首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Therapeutic potential of circulating endothelial cells   总被引:1,自引:0,他引:1  
The discovery of circulating endothelial progenitors (EPCs) in human blood has completely modified the concept of post natal angiogenesis. Many studies have further confirmed the existence of EPCs, their medullar origin and capacity to be integrated in vascular structures at the sites of neoangiogenesis. They suggest that EPCs could be naturally involved in the prevention of ischemia by participating directly to the formation of collateral vessels. These cells have a high tropism for the sites of angiogenesis. They may thus be used as a powerful tool to prevent or treat ischemic diseases and constitute an alternative to the risky local injection of pro-angiogenic growth factors. The efficiency of bone marrow cells autologous transplantation was recently proved by the first clinical trials. Bone marrow mononuclear cells locally injected to patients with limb or cardiac ischemia have been shown to improve reperfusion in ischemic tissues. These trials are still preliminary: they were performed with heterogeneous cells only on few patients and were not randomized. However they raise important questions, essentially on the necessity of cell purification prior to injection and on the nature of the bone marrow cells which are really involved in ischemic tissue regeneration. Further investigations are then required to improve the cell therapy outcome by 1) using more defined cell population, 2) clearly demonstrating the long term improvement of vascular function and 3) performing extensive analysis of the possible side effects.  相似文献   

2.
Vascular tumors and malformations can be challenging to diagnose. Although they can resemble one another, their classification into tumors, such as hemangiomas of infancy, and malformations, such as venous or arteriovenous malformations, is based not only on their divergent biological behavior, but also on their pathogenesis. This review examines the molecular pathobiology of the processes involved in the development of these vascular birthmarks as they are currently understood. The terms hemangioma, hemangiosarcoma, and vascular proliferation are often used interchangeably, even though these entities are clinically and biochemically distinct. A more precise classification is necessary to facilitate communication between basic scientists and clinicians. Vasculogenesis, the in situ differentiation of blood vessels, occurs very early in the developing embryo. In vivo and in vitro studies, as well as knockout models, seem to indicate that this mechanism is unlikely to be involved in the development of either vascular malformations or hemangiomas of infancy. Recent advances in embryonic angiogenesis, especially explorations of mechanisms of vascular remodeling, have brought new understanding of the pathogenesis of vascular malformations. Vascular remodeling, an integral part of angiogenesis that centers upon the interactions between pericytes and endothelial cells, has been shown to be defective in certain experimental models and in some familial cases of vascular malformation. The occurrences of arteriovenous malformations in territories susceptible to increased remodeling also point towards epigenetic events in the development of vascular malformations.  相似文献   

3.
The expansion or remodelling of pre-existing blood vessels, known as angiogenesis, by either nascent sprouting, intercalated or intussusceptive growth is a highly regulated process. Angiogenesis is critical not only during normal embryonic vascular development, but also in the progression of several diseases, including cancer, psoriasis, and diabetes. Mouse molecular genetic experiments have shown that the angiopoietins and their receptor Tie2/Tek are indispensable for embryonic vessel development. The importance of the angiopoietin-signalling pathway has also been shown to extend beyond development, into in vitro and in vivo experimental models of angiogenic growth. Currently the precise role of the angiopoietins remains unclear. However, what is emerging from genetic, xenograft transplant, histochemical and cell culture experiments are that the response of endothelial cells to angiopoietins appears to be context and endothelial cell type specific.  相似文献   

4.
5.
Engineering blood vessels from stem cells: recent advances and applications   总被引:3,自引:0,他引:3  
Endothelial cells organized into blood vessels are critical for the formation and maintenance of most tissues in the body and are involved in regulating physiological processes such as angiogenesis, inflammation and thrombosis. Endothelial cells are of great research interest, because of their potential to treat vascular diseases and to stimulate the growth of ischaemic tissue. They can be used to engineer artificial vessels, repair damaged vessels, and to induce the formation of vessel networks in engineered tissues. For such clinical applications, proliferating human endothelial progenitor cells can be isolated from adult tissues or embryonic stem cells. Recently, these cells were successfully used to engineer single vessels and to stimulate capillary networks, both in vitro and in vivo.  相似文献   

