首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alterations of catalytic activities of the microsomal glucose-6-phosphatase system were examined following either ferrous iron- or halothane (CF3CHBrCl) and carbon tetrachloride (CCl4) free-radical-mediated peroxidation of the microsomal membrane. Enzyme assays were performed in native and solubilized microsomes using either glucose 6-phosphate or mannose 6-phosphate as substrate. Lipid peroxidation was assessed by the amounts of malondialdehyde equivalents formed. Regardless of whether the experiments were performed in the presence of NADPH/Fe3+, NADPH/CF3CHBrCl, or NADPH/CCl4, with the onset of lipid peroxidation, mannose-6-phosphatase activity of the native microsomes increased immediately, while further alterations in catalytic activities were only detectable when lipid peroxidation had passed characteristic threshold values: above 2 nmol malondialdehyde/mg microsomal protein, glucose-6-phosphatase activity of the native microsomes was lost, and at 10 nmol malondialdehyde/mg microsomal protein, glucose-6-phosphatase and mannose-6-phosphatase activity of the solubilized microsomes started to decline. It is concluded that the latter alterations are due to an irreversible damage of the phosphohydrolase active site of the glucose-6-phosphatase system, while the changes observed at earlier stages of microsomal lipid peroxidation may also reflect alterations of the transporter components of the glucose-6-phosphatase system. Virtually no changes in the catalytic activities of the glucose-6-phosphatase system occurred under anaerobic conditions, indicating that CF3CHCl and CCl3 radicals are without direct damaging effect on the glucose-6-phosphatase system. Further, maximum effects of carbon tetrachloride and halothane on lipid peroxidation and enzyme activities were observed at an oxygen partial pressure (PO2) of 2 mmHg, providing additional evidence for the crucial role of low PO2 in the hepatotoxicity of both haloalkanes.  相似文献   

2.
In the presence of Fe-3+ and complexing anions, the peroxidation of unsaturated liver microsomal lipid in both intact microsomes and in a model system containing extracted microsomal lipid can be promoted by either NADPH and NADPH : cytochrome c reductase or by xanthine and xanthine oxidase. Erythrocuprein effectively inhibits the activity promoted by xanthine and xanthine oxidase but produces much less inhibition of NADPH-dependent peroxidation. The singlet-oxygen trapping agent, 1, 3-diphenylisobenzofuran, had no effect on NADPH-dependent peroxidation but strongly inhibited the peroxidation promoted by xanthine and xanthine oxidase. NADPH-dependent lipid peroxidation was also shown to be unaffected by hydroxyl radical scavengers.. The addition of catalase had no effect on NADPH-dependent lipid peroxidation, but it significantly increased the rate of malondialdehyde formation in the reaction promoted by xanthine and xanthine oxidase. The results demonstrate that NADPH-dependent lipid peroxidation is promoted by a reaction mechanism which does not involve either superoxide, singlet oxygen, HOOH, or the hydroxyl radical. It is concluded that NADPH-dependent lipid peroxidation is initiated by the reduction of Fe-3+ followed by the decomposition of hydroperoxides to generate alkoxyl radicals. The initiation reaction may involve some form of the perferryl ion or other metal ion species generated during oxidation of Fe-2+ by oxygen.  相似文献   

3.
In the presence of Fe3+ and complexing anions, the peroxidation of unsaturated liver microsomal lipid in both intact microsomes and in a model system containing extracted microsomal lipid can be promoted by either NADPH and NADPH : cytochrome c reductase or by xanthine and xanthine oxidase. Erythrocuprein effectively inhibits the activity promoted by xanthine and xanthine oxidase but produces much less inhibition of NADPH-dependent peroxidation. The singlet-oxygen trapping agent, 1,3-diphenylisobenzofuran, had no effect on NADPH-dependent peroxidation but strongly inhibited the peroxidation promoted by xanthine and xanthine oxidase. NADPH-dependent lipid peroxidation was also shown to be unaffected by hydroxyl radical scavengers.. The addition of catalase had no effect on NADPH-dependent lipid peroxidation, but it significantly increased the rate of malondialdehyde formation in the reaction promoted by xanthine and xanthine oxidase. These results demonstrate that NADPH-dependent lipid peroxidation is promoted by a reaction mechanism which does not involve either superoxide, singlet oxygen, HOOH, or the hydroxyl radical. It is concluded that NADPH-dependent lipid peroxidation is initiated by the reduction of Fe3+ followed by the decomposition of hydroperoxides to generate alkoxyl radicals. The initiation reaction may involve some form of the perferryl ion or other metal ion species generated during oxidation of Fe2+ by oxygen.  相似文献   

