首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
An attempt was made to identify specific monoamines contained in the dumb-bell shape cells of the frog taste bud by means of histochemical analysis. It was shown by fluorescent microscopy that preliminary administration of exogenous serotonin into the blood channel of frog tongue resulted in a sharp increase of specific fluorescence of the dumb-bell shape cells, whereas serotonin synthesis inhibition with p-chlorphenylalanine led to reduction and elimination of specific fluorescence. It was concluded that-specific monoamine of the dumb-bell shape cells was possibly of serotonin-like nature.  相似文献   

2.
Calcium-binding proteins were investigated immunohistochemically in chemo-receptors of the olfactory epithelium and taste buds of the clawed frog, Xenopus laevis. Calmodulin-, S-100- and calbindin-immunoreactive material were found in sensory cells of the olfactory epithelium; however, parvalbumin-like material was absent in these cells. Taste buds of the palate showed calmodulin-, S-100- and parvalbumin-immunoreactive material in sensory cells, while calbindin-immunoreactive material in supporting cells. Merkel cells, surrounding the base of the taste buds in a ring-like manner, exhibited calmodulin- and S-100-immunoreactive material.  相似文献   

3.
4.
根据近年来有关大鼠、小鼠味觉发育方面的大量研究,对哺乳动物味蕾(taste buds)发育的情况进行了综述和讨论.哺乳动物舌面上的味蕾分布在菌状乳头(fungiform papillae,FF)、叶状乳头(foliate papillae,FL)、轮廓状乳头(circumvallate papillae,CV)之中,味蕾细胞(taste bud cells)不断地进行着周期性的更新,味蕾的形态、数量和功能随动物随年龄而变化.有关味孔头的研究表明,味乳头(gustatory papillae)在味蕾形成和维持味蕾存在及正常发育方面有着独特的功能.味乳头和味蕾的发育过程与细胞信号分子(signaling molecules)、味觉神经(gustatory nerve fibers)等许多因素有着密切的关系,其中有些作用机理至今尚无定论.  相似文献   

5.
6.
Distribution of the facial nerve to taste receptors in the rat   总被引:1,自引:0,他引:1  
The distribution of facial sensory axons to the tongue and palateof the rat was determined in relation to the spatial distributionof taste buds. Gross dissections and serial reconstruction ofsilverstained material revealed five divisions of the chorda-lingualnerve in the tongue and four divisions of the greater petrosalnerve in the palate. Axon counts were made in normal and de-efferentedchorda tympani and greater petrosal nerves from montages ofelectron micrographs. De-efferented facial nerves were preparedby intracranial section of the nervus intermedius and motorroot prior to sacrifice. Cell bodies were counted in the geniculateganglion and the total number of axon profiles in the chordatympani and greater petrosal nerves exceeded the number of ganglioncells by 30%. The greater petrosal nerves contained about threetimes as many profiles as the chorda tympani nerves with theprincipal disparity among unmyelinated axons. Taste bud numberson the palate and anterior tongue were nearly equivalent; however,their densities per unit of surface area varied 150 fold betweenregions. On the tongue, taste bud density seemed not to be correlatedwith the number of axons directed to a region as there was anearly linear distribution of axons from the base to the apex.  相似文献   

7.
The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from "local epithelium", in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin.  相似文献   

8.
Centrifugal spread of the prion agent to peripheral tissues is postulated to occur by axonal transport along nerve fibers. This study investigated the distribution of the pathological isoform of the protein (PrP(Sc)) in the tongues and nasal cavities of hamsters following intracerebral inoculation of the HY strain of the transmissible mink encephalopathy (TME) agent. We report that PrP(Sc) deposition was found in the lamina propria, taste buds, and stratified squamous epithelium of fungiform papillae in the tongue, as well as in skeletal muscle cells. Using laser scanning confocal microscopy, PrP(Sc) was localized to nerve fibers in each of these structures in the tongue, neuroepithelial taste cells of the taste bud, and, possibly, epithelial cells. This PrP(Sc) distribution was consistent with a spread of HY TME agent along both somatosensory and gustatory cranial nerves to the tongue and suggests subsequent synaptic spread to taste cells and epithelial cells via peripheral synapses. In the nasal cavity, PrP(Sc) accumulation was found in the olfactory and vomeronasal epithelium, where its location was consistent with a distribution in cell bodies and apical dendrites of the sensory neurons. Prion spread to these sites is consistent with transport via the olfactory nerve fibers that descend from the olfactory bulb. Our data suggest that epithelial cells, neuroepithelial taste cells, or olfactory sensory neurons at chemosensory mucosal surfaces, which undergo normal turnover, infected with the prion agent could be shed and play a role in the horizontal transmission of animal prion diseases.  相似文献   

