rates for Schwann cells. Difference images provide a rapid and simple method for the analysis of cell motility on large populations of cells. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Epididymis provides a safe environment in which stored-spermatozoa could survive for days before ejaculation. In vitro studies suggested that epididymal proteins seem to be implicated in sperm survival during coincubation with cultured epididymal cells. This study was basically designed to confirm if secretory proteins from bovine epididymal cell cultures provide sperm protection against rapid loss of sperm motility in vitro. Bovine spermatozoa were incubated in conditioned media (CM), which were prepared from cultured cauda epididymal cell (CEC). Motion parameters were recorded using a computer-assisted sperm analyzer. Sperm-free protein extracts from CM were fractionated by ultrafiltration through a 10-kDa cut off membrane. A significantly positive effect on sperm motility was observed when spermatozoa were incubated in CM (54 +/- 4%) and CM > 10 kDa (57 +/- 4%) compared to CM < 10-kDa fraction (30 +/- 3%) or fresh media (34 +/- 3%), after a 6-hr incubation period. This beneficial effect on sperm motility was abolished when the CM > 10-kDa fraction was heat-treated at 100 degrees C for 10 min. The CM > 10 kDa fraction provides factors that remained active even though spermatozoa were washed twice after a 2-hr preincubation period. To identify potential beneficial factors, bovine spermatozoa were incubated with radiolabeled proteins obtained using (35)S-methionine in culture medium. SDS-PAGE analysis of proteins extracted from CM-preincubated spermatozoa revealed the presence of a 42-kDa protein strongly associated to the sperm surface. This 42-kDa spot was trypsin-digested and identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) as a protein homologue to a 35-kDa bovine estrogen-sulfotransferase. This protein can play a role in epididymal biology and sperm function. Taken together, these results suggest that specific epididymal proteins can be implicated in the sperm protection in vitro, and can be characterized in our cell culture system.  相似文献   

3.
Several angiogenic preparations that have been shown to stimulate plasminogen activator (PA) and collagenase production by cultured bovine capillary endothelial (BCE) cells were tested for their ability to stimulate BCE cell motility in the phagokinetic track assay. Bovine retinal extract, medium conditioned by 3T3-F442A differentiated mouse adipocytes, SK HEP-1 human hepatoma cell lysate, mouse sarcoma 180 cell lysate, and medium conditioned by mouse sarcoma 180 cells stimulated motility 68.7%, 48.5%, 140.9%, 56.5%, and 102.1%, respectively, relative to untreated cells. The motility-stimulating activity of these preparations was dose dependent and linear over the 16-h assay period. Several hormones and growth factors were tested for BCE cell motility-stimulating activity, including insulin, vasopressin, fibroblast growth factor, and a partially purified preparation of sarcoma growth factor, and were found to be ineffective. 12-0-tetradecanoyl-phorbol-acetate (TPA), a potent stimulator of both PA and collagenase activities in BCE cells, also did not stimulate motility, indicating that protease production is not sufficient to stimulate BCE cell motility in this assay. Neither SK HEP-1 hepatoma cell lysate nor TPA was effective in stimulating motility in bovine aortic endothelial (BAE) cells. The inability of SK HEP-1 hepatoma cell lysate to stimulate movement in BAE cells is consistent with the observation that angiogenesis occurs by sprouting of capillaries, not large vessels.  相似文献   

4.
Summary  Until now researchers have used a monolayer of cultured cells to investigate cell motility toward an injured cell. However, we suspect that, when using this method, adjacent cells move to the free space due to relief of contact inhibition. The current study was designed to investigate the cell motility nearby an injured cell in varying cell connectivity. A lowpower laser beam was used to damage one cell selectively with the silver coating beads. After injury, we observed the cell motility in three different cell types: (1) those immediately adjacent to the injured cell, 92) those removed from the injured cell by interposition of another cell, and (3) those removed from the injured cell by free space. The cells that are in direct contact with the injured cell moved toward the injured cell within 1.5–3.0 h. Indirectly connected cells and cells with no contact, on the other hand, showed no significant movement toward the injured cell. This suggests that the cell motility toward the cell injury is not only due to relief of contact inhibition but might also be caused by cell-to-cell signaling via cell connection. The current method will provide a tool to create a cell injury without damaging adjacent cells.  相似文献   