4.
Co2+ inhibited nonenzymatic iron chelate-dependent lipid peroxidation in dispersed lipids, such as ascorbate-supported lipid peroxidation, but not iron-independent lipid peroxidation. Histidine partially abolished the Co2+ inhibition of the iron-dependent lipid peroxidation. The affinity of iron for phosphatidylcholine liposomes in Fe(2+)-PPi-supported systems was enhanced by the addition of an anionic lipid, phosphatidylserine, and Co2+ competitively inhibited the peroxidation, while the inhibiting ability of Co2+ as well as the peroxidizing ability of Fe(2+)-PPi on liposomes to which other phospholipids, phosphatidylethanolamine, or phosphatidylinositol had been added was reduced. Co2+ inhibited microsomal NADPH-supported lipid peroxidation monitored in terms of malondialdehyde production and the peroxidation monitored in terms of oxygen consumption. The inhibitory action of Co2+ was not associated with iron reduction or NADPH oxidation in microsomes, suggesting that Co2+ does not affect the microsomal electron transport system responsible for lipid peroxidation. Fe(2+)-PPi-supported peroxidation of microsomal lipid liposomes was markedly inhibited by Co2+.  相似文献   

5.
Evidence presented in this report suggests that the hydroxyl radical (OH.), which is generated from liver microsomes is an initiator of NADPH-dependent lipid peroxidation. The conclusions are based on the following observations: 1) hydroxyl radical production in liver microsomes as measured by esr spin-trapping correlates with the extent of NADPH induced microsomal lipid peroxidation as measured by malondialdehyde formation; 2) peroxidative degradation of arachidonic acid in a model OH · generating system, namely, the Fenton reaction takes place readily and is inhibited by thiourea, a potent OH · scavenger, indicating that the hydroxyl radical is capable of initiating lipid peroxidation; 3) trapping of the hydroxyl radical by the spin trap, 5,5-dimethyl-1-pyrroline-1-oxide prevents lipid peroxidation in liver microsomes during NADPH oxidation, and in the model system in the presence of linolenic acid. The possibility that cytochrome P-450 reductase is involved in NADPH-dependent lipid peroxidation is discussed. The optimal pH for the production of the hydroxyl radical in liver microsomes is 7.2. The generation of the hydroxyl radical is correlated with the amount of microsomal protein, possibly NADPH cytochrome P-450 reductase. A critical concentration of EDTA (5 × 10?5m) is required for maximal production of the hydroxyl radical in microsomal lipid peroxidation during NADPH oxidation. High concentrations of Fe2+-EDTA complex equimolar in iron and chelator do not inhibit the production of the hydroxyl radical. The production of the hydroxyl radical in liver microsomes is also promoted by high salt concentrations. Evidence is also presented that OH radical production in microsomes during induced lipid peroxidation occurs primarily via the classic Fenton reaction.  相似文献   

6.
Antioxidant action of Mn2+ on radical-mediated lipid peroxidation without added iron in microsomal lipid liposomes and on iron-supported lipid peroxidation in phospholipid liposomes or in microsomes was investigated. High concentrations of Mn2+ above 50 microM inhibited 2,2'-azobis (2-amidinopropane) (ABAP)-supported lipid peroxidation without added iron at the early stage, while upon prolonged incubation, malondialdehyde production was rather enhanced as compared with the control in the absence of Mn2+. However, in a lipid-soluble radical initiator, 2,2'-azobis (2,4-dimethyl-valeronitrile) (AMVN)-supported lipid peroxidation of methyl linoleate in methanol Mn2+ apparently did not scavenge lipid radicals and lipid peroxyl radicals, contrary to a previous report. At concentrations lower than 5 microM, Mn2+ competitively inhibited Fe(2+)-pyrophosphate-supported lipid peroxidation in liposomes consisting of phosphatidylcholine with arachidonic acid at the beta-position and phosphatidylserine dipalmitoyl, and reduced nicotinamide adenine dinucleotide phosphate (NADPH)-supported lipid peroxidation in the presence of iron complex in microsomes. Iron reduction responsible for lipid peroxidation in microsomes was not influenced by Mn2+.  相似文献   