9.
In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.  相似文献   

10.
The Florida manatee, Trichechus manatus latirostris, is a fully aquatic, threatened marine mammal for which increased understanding of their physiology, reproduction, and nutrition supports management decisions. Manatees may use taste to distinguish saltwater gradients, toxin detection, food assessment, and social interactions. This study sought to locate and characterize manatee taste buds comparing location, structure, number, and size to other species. Entire heads from manatees (6 males, 4 females) of various ages were obtained. The muzzle, tissue surrounding the nares, oral cavity, and epiglottis were examined grossly for pits and papillae. Tissues were examined using light and transmission electron microscopy. Within the predominant taste bud location, the tongue root, taste bud number was estimated using samples from four animals. The average number of taste buds within the tongue root was 11,534 (range 2,711–23,237) with sparse taste buds located on the soft palate and epiglottis. The location along the lateral surface of the tongue root and bordered by grooves, through which tastants could be easily transported, has functional significance. Large numbers of taste buds within the tongue root suggest that taste is an important component of manatee sensory systems and behavioral research would clarify this.  相似文献   

11.
Kinnman  Erik 《Chemical senses》1987,12(4):621-630
Peripheral transganglionic transport of horseradish pcroxidase(HRP) and wheat germ agglutinin–horseradish peroxidaseconjugate (WGA–HRP) was used to label afferent fibersin the taste buds and lingual epithelium of the rat. Microinjectionsof the tracer were made in the brain stem central projectionarea of the afferent nerves to the tongue. Optimal labelingof nerve endings in the tongue was obtained when 2 µlof 20% HRP was injected into the brain stem and postinjectionsurvival times of 24–36 h were used. The distributionof single nerves was studied by using this tracing procedurein combination with strategic transections of the various afferentnerves supplying the tongue. Labeled nerve fibers from the combinedchorda tympani–lingual nerve were found in the epitheliumand in taste buds in the fungiform and anterior foliate papillaeof the anterior 3/4 of the tongue. Labeled nerve fibers in theepithelium of the anterior 2/3 of the tongue but none in tastebuds were found when the lingual nerve alone was studied, althoughnumerous perigeminal fibers were found. The glossopharyngealnerve was found to innervate die posterior 1/4 of the tongueepithelium including the taste buds of the circumvallate papillae.The glossopharyngeal nerve on one side was found to innervatethe taste buds on both sides of the midline. The results showthat this tracing procedure can be a useful supplement to othermethods for studying afferent nerves in the tongue.  相似文献   

12.
The distribution of calbindin D28k (CB)-like immunoreactivity (-LI) in the circumvallate papilla (CVP) was examined during development and regeneration following bilateral crush injury to the glossopharyngeal nerve in the rat. In the adult CVP, CB-like immunoreactive (-IR) nerve fibers were observed in the subgemmal region and some penetrated into the taste buds. CB-LI was also detected in the cytoplasm of the spindle-shaped gustatory cells in the lower half of the trench epithelium, which contained numerous synaptic vesicles and bundles of intermediate filaments. These CB-IR gustatory cells made synapse-like contacts with CB-IR nerve terminals. Some CB-IR nerve terminals made contacts with the gustatory cells negative for CB-LI. At least three developmental stages were defined with regard to the developmental changes in the distribution of CB-LI: (1) Stage I (embryonic day (E) 18–postnatal day (P)5): CB-IR nerve fibers appeared in the lamina propria just beneath the newly-formed CVP at E18, but the gustatory epithelium of the CVP contained no CB-IR structures. Taste buds with taste pores appeared at P1. (2) Stage II (P5–10): thin CB-IR nerve fibers began entering the trench epithelium, but no CB-IR cells were observed. (3) Stage III (P10–adult): in addition to the intragemmal and perigemmal CB-IR nerve fibers, very few CB-IR cells appeared in the taste buds around P10, and their numbers increased progressively. The changes in the distribution of taste buds and CB-LI following glossopharyngeal nerve injury were similar to those observed during development. On post-operative day (PO) 4, the taste buds and CB-IR cells decreased markedly in number. These CB-IR cells became round in shape, and the number of CB-IR nerve fibers decreased markedly. On PO8, both taste buds and CB-IR cells disappeared completely. The regenerated taste buds were first observed on PO12, increased rapidly in number by PO20, and increased slowly thereafter. CB-IR nerve fibers accumulated at the subgemmal region and began penetrating into the trench wall epithelium around PO16. CB-IR cells appeared between PO20 and PO24, and their numbers increased progressively and reached the normal level on PO40. The topographical localizations of the taste buds and CB-IR cells during development and regeneration were comparable to those of normal animals. The delay of the time courses for appearance of CB-IR nerve fibers and CB-IR cells compared to the appearance of taste buds during development and regeneration suggests that CB in the gustatory epithelium may participate in the survival of the taste bud cells rather than in the induction of the taste buds.  相似文献   