6.
Ras proteins are small GTPases that regulate cellular growth and differentiation. Components of the Ras signaling pathway have been shown to be important during embryonic vasculogenesis and angiogenesis. Here, we report that Rasip1, which encodes a novel Ras-interacting protein, is strongly expressed in vascular endothelial cells throughout development, in both mouse and frog. Similar to the well-characterized vascular markers VEGFR2 and PECAM, Rasip1 is specifically expressed in angioblasts prior to vessel formation, in the initial embryonic vascular plexus, in the growing blood vessels during angiogenesis and in the endothelium of mature blood vessels into the postnatal period. Rasip1 expression is undetectable in VEGFR2 null embryos, which lack endothelial cells, suggesting that Rasip1 is endothelial specific. siRNA-mediated reduction of Rasip1 severely impairs angiogenesis and motility in endothelial cell cultures, and morpholino knockdown experiments in frog embryos demonstrate that Rasip1 is required for embryonic vessel formation in vivo. Together, these data identify Rasip1 as a novel endothelial factor that plays an essential role in vascular development.  相似文献   

7.
Blood vessel development is a vital process during embryonic development, during tissue growth, regeneration and disease processes in the adult. In the past decade researchers have begun to unravel basic molecular mechanisms that regulate the formation of vascular lumen, sprouting angiogenesis, fusion of vessels, and pruning of the vascular plexus. The understanding of the biology of these angiogenic processes is increasingly driven through studies on vascular development at the cellular resolution. Single cell analysis in vivo, advanced genetic tools and the widespread use of powerful animal models combined with improved imaging possibilities are delivering new insights into endothelial cell form, function and behavior angiogenesis. Moreover, the combination of in silico modeling and experimentation including dynamic imaging promotes insights into higher level cooperative behavior leading to functional patterning of vascular networks. Here we summarize recent concepts and advances in the field of vascular development, focusing in detail on the endothelial cell.  相似文献   

8.
Embryonic mouse kidneys induce angiogenesis when transplanted on the quail chorioallantoic membrane (Ekblom, P., H. Sariola, M. Karkinen, and L. Saxén, 1982, Cell Differ., 11:35-39). In these experiments all blood vessels were derived from the quail host, suggesting that kidney endothelium is derived from outside blood vessels. We have now analyzed whether kidney angiogenesis is regulated by kidney-derived soluble factors that stimulate the growth of new blood vessels. In the rabbit cornea, 11-d embryonic kidneys induced angiogenesis, whereas uninduced 11-d kidney mesenchymes did not. To characterize and purify this activity from an embryonic organ, we dissected between 600 and 1,000 14-17-d-old embryonic mouse kidneys for each purification experiment. Growth factor activity for capillary endothelial cells was found to bind to heparin-Sepharose and eluted at 0.9-1.1 M sodium chloride. Gel filtration revealed a molecular weight of 16,000-20,000 of this factor. A major 18,000-mol-wt band was seen after gel electrophoresis and silver staining of partially purified growth factor material. The chromatographed factor is mitogenic for endothelial cells but not for smooth muscle cells and stimulates angiogenesis in vivo in the rabbit cornea. Adult kidneys contained two heparin-binding endothelial cell growth factors. The differentiation-dependent production of an angiogenesis factor by the embryonic kidney suggests an important role of angiogenesis in organogenesis.  相似文献   

9.
There has been much research into the mechanics of angiogenesis and many studies have demonstrated that newly formed vessels regress during angiogenesis. This vascular involution has been shown to involve basement membrane dissolution and endothelial cell apoptosis. The corpus luteum provides an ideal in vivo model to study physiologic angiogenesis and studies have shown that involution of newly formed vessels occurs during corpus luteum regression. However, few studies to date have investigated the role of apoptosis on the vasculature which develops during pregnancy. By the use of the TUNEL technique to detect apoptotic cells and immunohistochemistry to distinguish between endothelial cells and pericytes, this present study demonstrated that the vasculature of the corpus luteum of pregnancy in the rat does not undergo apoptosis.  相似文献   