7.
S Akasaka  S Yonei 《Mutation research》1985,149(3):321-326
Experiments were carried out to examine mutation induction in E. coli cells incubated in the reaction mixture of NADPH-dependent lipid peroxidation of microsomes isolated from rat liver. The results obtained were as follows: (1) Lipid peroxidation of microsomes occurred extensively on incubation with NADPH and Fe2+. In the E. coli WP2uvrA(pKM101) system, the mutation frequency to streptomycin resistance increased markedly when the cells were incubated in the reaction mixture of microsomal lipid peroxidation. The induced mutation frequencies were dependent on the extent of the lipid peroxidation. (2) It was also found that the mutations were induced at the same rate as in the case of (1) when the cells were added to the microsomal suspensions after the reactions due to the short-lived free radicals had terminated. (3) The cytotoxicity of the lipid peroxidation products was larger in the DNA repair-defective mutant, E. coli SR18 (uvrArecA) than the wild-type strain, SR749. From these results it is concluded that some DNA-damaging and mutagenic substances are indeed produced in the degradation process of peroxidized polyunsaturated fatty acids in liver microsomal lipids.  相似文献   

8.
NADPH-supported lipid peroxidation monitored by malondialdehyde (MDA) production in the presence of ferric pyrophosphate in liver microsomes was inactivated by heat treatment or by trypsin and the activity was not restored by the addition of purified NADPH-cytochrome P450 reductase (FPT). The activity was differentially solubilized by sodium cholate from microsomes, and the fraction solubilized between 0.4 and 1.2% sodium cholate was applied to a Sephadex G-150 column and subfractionated into three pools, A, B, and C. MDA production was reconstituted by the addition of microsomal lipids and FPT to specific fractions from the column, in the presence of ferric pyrophosphate and NADPH. Pool B, after removal of endogenous FPT, was highly active in catalyzing MDA production and the disappearance of arachidonate and docosahexaenoate, and this activity was abolished by heat treatment and trypsin digestion, but not by carbon monoxide. The rate of NADPH-supported lipid peroxidation in the reconstituted system containing fractions pooled from Sephadex G-150 columns was not related to the content of cytochrome P450. p-Bromophenylacylbromide, a phospholipase A2 inhibitor, inhibited NADPH-supported lipid peroxidation in both liver microsomes and the reconstituted system, but did not block the peroxidation of microsomal lipid promoted by iron-ascorbate or ABAP systems. Another phospholipase A2 inhibitor, mepacrine, poorly inhibited both microsomal and pool-B'-promoted lipid peroxidation, but did block both iron-ascorbate-driven and ABAP-promoted lipid peroxidation. The phospholipase A2 inhibitor chlorpromazine, which can serve as a free radical quencher, blocked lipid peroxidation in all systems. The data presented are consistent with the existence of a heat-labile protein-containing factor in liver microsomes which promotes lipid peroxidation and is not FPT, cytochrome P450, or phospholipase A2.  相似文献   

9.
The effects of chronic ethanol ingestion on NADPH-oxidase and on the NADPH-catalyzed peroxidation of lipids in rat liver microsomes have been studied. It was demonstrated that the rates of NADPH oxidation, of oxygen consumption, and of malondialdehyde formation increased significantly above control values after one month of ethanol ingestion. Further, the fatty acid composition of these microsomes revealed a decrease in arachidonate and in the C22 polyenes. Also, the energies of activation for the formation of malondialdehyde increased in the microsomes from the ethanol-treated animals. These results were interpreted to mean that ethanol ingestion had induced changes in the microsomal membranes such that additional or alternate, possibly abnormal, pathways for lipid peroxidation were functional. Finally, these data suggest a mechanism whereby chronic ethanol ingestion inhances the production of lipid peroxides via the microsomal-catalyzed oxidation of NADPH.  相似文献   