5.
Non-small cell lung cancer (NSCLC) is an aggressive lung cancer accounting for approximately 85% of all lung cancer patients. For the patients with Stages IIIA, IIIB, and IIIC, the 5-year survival is low though with the combination with radiotherapy and chemotherapy. In addition, the occurrence of tumor cells (repopulated tumors) that survive irradiation remains a challenge. In our previous report, we subcloned the radiation-surviving tumor cells (IR cells) using the human NSCLC cell line, H1299, and found that the expression of neuropilin-1 (NRP-1) was upregulated in IR cells by the microarray analysis. Here, we investigated the contribution of neuropilin-1 to changes in the characteristics of IR cells. Although there were no differences in angiogenic activity in the tube formation assay between parental and IR cells, the cell motility was increased in IR cells compared to parental cells in the cell migration assay. This enhanced cell motility was suppressed by pretreatment with anti-NRP-1 antibody. Although further studies are necessary to identify other molecules associated with NRP-1, the increase in cellular motility in IR cells might be due to the contribution of NRP-1. Inhibition of NRP-1 would help control tumor malignancy in radiation-surviving NSCLC.  相似文献   

6.
7.
The cAMP‐dependent protein kinase (PKA), protein kinase C (PKC) and phosphatidylinositol 3‐kinase (PI3K) pathways control most relevant functions in male germ cells including motility. Recently we demonstrated that phosphorylation state of glycogen synthase kinase‐3α (GSK3A) is also a key event in the control of boar spermatozoa motility. However, the upstream regulators of GSK3A serine phosphorylation (inhibition) in male germ cells remain largely unknown. This work investigates the involvement of PKA, PKC and PI3K pathways in GSK3A phosphorylation in boar spermatozoa. A capacitating medium (TCM) or the phosphodiesterase‐resistant cell permeable cAMP analogue 8Br‐cAMP cause a significant increase in Ser21 GSK3A phosphorylation associated with a simultaneous significant increase in boar spermatozoa motility. These effects are blocked after preincubation of spermatozoa with PKA inhibitor H89 or PKC inhibitor Ro‐32‐0432. The PI3K inhibitor LY294002 increases both spermatozoa motility parameters and the basal GSK3A phosphorylation, but does not affect either TCM‐ or 8Br‐cAMP‐stimulated GSK3A phosphorylation. PI3K inhibition effects are mediated by an increase in intracellular cAMP levels in boar spermatozoa and are suppressed by PKA inhibitor H89. In summary, we demonstrate that PKA, PKC and PI3K pathways crosstalk in porcine male germ cells to crucially regulate GSK3A phosphorylation which subsequently controls cell motility. In addition, our results suggest that PI3K is upstream of PKA which lies upstream of PKC in this regulatory cascade(s). Our findings contribute to elucidate the molecular mechanisms underlying the regulation of one of the most relevant male germ cell functions, motility. J. Cell. Biochem. 109: 65–73, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
A role for coccidian cGMP-dependent protein kinase in motility and invasion   总被引:9,自引:0,他引:9  
The coccidian parasite cGMP-dependent protein kinase is the primary target of a novel coccidiostat, the trisubstituted pyrrole 4-[2-(4-fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H-pyrrol-3-yl] pyridine (compound 1), which effectively controls the proliferation of Eimeria tenella and Toxoplasma gondii parasites in animal models. The efficacy of compound 1 in parasite-specific metabolic assays of infected host cell monolayers is critically dependent on the timing of compound addition. Simultaneous addition of compound with extracellular E. tenella sporozoites or T. gondii tachyzoites inhibited [3H]-uracil uptake in a dose-dependent manner, while minimal efficacy was observed if compound addition was delayed, suggesting a block in host cell invasion. Immunofluorescence assays confirmed that compound 1 blocks the attachment of Eimeria sporozoites or Toxoplasma tachyzoites to host cells and inhibits parasite invasion and gliding motility. Compound 1 also inhibits the secretion of micronemal adhesins (E. tenella MIC1, MIC2 and T. gondii MIC2), an activity closely linked to invasion and motility in apicomplexan parasites. The inhibition of T. gondii MIC2 adhesin secretion by compound 1 was not reversed by treatment with calcium ionophores or by ethanol (a microneme secretagogue), suggesting a block downstream of calcium-dependent events commonly associated with the discharge of the microneme organelle in tachyzoites. Transgenic Toxoplasma strains expressing cGMP-dependent protein kinase mutant alleles that are refractory to compound 1 (including cGMP-dependent protein kinase knock-out lines complemented by such mutants) were used as tools to validate the potential role of cGMP-dependent protein kinase in invasion and motility. In these strains, parasite adhesin secretion, gliding motility, host cell attachment and invasion displayed a reduced sensitivity to compound 1. These data clearly demonstrate that cGMP-dependent protein kinase performs an important role in the host-parasite interaction.  相似文献   