10.
The peptide growth factor apelin is the high affinity ligand for the G-protein-coupled receptor APJ. During embryonic development of mouse and frog, APJ receptor is expressed at high levels in endothelial precursor cells and in nascent vascular structures. Characterization of Xenopus apelin shows that the sequence of the bioactive region of the peptide is perfectly conserved between frogs and mammals. Embryonic expression studies indicate that apelin is expressed in, or immediately adjacent to, a subset of the developing vascular structures, particularly the intersegmental vessels. Experimental inhibition of either apelin or APJ expression, using antisense morpholino oligos, results in elimination or disruption of intersegmental vessels in a majority of embryos. In gain of function experiments, apelin peptide is a potent angiogenic factor when tested using two in vivo angiogenesis assays, the frog embryo and the chicken chorioallantoic membrane. Furthermore, studies using the mouse brain microvascular cell line bEnd.3 show that apelin acts as a mitogenic, chemotactic and anti-apoptotic agent for endothelial cells in culture. Finally, we show that, similar to a number of other angiogenic factors, expression of the apelin gene is increased under conditions of hypoxia. Taken together, these studies indicate that apelin is required for normal vascular development in the frog embryo and has properties consistent with a role during normal and pathological angiogenesis.  相似文献   

11.
beta1 integrin (encoded by Itgb1) is established as a regulator of angiogenesis based upon the phenotypes of complete knockouts of beta1 heterodimer partners or ligands and upon antibody inhibition studies in mice. Its direct function in endothelial cells (ECs) in vivo has not been determined because Itgb1(-/-) embryos die before vascular development. Excision of Itgb1 from ECs and a subset of hematopoietic cells, using Tie2-Cre, resulted in abnormal vascular development by embryonic day (e) 8.5 and lethality by e10.5. Tie1-Cre mediated a more restricted excision of Itgb1 from ECs and hematopoietic cells and resulted in embryonic lethal vascular defects by e11.5. Capillaries of the yolk sacs were disorganized, and the endothelium of major blood vessels and of the heart was frequently discontinuous in mutant embryos. We also found similar vascular morphogenesis defects characterized by EC disorganization in embryonic explants and isolated ECs. Itgb1-null ECs were deficient in adhesion and migration in a ligand-specific fashion, with impaired responses to laminin and collagens, but not to fibronectin. Deletion of Itgb1 reduced EC survival, but did not affect proliferation. Our findings demonstrate that beta1 integrin is essential for EC adhesion, migration and survival during angiogenesis, and further validate that therapies targeting beta1 integrins may effectively impair neovascularization.  相似文献   

12.
Progenitor cells in vascular disease   总被引:8,自引:0,他引:8  
Stem cell research has the potential to provide solutions to many chronic diseases via the field of regeneration therapy. In vascular biology, endothelial progenitor cells (EPCs) have been identified as contributing to angiogenesis and hence have therapeutic potential to revascularise ischaemic tissues. EPCs have also been shown to endothelialise vascular grafts and therefore may contribute to endothelial maintenance. EPC number has been shown to be reduced in patients with cardiovascular disease, leading to speculation that atherosclerosis may be caused by a consumptive loss of endothelial repair capacity. Animal experiments have shown that EPCs reendothelialise injured vessels and that this reduces neointimal formation, confirming that EPCs have an atheroprotective effect. Smooth muscle cell accumulation in the neointimal space is characteristic of many forms of atherosclerosis, however the source of these cells is now thought to be from smooth muscle progenitor cells (SMPCs) rather than the adjacent media. There is evidence for the presence of SMPCs in the adventitia of animals and that SMPCs circulate in human blood. There is also data to support SMPCs contributing to neointimal formation but their origin remains unknown. This article will review the roles of EPCs and SMPCs in the development of vascular disease by examining experimental data from in vitro studies, animal models of atherosclerosis and clinical studies.  相似文献   