10.
1. NADPH-dependent iron and drug redox cycling, as well as lipid peroxidation process were investigated in microsomes isolated from human term placenta. 2. Paraquat and menadione were found to undergo redox cycling, catalyzed by NADPH:cytochrome P-450 reductase in placental microsomes. 3. The drug redox cycling was able to initiate microsomal lipid peroxidation in the presence of micromolar concentrations of iron and ethylenediaminetetraacetate (EDTA). 4. Superoxide was essential for the microsomal lipid peroxidation in the presence of iron and EDTA. 5. Drastic peroxidative conditions involving superoxide and prolonged incubation in the presence of iron were found to destroy flavin nucleotides, inhibit NADPH:cytochrome P-450 reductase and inhibit propagation step of lipid peroxidation. 6. Reactive oxo-complex formed between iron and superoxide is proposed as an ultimate species for the initiation of lipid peroxidation in microsomes from human term placenta as well as for the destruction of flavin nucleotides and inhibition of NADPH:cytochrome P-450 reductase as well as for impairment of promotion of lipid peroxidation under drastic peroxidative conditions.  相似文献   

11.
Rat liver microsomal membranes were exposed to either beta-nicotinamide adenine dinucleotide phosphate (NADPH), adenosine 5'-diphosphate (ADP), and Fe+3 or to azocompounds, and the antioxidant activities of beta-carotene and alpha-tocopherol were studied. Lipid peroxidation was monitored either by malondialdehyde (MDA) formation in the thiobarbituric acid assay at 535 nm or by hydroperoxide formation at 234 nm, after high-pressure liquid chromatography (HPLC) separation of phospholipid hydroperoxides. The radical initiators, water-soluble 2,2'-azobis(2-amidinopropane) (AAPH) and lipid-soluble 2,2'-azobis(2,4-dimethylvaleronitrile (AMVN), when thermally decomposed at 37 degrees C under air, produced a constant rate of lipid peroxidation in microsomes and lag times inversely related to their concentrations. Using 25 mM AAPH, beta-carotene suppressed lipid peroxidation at a concentration of 50 nmol/mg protein; using 24 mM AMVN, an inhibition of MDA formation was observed at a concentration of only 5 nmol/mg protein. Inhibition by beta-carotene did not produce a clearly defined lag phase. During AAPH-induced lipid peroxidation, beta-carotene was consumed linearly, and high levels of the antioxidant were still present at the end of 45 min of incubation. Using NADPH/ADP/Fe+3, protection by beta-carotene was observed at 10 nmol/mg protein. alpha-Tocopherol effectively suppressed both MDA and hydroperoxide formation in a dose-dependent manner when either NADPH/ADP/Fe+3 or azocompounds were used. These effects were observed at very low concentrations of the added alpha-tocopherol, ranging from 2 to 3 nmol/mg protein. When the lag times were measurable (AAPH and AMVN), they were directly proportional to the concentration of alpha-tocopherol and revealed the presence of endogenous antioxidants in the microsomal membranes. Different temporal relationships between the loss of alpha-tocopherol and lipid peroxidation were observed in relation to the prooxidant used. A substantial depletion of about 70% of endogenous alpha-tocopherol preceded the propagation phase when induced by the azocompounds, while only 20% of antioxidant disappeared at the beginning of the peroxidation when induced by NADPH/ADP/Fe+3. Although our results show that both beta-carotene and alpha-tocopherol suppress the peroxidation of microsomal membranes, their antioxidant efficacy is influenced by several factors, including the type of radical initiator involved and the site and rate of radical production.  相似文献   

12.
The interaction of microsomes with iron and NADPH to generate active oxygen radicals was determined by assaying for low level chemiluminescence. The ability of several ferric complexes to catalyze light emission was compared to their effect on microsomal lipid peroxidation or hydroxyl radical generation. In the absence of added iron, microsomal light emission was very low; chemiluminescence could be enhanced by several cycles of freeze-thawing of the microsomes. The addition of ferric ammonium sulfate, ferric-citrate, or ferric-ADP produced an increase in chemiluminescence, whereas ferric-EDTA or -diethylenetriaminepentaacetic acid (detapac) were inhibitory. The same response to these ferric complexes was found when assaying for malondialdehyde as an index of microsomal lipid peroxidation. In contrast, hydroxyl radical generation, assessed as oxidation of chemical scavengers, was significantly enhanced in the presence of ferric-EDTA and -detapac and only weakly elevated by the other ferric complexes. Ferric-desferrioxamine was essentially inert in catalyzing any of these reactions. Chemiluminescence and lipid peroxidation were not affected by superoxide dismutase, catalase, or competitive hydroxyl radical scavengers whereas hydroxyl radical production was decreased by the latter two but not by superoxide dismutase. Chemiluminescence was decreased by the antioxidants propylgallate or glutathione and by inhibiting NADPH-cytochrome P-450 reductase with copper, but was not inhibited by metyrapone or carbon monoxide. The similar pattern exhibited by ferric complexes on microsomal light emission and lipid peroxidation, and the same response of both processes to radical scavenging agents, suggests a close association between chemiluminescence and lipid peroxidation, whereas both processes can be readily dissociated from free hydroxyl radical generation by microsomes.  相似文献   

