首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The Tob/BTG family is a group of antiproliferative proteins containing two highly homologous regions, Box A and Box B. These proteins all associate with CCR4-associated factor 1 (Caf1), which belongs to the ribonuclease D (RNase D) family of deadenylases and is a component of the CCR4-Not deadenylase complex. Here we determined the crystal structure of the complex of the N-terminal region of Tob and human Caf1 (hCaf1). Tob exhibited a novel fold, whereas hCaf1 most closely resembled the catalytic domain of yeast Pop2 and human poly(A)-specific ribonuclease. Interestingly, the association of hCaf1 was mediated by both Box A and Box B of Tob. Cell growth assays using both wild-type and mutant proteins revealed that deadenylase activity of Caf1 is not critical but complex formation is crucial to cell growth inhibition. Caf1 tethers Tob to the CCR4-Not deadenylase complex, and thereby Tob gathers several factors at its C-terminal region, such as poly(A)-binding proteins, to exert antiproliferative activity.The Tob/BTG family (also called the APRO family) is a group of antiproliferative proteins (1, 2) consisting of Tob (3), Tob2 (4), BTG1 (5), BTG2/Tis21/PC3 (6-8), PC3B (9), and ANA/BTG3 (10, 11) in mammalian cells, AF177464 in Drosophila, and FOG-3 in Caenorhabditis elegans (12). A recent genome project reported that the BTG/Tob family protein had already existed in Choanoflagellida Monosiga brevicollis MX1. The N-terminal region of the Tob/BTG family proteins is conserved and includes two highly homologous regions, Box A and Box B. The Tob/BTG family proteins are involved in cell cycle regulation in a variety of cells such as T lymphocytes, fibroblasts, epithelial cells, and germ cells. In Tob-deficient mice, the incidence of liver tumors is higher than in wild-type mice. Furthermore, because the levels of tob expression are often repressed in human lung cancers, suppression of its expression is thought to contribute to tumor progression (13).The antiproliferative activities of the Tob/BTG family proteins are due to their association with target proteins in cells. For example, Tob associates with SMAD family proteins and acts as a negative regulator of SMAD signaling. In osteoblasts, this negative regulation occurs via association with SMAD 1, 5, 6, and 8 (14, 15), and via association with SMAD 2 and 4 in anergic quiescent T cells (16). Tob/BTG family proteins also bind to protein arginine methyltransferase, which regulates chromatin assembly by histone methylation (17). Much evidence has been accumulated to suggest that CCR4-associated factor 1 (Caf1),2 also known as Cnot7 and involved in the CCR4-Not deadenylase complex, is a common binding partner of the Tob/BTG family proteins (4, 18-21). To reveal the functions of Caf1 in vivo, caf1-/- mice have been generated in two groups. Male caf1-deficient mice are infertile because of a malfunction of the testicular somatic cells that leads to a defect in spermatogenesis (22, 23). Genetic analysis of the nematode C. elegans also suggests that FOG3 (Tob orthologue) interacts with CCF1, the C. elegans homologue of Caf1, and that this interaction is essential for germ cells to initiate spermatogenesis (24).Mouse and human Caf1 (mCaf1 and hCaf1) were found as homologues of yeast Pop2, a component of the CCR4-Not complex (18, 25). Yeast Pop2 displays weak RNase activity but enhances the deadenylation of the poly(A) tail of mRNA by the CCR4-Not deadenylase complex (26-29). The primary structure of mammalian Caf1 is related to that of the ribonuclease D (RNase D) family, and all of the active site residues are well conserved (30). Indeed, both mCaf1 and hCaf1 have deadenylase activity (31-33).Although the relationship between cell cycle repression and poly(A) deadenylation is not well understood, mRNA degradation and synthesis are major events in maintaining the cell cycle (34). The mRNAs in a eukaryotic cell have a wide range of half-lives. Degradation of mRNA is initiated by shortening of the poly(A) tail. Thereafter, the 5′-cap structure is removed and the remaining portion of the mRNA is rapidly degraded. The degradation of eukaryotic mRNAs is regulated precisely at each stage of the cell cycle. Tob was reported to associate with inducible poly(A)-binding protein (iPABP) and to abrogate the translation of interleukin-2 mRNA in vitro (35). Recent reports also showed that Tob and BTG2 interact with the CCR4-Not deadenylase complex using the Tob/BTG2 domain and the cytoplasmic poly(A)-binding protein (PABPC1) using the C-terminal tail and enhanced mRNA degradation (36-38).To help elucidate the relationship between the antiproliferative activity of Tob and the degradation of the poly(A) tail, we determined the crystal structure of the Tob-hCaf1 complex. We found that hCaf1 has a structure similar to yeast Pop2 and human PARN of deadenylases, exonuclease I, and the Klenow fragment of DNA polymerase I from Escherichia coli. In contrast, Tob has a novel structure. Specifically, Box A and Box B mediate the interaction between Tob and hCaf1. Cell growth assays using the wild and mutant proteins, together with the structural studies, revealed that the complex formation is crucial to cell growth inhibition.  相似文献   