9.
朱琳  贺巍  杨生岳  范兴爱  刘睿年 《生物磁学》2013,(34):6786-6789
急进高原胃肠动力紊乱是高原胃肠应激反应的主要表现之一,腹胀、恶心、呕吐、腹泻、食欲减退等是其最突出的临床症状,目前有关其的研究多集中于临床及部分基础研究上,但在探讨有关高原胃肠动力紊乱形成机制的细胞分子生物学领域的研究则少见报道。而大量研究指出,慢波起源细胞Cajal间质细胞在胃肠动力调控中具有重要作用,并成为的研究的热点,那么Cajal间质细胞是否同样在急进高原胃肠动力紊乱中发挥同样重要的作用,这不但对从细胞分子生物学角度来解释急进高原胃肠动力紊乱的机制有着重要的意义,而且还可以对未来的临床干预提供新的思路。因此,本文拟对Cajal间质细胞在急进高原胃肠动力紊乱中的潜在作用作一综述。  相似文献   

10.
A variety of mathematical models for the actin driven motility of eucaryotic cells have been discussed over the last decades. However, most of them do model polarized cells which are already in motion or at least have established lamellipods. Here we investigate the stimulus induced transition from a symmetric resting state of a cell to a polarized one. Our goal is to find a minimal scenario for this rearrangement of the cytoskeleton and to figure out which of the manifold proteins and processes associated with actin dynamics are essential for the initiation of movement.  相似文献   

11.
Growth of epidermoid carcinoma cell lines, A431 and KB, has been known to be controlled by the interaction of epidermal growth factor (EGF) and its receptor (EGFR) with tyrosine kinase. Ganglioside GM3 was previously found to interact with EGFR and to inhibit EGFR tyrosine kinase. However, motility of these cells, controlled by EGFR and ganglioside, was not studied. The present study is focused on the control mechanism of the motility of these cells through interaction of ganglioside, tetraspanin (TSP), and EGFR. Key results are as follows: (i) The level of EGFR expressed in A431 cells is 6 times higher than that expressed in KB cells, and motility of A431 cells is also much higher than that of KB cells, yet growth of A431 cells is either not affected or is inhibited by EGF. In contrast, growth of KB cells is enhanced by EGF. (ii) Levels of TSPs (CD9, CD82, and CD81) expressed in A431 cells are much higher than those expressed in KB cells, and TSPs expressed in A431 cells are reduced by treatment of cells with EtDO-P4, which inhibits the synthesis of glycosphingolipids (GSLs) and gangliosides. (iii) These TSPs are co-immunoprecipitated with EGFR in both A431 and KB cells, indicating that TSPs are closely associated with EGFR. (iv) High motility of A431 cells is greatly reduced, while low motility of KB cells is not affected, by treatment of cells with EtDO-P4. These results, taken together, suggest that there is a close correlation between high motility of A431 cells and high expression of EGFR and TSPs, and between ganglioside GM3/GM2 and TSP. A similar correlation was suggested between the low motility of KB cells and low levels of EGFR and TSP. The correlation between high motility and high level of EGFR with the ganglioside–TSP complex in A431 cells is unique. This is in contrast to our previous studies that indicate that motility of many types of tumor cells is inhibited by a high level of CD9 or CD82, together with growth factor receptors and integrins.  相似文献   