13.
In order to evaluate the O-2 participation in NADPH-dependent microsomal lipid peroxidation, we used reconstructed system which contained detergent-solubilized NADPH-dependent cytochrome P-450 reductase, cytochrome P-450, phospholipid liposomes, NADPH and Fe3+-ADP. Lipid peroxidation, monitored by the formation of thiobarbituric acid-reactive substance, was increased with increasing concentration of detergent-solubilized NADPH cytochrome P-450 reductase, cytochrome P-450 or Fe3+-ADP. Cytochrome P-450-dependent lipid peroxidation was parallel to O-2 generation monitored by chemiluminescence probe with 2-methyl-6-(p-methoxyphenol)-3,7-dihydroimidazo[1,2-a]pyrazin++ +-3-one. Lipid peroxidation was significantly inhibited by superoxide dismutase, but not by catalase or sodium benzoate. The reconstructed system herein described is considered to be very close to NADPH-dependent microsomal lipid peroxidation system.  相似文献   

14.
The effects on cellular structures of products of peroxidation of rat liver microsomal lipids were investigated. A system containing actively peroxidizing liver microsomal fraction was separated from a revealing or target system by a dialysis membrane. The target system, contained in the dialysis tube, consisted of either intact cells (erythrocytes) or subcellular fractions (liver microsomal fraction). When liver microsomal fractions were incubated with NADPH (or an NADPH-generating system), lipid peroxidation, as measured by the amount of malonaldehyde formed, occurred very rapidly. The malon-aldehyde concentration tended to equilibrate across the dialysis membrane. When the target system consisted of erythrocytes, haemolysis occurred abruptly after a lag phase. The lysis was greatly accelerated when erythrocytes from vitamin E-deficient rats were used, but no haemolysis was observed when erythrocytes from vitamin E-treated rats were used. When, in the same system, freshly prepared liver microsomal fractions were exposed to diffusible factors produced by lipid peroxidation, the glucose 6-phosphatase activity markedly decreased. A similar decrease in glucose 6-phosphatase activity, as well as a smaller but significant decrease in cytochrome P-450, was observed when the target microsomal fractions were exposed to diffusible factors derived from the peroxidation of liver microsomal lipids in a separate preincubation step. These and additional experiments indicated that the toxicological activity is relatively stable. Experiments in which the hepatic microsomal fractions destined for lipid peroxidation contained radioactively labelled arachidonic acid, previously incorporated into the membranes, showed that part of the radioactivity released from the microsomal fraction into the incubation medium entered the dialysis tube and was recovered bound to the constituents of the microsomal fractions of the target system. These results indicate that during the course of the peroxidation of liver microsomal lipids toxic products are formed that are able to induce pathological effects at distant loci.  相似文献   

15.
Rat hepatic microsomal lipids were labeled with [U-14C]arachidonate and were then peroxidized by an NADPH-dependent iron pyrophosphate system. The extent of peroxidation was quantified by malondialdehyde production and arachidonate disappearance. Following peroxidation, the microsomes were centrifuged and the oxidation products were extracted from the supernatant. A linear correlation was found between malondialdehyde production and radioactivity in the supernatant. The pellet was treated with phospholipase A2 to cleave peroxidized products from the phospholipids. Exogenous phospholipase A2 activity was reduced by lipid peroxidation but this was overcome by using a high concentration of the enzyme along with the addition of melittin. The deesterified lipid products from the pellet were extracted and the fragments from the supernatant and the hydrolyzed pellet were separated by reverse-phase HPLC. Several different labeled polar products which coeluted with carbonyl-containing compounds (A285 and hydrazone formation) were found in both the supernatant and the pellet. In addition, many other carbonyl compounds were found which were not arachidonate-derived. The elution pattern of the fragments after 2 and 15 min of peroxidation were qualitatively identical; i.e., no product-precursor relationship was seen. This, along with the observation that peroxidation quickly ceased upon the rapid depletion of NADPH, suggests that propagation did not occur. Finally, the data indicate that cytochrome P-450 is not involved in microsomal lipid peroxidation since product formation is unaffected by the presence of carbon monoxide (80%) and no oxidation of phospholipid arachidonate occurs in the absence of iron.  相似文献   