13.
14.
Recently, with the better understanding of the mechanisms of neovascularization, many new therapeutic approaches to enhance neovascularization have emerged. Of these diverse emerging methods, use of growth factors and cells are the two major ones. This review will provide an update on the present understanding of the basic mechanisms of angiogenesis, vasculogenesis, and arteriogenesis, as a basis for designing future pro-neovascularization treatments. Several angiogenic factors including vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) have been implicated in augmenting the neovascularization process. However, single growth factors are not sufficient to generate functional vessels. In synergistic or complementary manner, these factors may be used in harmony to form long-term functional vessels. Cell therapy has the potential to supply stem/progenitor cells and multiple angiogenic factors to the region of ischemia. However, the efficacy of stem cells transplantation may be impaired by low survival rate, insufficient cell number and impaired function in aging and diseases. Combination of cells or cells primed with growth factor(s) or genetic modification may augment the therapeutic efficacy. This paper reviews critical literature in depth to elucidate the mechanism of therapeutic neovascularization, angiogenic factor therapy and cell transplantation. Based on past experience and actual knowledge, we propose future strategies for clinical application and discuss the problems and controversies that need to be addressed in order to fully exploit the potential of growth factors and/or cell transplantation with clinical relevance.  相似文献   

15.
Angiogenesis is an essential requirement for embryonic development and adult homeostasis. Its deregulation is a key feature of numerous pathologies and many studies have shown that members of the transforming growth factor beta (TGF‐β) family of proteins play important roles in angiogenesis during development and disease. Betaglycan (BG), also known as TGF‐β receptor type III, is a TGF‐β coreceptor essential for mice embryonic development but its role in angiogenesis has not been described. We have cloned the cDNA encoding zebrafish BG, a TGF‐β‐binding membrane proteoglycan that showed a dynamic expression pattern in zebrafish embryos, including the notochord and cells adjacent to developing vessels. Injection of antisense morpholinos decreased BG protein levels and morphant embryos exhibited impaired angiogenesis that was rescued by coinjection with rat BG mRNA. In vivo time‐lapse microscopy revealed that BG deficiency differentially affected arterial and venous angiogenesis: morphants showed impaired pathfinding of intersegmental vessels migrating from dorsal aorta, while endothelial cells originating from the caudal vein displayed sprouting and migration defects. Our results reveal a new role for BG during embryonic angiogenesis in zebrafish, which has not been described in mammals and pose interesting questions about the molecular machinery regulating angiogenesis in different vertebrates. genesis 53:583–603, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
Within the vascular endothelial growth factor (VEGF) family of five subtypes, VEGF165 secreted by endothelial cells has been identified to be the most active and widely distributed factor that plays a vital role in courses of angiogenesis, vascularization and mesenchymal cell differentiation. Hair follicle stem cells (HFSCs) can be harvested from the bulge region of the outer root sheath of the hair follicle and are adult stem cells that have multi‐directional differentiation potential. Although the research on differentiation of stem cells (such as fat stem cells and bone marrow mesenchymal stem cells) to the endothelial cells has been extensive, but the various mechanisms and functional forms are unclear. In particular, study on HFSCs’ directional differentiation into vascular endothelial cells using VEGF165 has not been reported. In this study, VEGF165 was used as induction factor to induce the differentiation from HFSCs into vascular endothelial cells, and the results showed that Notch signalling pathway might affect the differentiation efficiency of vascular endothelial cells. In addition, the in vivo transplantation experiment provided that HFSCs could promote angiogenesis, and the main function is to accelerate host‐derived neovascularization. Therefore, HFSCs could be considered as an ideal cell source for vascular tissue engineering and cell transplantation in the treatment of ischaemic diseases.  相似文献   

17.
During early human embryonic development, blood vessels are stimulated to grow, branch, and invade developing tissues and organs. Pluripotent human embryonic stem cells (hESCs) are endowed with the capacity to differentiate into cells of blood and lymphatic vessels. The present study aimed to follow vasculogenesis during the early stages of developing human vasculature and to examine whether human neovasculogenesis within teratomas generated in SCID mice from hESCs follows a similar course and can be used as a model for the development of human vasculature. Markers and gene profiling of smooth muscle cells and endothelial cells of blood and lymphatic vessels were used to follow neovasculogenesis and lymphangiogenesis in early developing human embryos (4-8 weeks) and in teratomas generated from hESCs. The involvement of vascular smooth muscle cells in the early stages of developing human embryonic blood vessels is demonstrated, as well as the remodeling kinetics of the developing human embryonic blood and lymphatic vasculature. In teratomas, human vascular cells were demonstrated to be associated with developing blood vessels. Processes of intensive remodeling of blood vessels during the early stages of human development are indicated by the upregulation of angiogenic factors and specific structural proteins. At the same time, evidence for lymphatic sprouting and moderate activation of lymphangiogenesis is demonstrated during these developmental stages. In the teratomas induced by hESCs, human angiogenesis and lymphangiogenesis are relatively insignificant. The main source of blood vessels developing within the teratomas is provided by the murine host. We conclude that the teratoma model has only limited value as a model to study human neovasculogenesis and that other in vitro methods for spontaneous and guided differentiation of hESCs may prove more useful.  相似文献   