5.
The glycine transporter 2 (GlyT2) belongs to the family of Na+/CL--dependent plasma membrane transporters and is localized on the presynaptic terminals of glycinergic neurons. GlyT2 differs from other family members by its extended N-terminal cytoplasmic region. We report that activation of a Ca2+-dependent protease, most likely calpain, in spinal cord synaptosomes or cultured spinal cord neurons, results in partial proteolysis of GlyT2. Regions sensitive to calpain cleavage in vivo are located in the N-terminal and, to a lesser extent, C-terminal regions of the transporter protein. Incubation of a GlyT2 N-terminal fusion protein with spinal cord extract in the presence of calcium followed by protein sequence analysis localized the major N-terminal cleavage site after methionine 156, with a second cleavage site being situated after glycine 164. Interestingly, the size of the N-terminally truncated GlyT2 protein (70 kDa) is similar to that of most other transporter family members, and truncated GlyT2 displayed full transport activity upon expression in HEK293 cells. Our data suggest that Ca2+-triggered proteolysis may contribute to the regulation of GlyT2 trafficking and/or function in the neuronal plasma membrane.  相似文献   

6.
The metabotropic glutamate receptor mGluR1alpha in membranes isolated both from rat brain and from cell lines transfected with cDNA coding for the receptor migrates as a disulphide-bonded dimer on sodium dodecyl sulphate-polyacrylamide gels. Dimerization of mGluR1alpha takes place in the endoplasmic reticulum because it is not prevented by exposing transfected human embryonic kidney (HEK) 293 cells to the drug brefeldin A, a drug that prevents egress of proteins from the endoplasmic reticulum. Dimerization was also not dependent on protein glycosylation as it was not prevented by treatment of the cells with tunicamycin. Using a mammalian expression vector containing the N-terminal domain of mGluR1alpha, truncated just before the first transmembrane domain (NT-mGluR1alpha), we show that the N-terminal domain is secreted as a soluble disulphide-bonded dimeric protein. In addition, the truncated N-terminal domain can form heterodimers with mGluR1alpha when both proteins are cotransfected into HEK 293 cells. However, mGluR1alpha and its splice variant mGluR1beta did not form heterodimers in doubly transfected HEK 293 cells. These results show that although the N-terminal domain of mGluR1alpha is sufficient for dimer formation, other domains in the molecule must regulate the process.  相似文献   

7.
Homer family proteins are encoded by three genes, homer1, 2 and 3. Most of these proteins are expressed constitutively in nervous systems and accumulated in postsynaptic regions. However, the functional significance of these proteins, especially the significance of the distinction among the proteins encoded by homer1, 2 and 3, is still obscure. In the present study, we isolated a cDNA clone encoding a novel protein by two-hybrid system screening using the C-terminal half of Homer2b as the bait. This protein, termed 2B28, has 297 amino acid residues and contains three major domains: a UBA domain, a coiled-coil region, and a UBX domain. When expressed in HEK293T cells, 2B28 showed colocalization with uniquitin and enhanced the expression levels of IkappaB or Homer1a proteins, which are known to be degraded by proteasomes, indicating that 2B28 is involved in ubiquitin-proteasome functions. 2B28 specifically interacted and colocalized with Homer2 proteins, but not with Homer1 proteins. So far, we have identified no counterpart of 2B28 for Homer1 experimentally or in the protein databases. These results suggest that the specific interaction of 2B28 with Homer2 may play a role in regulation of protein degradation by ubiquitin-proteasome systems and that this function may be specific to Homer2 proteins among Homer family proteins.  相似文献   

8.
Phospholemman (PLM), a member of the FXYD family of small ion transport regulators, inhibits cardiac Na+/Ca2+ exchanger (NCX1). NCX1 is made up of N-terminal domain consisting of the first five transmembrane segments (residues 1-217), a large intracellular loop (residues 218-764), and a C-terminal domain comprising the last four transmembrane segments (residues 765-938). Using glutathione S-transferase (GST) pull-down assay, we demonstrated that the intracellular loop, but not the N- or C-terminal transmembrane domains of NCX1, was associated with PLM. Further analysis using protein constructs of GST fused to various segments of the intracellular loop of NCX1 suggest that PLM bound to residues 218-371 and 508-764 but not 371-508. Split Na+/Ca2+ exchangers consisting of N- or C-terminal domains with different lengths of the intracellular loop were co-expressed with PLM in HEK293 cells that are devoid of endogenous PLM and NCX1. Although expression of N-terminal but not C-terminal domain alone resulted in correct membrane targeting, co-expression of both N- and C-terminal domains was required for correct membrane targeting and functional exchange activity. NCX1 current measurements indicate that PLM decreased NCX1 current only when the split exchangers contained residues 218-358 of the intracellular loop. Co-immunoprecipitation experiments with PLM and split exchangers suggest that PLM associated with the N-terminal domain of NCX1 when it contained intracellular loop residues 218-358. TM43, a PLM mutant with its cytoplasmic tail truncated, did not co-immunoprecipitate with wild-type NCX1 when co-expressed in HEK293 cells, confirming little to no interaction between the transmembrane domains of PLM and NCX1. We conclude that PLM interacted with the intracellular loop of NCX1, most likely at residues 218-358.  相似文献   