16.
The effects of lipid peroxidation on latent microsomal enzyme activities were examined in NADPH-reduced microsomes from phenobarbital-pretreated male rats. Lipid peroxidation, stimulated by iron or carbon tetrachloride, was assayed as malondialdehyde formation. Independent of the stimulating agent of lipid peroxidation, latency of microsomal nucleoside diphosphatase activity remained unaffected up to microsomal peroxidation equivalent to the formation of about 12 nmol malondialdehyde/mg microsomal protein. However, above this threshold a close correlation was found between lipid peroxidation and loss of latent enzyme activity. The loss of latency evoked by lipid peroxidation was comparable to the loss of latency attainable by disrupting the microsomal membrane by detergent. Loss of latent enzyme activity produced by lipid peroxidation was also observed for microsomal glucose-6-phosphatase and UDPglucuronyltransferase. In contrast to nucleoside diphosphatase, however, both enzymes were inactivated by lipid peroxidation, as indicated by pronounced decreases of their activities in detergent-treated microsomes. According to the respective optimal oxygen partial pressure (po2) for lipid peroxidation, the iron-mediated effects on enzyme activities were maximal at a po2 of 80 mmHg and the one mediated by carbon tetrachloride at a po2 of 5 mmHg. Under anaerobic conditions no alterations of enzyme activities were detected. These results demonstrate that loss of microsomal latency only occurs when peroxidation of the microsomal membrane has reached a certain extent, and that beyond this threshold lipid peroxidation leads to severe disintegration of the microsomal membrane resulting in a loss of its selective permeability, a damage which should be of pathological consequences for the liver cell. Because of its resistance against lipid peroxidation nucleoside diphosphatase is a well-suited intrinsic microsomal parameter to estimate this effect of lipid peroxidation on the microsomal membrane.  相似文献   

17.
The mechanism of the formation of 4-hydroxynonenal through the NADPH-linked microsomal lipid peroxidation was investigated. The results were as follows: 4-hydroxynonenal arises exclusively from arachidonic acid contained in the polar phospholipids, neither arachidonic acid of the neutral lipids nor linoleic acid of the polar or neutral lipids are substrates for 4-hydroxynonenal generation. This finding results from the estimation of the specific radioactivity of 4-hydroxynonenal produced by microsomes prelabelled in vivo with [U-14C]arachidonic acid. Phospholipid-bound 15-hydroperoxyarachidonic acid would have the structural requirements needed for 4-hydroxynonenal (CH3-(CH2)4-CH(OH)-CH=CH-CHO). Microsomes supplemented with 15-hydroperoxyarachidonic acid and NADPH, ADP/iron converted only minimal amounts (0.6 mol%) of 15-hydroperoxyarachidonic acid into 4-hydroxynonenal; similarly, 15-hydroperoxyarachidonic acid incubated at pH 7.4 in the presence of ascorbate/iron yielded only small amounts of 4-hydroxynonenal with a rate orders of magnitude below that observed with microsomes. Phospholipid-bound 15-hydroperoxyarachidonic acid is therefore not a likely intermediate in the reaction pathway leading to 4-hydroxynonenal. The rate of 4-hydroxynonenal formation is highest during the very initial phase of its formation and the onset does not show a lag phase, suggesting a transient intermediate predominantly formed during the early phase of microsomal lipid peroxidation. After 60 min of incubation, 204 nmol polyunsaturated fatty acids (20 nmol 18:2, 143 nmol 20:4, 41 nmol 22:6) were lost per mg microsomal protein and the incubation mixture contained 206 nmol lipid peroxides, 71.6 nmol malonic dialdehyde and 4.6 nmol 4-hydroxynonenal per mg protein. Under artificial conditions (pH 1.0, ascorbate/iron, 20 h of incubation) not comparable to the microsomal peroxidation system, 15-hydroperoxyarachidonic acid can be decomposed in good yields (15 mol%) into 4-hydroxynonenal. Autoxidation of arachidonic acid in the presence of ascorbate/iron gave after 25 h of incubation 2.8 mol% (pH 7.4) and 1.5 mol% (pH 1.0) 4-hydroxynonenal. The most remarkable difference between the non-enzymic system and the enzymic microsomal system is that the latter forms 4-hydroxynonenal at a much higher rate.  相似文献   