12.
13.
14.
Sperm activating and -attracting factor (SAAF), derived from the egg of the ascidian Ciona, activates sperm motility through adenosine 3':5'-cyclic monophosphate (cAMP)-synthesis. A demembranated preparation of intact immotile sperm without SAAF was shown to require cAMP for reactivation. However, a demembranated preparation of intact motile sperm treated with SAAF did not require cAMP for reactivation, suggesting that cAMP is a prerequisite factor for SAAF-dependent activation of sperm motility. Furthermore, a cAMP-dependent protein kinase (PKA) inhibitor, H-89, was found to inhibit sperm motility. During in vivo or in vitro activation of sperm motility by SAAF or cAMP, a 26 kDa axonemal protein and 21 kDa dynein light chain were phosphorylated, respectively, suggesting the involvement of PKA-dependent phosphorylation of these proteins in sperm activation. The calmodulin antagonist, W-7, and an inhibitor of calmodulin-dependent myosin light chain kinase, ML-7, also inhibited the activation of sperm motility. Inhibition was reversed by the addition of phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. Demembranated preparations of immotile sperm in the presence of W-7 or ML-7 were reactivated by cAMP, suggesting that calmodulin participated in sperm activation and that cAMP synthesis was followed by activation of a calmodulin-dependent mechanism.  相似文献   

15.
WAVE3 is a member of the WASP/WAVE family of proteins, which play a critical role in the regulation of actin polymerization, cytoskeleton organization, and cell motility. We show here that knockdown of the WAVE3 protein, using RNA interference in MDA-MB-231 cells, decreases phospho-p38 MAPK levels, but not those of phospho-AKT, phospho-ERK, or phospho-JNK. Knockdown of WAVE3 expression also inhibited the expression levels of MMP-1, MMP-3, and MMP-9, but not MMP-2. MMP production could be restored by PMA treatment, without affecting siRNA-mediated WAVE3 knockdown. The WAVE3-mediated downregulation of p38 activity and MMP production is independent of the presence of both WAVE1 and WAVE2, whose expression levels were not affected by loss of WAVE3. We also show that the downstream effect of the WAVE3 knockdown is the inhibition of cell motility and invasion, coupled with increased actin stress fiber formation, as well as reorganization of focal adhesion complexes. These findings suggest that WAVE3 regulates actin cytoskeleton, cell motility, and invasion through the p38 MAPK pathway and MMP production.  相似文献   

16.
Multifaceted role of galectin-3 on human glioblastoma cell motility   总被引:3,自引:0,他引:3  
Astrocytic tumors' aggressiveness results from an imbalance between cell proliferation and cell death favoring growth, but also from the propensity of tumor cells to detach from the primary tumor site, migrate, and invade the surrounding parenchyma. Astrocytic tumor progression is known to be associated with an increased expression of galectin-3. We investigated in cell culture how galectin-3 expression affects astrocytoma cell motility. Galectin-3 deficient cells were obtained by stable transfection of the U373 glioblastoma cell line with a specific expression antisense plasmid. Cultured galectin-3 deficient glioblastoma cells showed increased motility potential on laminin and modifications in the cytoskeleton reorganization. In addition, c-DNA microarrays and quantitative immunofluorescence analysis showed that galectin-3 deficient U373 cells have an increased expression of integrins-alpha6 and -beta1, proteins known to be implicated in the regulation of cell adhesion.  相似文献   