13.
Neurotrophins, neurotrophin receptors and sensory neurons are required for the development of lingual sense organs. For example, neurotrophin 3 sustains lingual somatosensory neurons. In the traditional view, sensory axons will terminate where neurotrophin expression is most pronounced. Yet, lingual somatosensory axons characteristically terminate in each filiform papilla and in each somatosensory prominence within a cluster of cells expressing the p75 neurotrophin receptor (p75NTR), rather than terminating among the adjacent cells that secrete neurotrophin 3. The p75NTR on special specialized clusters of epithelial cells may promote axonal arborization in vivo since its over-expression by fibroblasts enhances neurite outgrowth from overlying somatosensory neurons in vitro. Two classical observations have implicated gustatory neurons in the development and maintenance of mammalian taste buds—the early arrival times of embryonic innervation and the loss of taste buds after their denervation in adults. In the modern era more than a dozen experimental studies have used early denervation or neurotrophin gene mutations to evaluate mammalian gustatory organ development. Necessary for taste organ development, brain-derived neurotrophic factor sustains developing gustatory neurons. The cardinal conclusion is readily summarized: taste buds in the palate and tongue are induced by innervation. Taste buds are unstable: the death and birth of taste receptor cells relentlessly remodels synaptic connections. As receptor cells turn over, the sensory code for taste quality is probably stabilized by selective synapse formation between each type of gustatory axon and its matching taste receptor cell. We anticipate important new discoveries of molecular interactions among the epithelium, the underlying mesenchyme and gustatory innervation that build the gustatory papillae, their specialized epithelial cells, and the resulting taste buds.  相似文献   

14.
When the glossopharyngeal nerve (GP) in the frog was strongly stimulated electrically, slow potentials were elicited from the tongue surface and taste cells in the fungiform papillae. Injection of atropine completely blocked these slow potentials. The present and previous data indicate that the slow potentials induced in the tongue surface and taste cells are due to a liquid junction potential between saliva secreted from the lingual glands due to parasympathetic fiber activity and an adapting solution on the tongue surface. Intracellularly recorded depolarizing receptor potentials in taste cells induced by 0.5 M NaCl and 3 mM acetic acid were enhanced by depolarizing slow potentials induced by GP nerve stimulation, but were depressed by the hyperpolarizing slow potentials. On average, the receptor potential of taste cells for 0.5 M NaCl was increased by 25% by the GP nerve-induced slow potential, but the receptor potential of taste cells for 3 mM acetic acid was decreased by 1% by the slow potential. These transformations of receptor potentials in frog taste cells were not due to a synaptic event initiated between taste cells and the efferent nerve fiber, but due to a non-synaptic event, a lingual junction potential generated in the dorsal lingual epithelium by GP nerve stimulation.  相似文献   

15.
The distribution, external surface morphology and ultrastructure of taste buds in the oropharyngeal cavity of the rainbow trout, Salmo gairdneri Richardson, were studied using scanning and transmission electron microscopes (SEM and TEM). The SEM revealed three taste bud types, varying only in their degree of elevation from the general level of the epithelium. Types I and II were located on elevated papillae associated with teeth on the dentary, maxilla, palate, tongue and pharyngeal pads while the unelevated Type III were mainly found in the anterior (branchial) pharynx.
Each taste bud was composed of four cell types: basal, dark, intermediate and light cells, the apical processes of the last three filling the taste pores. The intermediate and light cells appeared similar in ultrastructure, varying only in the amount and organization of smooth endoplasmic reticulum (SER) in their cytoplasm. In addition to its contacts with the processes of intragemmal nerves distally, the basal cells established independent contacts with processes of extragemmal nerves basally. It is suggested that the distribution of the taste buds and their close association with teeth are adaptations to the predatory feeding habit of the rainbow trout. Age differences may account for the existence of two types of gustatory cells and the manner of innervation of the taste bud suggests the existence of two pathways for the transmission of gustatory sensation to the central nervous system (CNS).  相似文献   