18.
The formation of new blood vessels (angiogenesis) and lymphatic vessels (lymphangiogenesis) promotes tumor outgrowth and metastasis. Previously, it has been demonstrated that bone marrow-derived cells (BMDC) can contribute to tumor angiogenesis. However, the role of BMDC in lymphangiogenesis has largely remained elusive. Here, we demonstrate by bone marrow transplantation/reconstitution and genetic lineage-tracing experiments that BMDC integrate into tumor-associated lymphatic vessels in the Rip1Tag2 mouse model of insulinoma and in the TRAMP-C1 prostate cancer transplantation model, and that the integrated BMDC originate from the myelomonocytic lineage. Conversely, pharmacological depletion of tumor-associated macrophages reduces lymphangiogenesis. No cell fusion events are detected by genetic tracing experiments. Rather, the phenotypical conversion of myeloid cells into lymphatic endothelial cells and their integration into lymphatic structures is recapitulated in two in vitro tube formation assays and is dependent on fibroblast growth factor-mediated signaling. Together, the results reveal that myeloid cells can contribute to tumor-associated lymphatic vessels, thus extending the findings on the previously reported role of hematopoietic cells in lymphatic vessel formation.  相似文献   

19.
The study of distal lung morphogenesis and vascular development would be greatly facilitated by an in vitro or ex vivo experimental model. In this study we show that the growth of mouse embryonic day 12.5 lung rudiments implanted underneath the kidney capsules of syngeneic or immunodeficient hosts follows closely lung development in utero. The epithelium develops extensively with both proximal and distal differentiation to the saccular stage. The vasculature also develops extensively. Large blood vessels accompany large airways and capillaries develop within the saccular walls. Interestingly, vessels in the lung grafts develop from endothelial progenitor cells endogenous to the explants and host vessels do not vascularize the grafts independently. This suggests that embryonic lungs possess mechanisms to prevent the inappropriate ingrowth of surrounding vessels. However, vessels in the lung grafts do connect to host vessels, showing that embryonic lungs have the ability to stimulate host angiogenesis and recruit host vessel connections. These data support the hypothesis that the lung vasculature develops by both vasculogenic and angiogenic processes: a vascular network develops in situ in lung mesenchyme, which is then connected to angiogenic processes from central vessels. The lung renal capsule allograft is thus an excellent model to study the development of the pulmonary vasculature and of late fetal lung development that requires a functional blood supply.  相似文献   

20.
In adults, the growth of blood vessels, a process known as angiogenesis, is essential for organ growth and repair. In many disorders including cancer, angiogenesis becomes excessive. The cellular origin of new vascular endothelial cells (ECs) during blood vessel growth in angiogenic situations has remained unknown. Here, we provide evidence for adult vascular endothelial stem cells (VESCs) that reside in the blood vessel wall endothelium. VESCs constitute a small subpopulation within CD117+ (c-kit+) ECs capable of undergoing clonal expansion while other ECs have a very limited proliferative capacity. Isolated VESCs can produce tens of millions of endothelial daughter cells in vitro. A single transplanted c-kit-expressing VESC by the phenotype lin−CD31+CD105+Sca1+CD117+ can generate in vivo functional blood vessels that connect to host circulation. VESCs also have long-term self-renewal capacity, a defining functional property of adult stem cells. To provide functional verification on the role of c-kit in VESCs, we show that a genetic deficit in endothelial c-kit expression markedly decreases total colony-forming VESCs. In vivo, c-kit expression deficit resulted in impaired EC proliferation and angiogenesis and retardation of tumor growth. Isolated VESCs could be used in cell-based therapies for cardiovascular repair to restore tissue vascularization after ischemic events. VESCs also provide a novel cellular target to block pathological angiogenesis and cancer growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号