17.
Differential regulation of cell motility and invasion by FAK   总被引:41,自引:0,他引:41  
Cell migration and invasion are fundamental components of tumor cell metastasis. Increased focal adhesion kinase (FAK) expression and tyrosine phosphorylation are connected with elevated tumorigenesis. Null mutation of FAK results in embryonic lethality, and FAK-/- fibroblasts exhibit cell migration defects in culture. Here we show that viral Src (v-Src) transformation of FAK-/- cells promotes integrin-stimulated motility equal to stable FAK reexpression. However, FAK-/- v-Src cells were not invasive, and FAK reexpression, Tyr-397 phosphorylation, and FAK kinase activity were required for the generation of an invasive cell phenotype. Cell invasion was linked to transient FAK accumulation at lamellipodia, formation of a FAK-Src-p130Cas-Dock180 signaling complex, elevated Rac and c-Jun NH2-terminal kinase activation, and increased matrix metalloproteinase expression and activity. Our studies support a dual role for FAK in promoting cell motility and invasion through the activation of distinct signaling pathways.  相似文献   

18.
Irttegrins play a major role in the regulation of cell motility. They physically link the extracellular environment to the cytoskeleton and participate in large protein complexes known as focal adhesions. In this report, it is demonstrated that treatment of tumor cells with the homodimeric disintegrin contortrostatin induces integrin-mediatcd tyrosine phosphorylation events and causes severe disruptions in the actin cytoskeleton and disassembly of focal adhesion structures without affecting cellular adhesion to a reconstituted basement membrane. Included in this disruption is the tyrosine phosphorylation and altered subcellular localization of FAK. Through use of transfected 293 cells with specific integrin expression profiles and anti-αvβ3 mAbs, we demonstrate that these events are mediated exclusively by the αvβ3 integrin and are likely the result of contortrostatin-mediated crosslinking of this receptor at the cell surface, since monovalent disintegrins, flavoridin or echistatin do not induce such effects. Further, it is shown that contortrostatin potently inhibits motility in cells expressing the αvβ3 integrin. The results of this study describe a novel integrin-mediated mechanism by which cell motility can be inhibited and suggest an alternative approach to therapeutic intervention for cancer invasion and metastasis.  相似文献   

19.
倪磊  金震宇  杨帅  金帆 《生物工程学报》2017,33(9):1611-1624
蹭行运动在生物被膜形成过程中对细菌适应表面环境以及后续生物被膜三维结构的形成起重要作用。因此,对蹭行运动的原位表征、量化是生物被膜研究中的重要科学问题之一。我们通过高通量数据采集、自动化图像处理、数据库建立以及图形化输出等技术手段,建立了一整套基于单细菌的统计分析方法。利用这一方法对蹭行运动中的行走、弹射过程进行了详细分析,发现弹射运动过程中存在以0.9 s为周期的周期性弛豫。并定量比较了群体感知信号分子对蹭行运动的影响,发现加入信号分子后蹭行运动在高速区明显增强。该方法的建立为后续蹭行运动分子机制以及调节方式的研究奠定了基础。  相似文献   

20.
Whether they are of low or high histopathological grade, human astrocytic tumors are characterized by a marked propensity to diffuse into large areas of normal brain parenchyma. This invasion relates mainly to cell motility, which enables individual cell migration to take place. The present study characterizes in vitro the gastrin-mediated effects on both the growth (cell proliferation vs. cell death) and motility dynamics of the human U87 and U373 glioblastoma cell lines. A computer-assisted phase-contrast microscope was used to track the number of mitoses versus cell deaths every 4 min over a 72-h period and so to quantitatively describe the trajectories of living U373 and U87 cells growing on plastic supports in culture media both with and without the addition of 0.1, 5, or 100 nM gastrin. While 5 or 100 nM gastrin only weakly (p < .05 to p < .01) increased cell proliferation in the U87 cell line and not in U373 one, it very significantly (p < .001) inhibited the amount of cell death at 5 and 100 nM in both the U87 and U373 lines. In addition, 5 nM gastrin markedly inhibited cell mobility in U87 (p < .00001) and U373 (p < .0001) glioblastoma models. All these data strongly suggest that gastrin plays a major role in the biological behavior of the in vitro U87 and U373 human glioblastoma cell lines in matters concerning their levels of cell motility and growth dynamics. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 373–382, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号