16.
Tongue embryonic taste buds begin to differentiate before the onset of gustatory papilla formation in murine. In light of this previous finding, we sought to reexamine the developing sensory innervation as it extends toward the lingual epithelium between E 11.5 and 14.5. Nerve tracings with fluorescent lipophilic dyes followed by confocal microscope examination were used to study the terminal branching of chorda tympani and lingual nerves. At E11.5, we confirmed that the chorda tympani nerve provided for most of the nerve branching in the tongue swellings. At E12.5, we show that the lingual nerve contribution to the overall innervation of the lingual swellings increased to the extent that its ramifications matched those of the chorda tympani nerve. At E13.0, the chorda tympani nerve terminal arborizations appeared more complex than those of the lingual nerve. While the chorda tympani nerve terminal branching appeared close to the lingual epithelium that of the trigeminal nerve remained rather confined to the subepithelial mesenchymal tissue. At E13.5, chorda tympani nerve terminals projected specifically to an ordered set of loci on the tongue dorsum corresponding to the epithelial placodes. In contrast, the lingual nerve terminals remained subepithelial with no branches directed towards the placodes. At E14.5, chorda tympani nerve filopodia first entered the apical epithelium of the developing fungiform papilla. The results suggest that there may be no significant delay between the differentiation of embryonic taste buds and their initial innervation.  相似文献   

17.
Lingual epithelial cells, including those of the taste buds, are regularly replaced by proliferative stem cells. We found that integrin beta(1), a keratinocyte stem cell marker, was expressed at the basal layer and taste buds of adult mouse tongue epithelium. We purified and cultured integrin beta(1)-positive cells (termed KT-1 cells), whose growth was stimulated by epidermal growth factor (EGF) and basic fibroblast growth factor (FGF-2). FGF-2 stimulation induced translocation of the FGF type I receptor (FGFR1) into nuclei, suggesting that the growth-stimulating effect of FGF-2 was mediated through FGFR1. EGF and FGF-2 also regulated cell surface expression of the neural cell adhesion molecule (N-CAM) in KT-1 cells. Anti-N-CAM antibody immunoreactivity was restricted to the gustatory epithelium and the nerves in the tongue epithelium, giving rise to the possibility that KT-1 may contain gustatory epithelial cells. KT-1 cells may thus be useful for analyzing the factors that regulate the growth and differentiation of lingual and gustatory epithelial cells in vitro.  相似文献   

18.
Effects of serotonin precursors on the metabolism of 5-hydroxytryptamine(5-HT) in dumbbell shaped cells of the frog taste buds werestudied using fluorescence microscopy. The injection of DL-tryptophanand 5-hydroxytryptophan (5-HTp) resulted in an increase in thecells' fluorescence intensity and in the number of cells inthe taste bud. Pyromycin, in doses not affecting the taste budstructure, prevented the tryptophan-induced increase in thenumber of fluorescent cells. The participation of specific proteinsin the mechanism underlying this phenomenon is suggested.  相似文献   

19.
Morphological investigations on the fungiform papilla of the frog (Rana pipiens) have shown that this taste organ contains two distinct populations of cells: associate and sensory. Messages received by the sensory cells are believed to be transmitted through the mediation of an adrenergic transmitter. This chemical was shown by fluorescence microscopy and electron histochemistry to be stored in synaptic granular vesicles which accumulate at the membrane of the cytoplasmic processes of the sensory cells in typical chemical synaptic complexes. The sensory cell cytoplasmic processes form the presynaptic component of these complexes whose post synaptic components are the nerve fibres supplying the taste buds. These sensory nerve fibres contain agranular vesticles and are probably cholinergic, since they show positive cholinesterase activity at the light and electron microscopical levels.  相似文献   

20.
Apoptotic cells in the taste buds of mouse circumvallate papillae after the sectioning of bilateral glossopharyngeal nerves were examined by the method of DNA nick-end labeling (TUNEL), together with standard electron microscopy. The taste buds decreased in number and size 3–11 days after denervation and disappeared at 11 days. The TUNEL method revealed only a few positively stained nuclei in normal taste buds but, in those of mice 1–5 days after denervation, the number of positive nuclei had increased to 3–5 times that of taste buds from normal mice. Electron-microscopic observation after denervation demonstrated taste bud cells containing condensed and fragmentary nuclei in a cytoplasm with increased density. The results show that taste bud cells under normal conditions die by apoptosis at the end of their life span, and that gustatory nerve sectioning causes apoptosis of taste bud cells with taste buds decreasing in number and ultimately disappearing. Received: 20 November 1995 / Accepted: 15 May 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号