18.
The role of iron and iron chelators in the initiation of microsomal lipid peroxidation has been investigated. It is shown that an Fe3+ chelate in order to be able to initiate enzymically induced lipid peroxidation in rat liver microsomes has to fulfill three criteria: (a) reducibility by NADPH; (b) reactivity of the Fe2+ chelate with rat liver microsomes has to fulfill three criteria: (a) reducibility by NADPH; (b) reactivity of the Fe2+ chelate with O2; and (c) formation of a relatively stable perferryl radical. NADH can support lipid peroxidation in the presence of ADP-Fe3+ or oxalate-Fe3+ at rates comparable to those obtained with NADPH but requires 10 to 15 times higher concentrations of the Fe3+ chelates for maximal activity. The results are discussed in relation to earlier proposed mechanisms of microsomal lipid peroxidation.  相似文献   

19.
1. Induction of the formation of lipid peroxide in suspensions of liver microsomal preparations by incubation with ascorbate or NADPH, or by treatment with ionizing radiation, leads to a marked decrease of the activity of glucose 6-phosphatase. 2. The effect of peroxidation can be imitated by treating microsomal suspensions with detergents such as deoxycholate or with phospholipases. 3. The substrate, glucose 6-phosphate, protects the glucose 6-phosphatase activity of microsomal preparations against peroxidation or detergents. 4. The loss of glucose 6-phosphatase activity is not due to the formation of hydroperoxide or formation of malonaldehyde or other breakdown products of peroxidation, all of which are not toxic to the enzyme. 5. All experiments lead to the conclusion that the loss of activity of glucose 6-phosphatase resulting from peroxidation is a consequence of loss of membrane structure essential for the activity of the enzyme. 6. In addition to glucose 6-phosphatase, oxidative demethylation of aminopyrine or p-chloro-N-methylaniline, hydroxylation of aniline, NADPH oxidation and menadione-dependent NADPH oxidation are also strongly inhibited by peroxidation. However, another group of enzymes separated with the microsomal fraction, including NAD+/NADP+ glycohydrolase, adenosine triphosphatase, esterase and NADH–cytochrome c reductase are not inactivated by peroxidation. This group is not readily inactivated by treatment with detergents. 7. Lipid peroxidation, by controlling membrane integrity, may exert a regulating effect on the oxidative metabolism and carbohydrate metabolism of the endoplasmic reticulum in vivo.  相似文献   

20.
A reconstituted lipid peroxidation system consisting of rat liver microsomal NADPH-cytochrome P450 reductase and cytochrome P450 incorporated into phospholipid vesicles was developed and characterized. Peroxidation of the vesicles required NADPH and ADP-Fe3+, just as in the NADPH-dependent peroxidation of microsomes. The peroxidation of the vesicles was inhibited 30-50% by superoxide dismutase, depending upon their cytochrome P450 content: those with higher cytochrome P450 contents exhibited greater rates of malondialdehyde formation which were less sensitive to inhibition by superoxide dismutase. When cytochrome P450 was incorporated into vesicles, EDTA-Fe3+ was not required for lipid peroxidation, distinguishing this system from the one previously described by Pederson and Aust [Biochem. Biophys. Res. Comm. 48, 789; 1972]. Since at least 50% of the malondialdehyde formation in the vesicular system was not inhibited by superoxide dismutase, alternative means of iron reduction (O2-.-independent) were examined. It was found that rat liver microsomes or a reconstituted mixed function oxidase system consisting of NADPH-cytochrome P450 reductase and cytochrome P450 in dilauroylphosphatidylcholine micelles reduced ADP-Fe3+ under anaerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号