9.
ALG-2 (apoptosis-linked gene-2 protein) and peflin are Ca(2+)-binding proteins and belong to the penta-EF-hand (PEF) protein family, which includes calpain, sorcin, and grancalcin. ALG-2 forms either a homodimer or a heterodimer with peflin like other PEF proteins. In this study, we found that the fifth-EF-hand (EF-5) regions of both ALG-2 and peflin are essential for dimerization and their stabilities. Exogenously expressed EF-5-deletion (DeltaEF-5) mutants of ALG-2 and peflin were unstable and were not detected in HEK293 cells by Western blotting. In a pulse--chase experiment, the DeltaEF-5 mutants were rapidly degraded, but they were stabilized by treatment with a proteasome inhibitor, MG132. In MG132-treated cells, DeltaEF-5 mutants were recovered in the insoluble fractions. Transient coexpression of ALG-2 increased the peflin level. These results indicate that the absence of a fifth EF-hand results in rapid degradation by the proteasome. On the other hand, stable expression of exogenous peflin decreased the amount of endogenous peflin. The amount of peflin that can dimerize with ALG-2 seems to be restricted in mammalian cells.  相似文献   

10.
Identification of the Anti-proliferative protein Tob as a MAPK substrate   总被引:4,自引:0,他引:4  
Mitogen-activated protein kinases (MAPKs) regulate a wide variety of cellular functions by phosphorylating their specific substrates. Here we have identified Tob as a novel substrate of MAPK. Tob, a member of the Tob and B-cell translocation gene anti-proliferative protein family, is shown to negatively regulate the proliferation of osteoblasts and T cells. In this study, our two-hybrid screening has identified Tob as an ERK2-interacting protein. Biochemical analyses have then shown that ERK MAPK (ERK2) and JNK/SAPK (JNK2) bind to and phosphorylate Tob in vitro. ERK catalyzes the phosphorylation more efficiently than JNK. When the ERK pathway is activated in cells, phosphorylation of Tob is induced. An ERK-binding or -docking site locates in the N-terminal portion of Tob, and phosphorylation sites reside in the C-terminal stretch region. The docking is crucial for efficient phosphorylation. Mutant forms of Tob, in which serines are replaced by glutamic acids to mimic phosphorylation, show a much reduced ability to inhibit the cell cycle progression to S phase from G(0)/G(1) phase, as compared with wild-type Tob, indicating that ERK phosphorylation negatively regulates the anti-proliferative function of Tob.  相似文献   

11.
目前,已知超过150种糖基磷脂酰肌醇锚定蛋白(glycosylphosphatidylinositol anchored protein, GPI-anchored protein)在哺乳动物细胞中表达,并参与免疫识别、细胞通讯与信号转导等多种生理过程。当蛋白质无法被GPI修饰时,前体蛋白质通过内质网相关蛋白质降解(endoplasmic reticulum associated degradation, ERAD)途径降解。然而,GPI锚定蛋白ERAD的降解机制尚不清楚。为了探究GPI锚定蛋白前体的ERAD途径的具体机制,本研究敲除人胚胎肾细胞293细胞株(HEK293)的GPI转酰胺酶复合物亚基PIGS基因,进而敲除E3泛素连接酶HRD1和GP78基因,之后随机在PIGS-KO,PIGS-HRD1-KO和PIGS-GP78-KO过表达16种GPI锚定蛋白质(以亲本PIGS-KO细胞株作为对照组),Western印迹结果证明,GPI锚定蛋白前体在细胞株PIGS-HRD1-KO中的蛋白质积累量(IPHK)和PIGS-GP78-KO中的蛋白质积累量(IPG...  相似文献   

12.
The CXC chemokine CXCL12 and its cognate receptor CXCR4 play an important role in inflammation, human immunodeficiency virus (HIV) infection and cancer metastasis. The signal transduction and intracellular trafficking of CXCR4 are involved in these functions, but the underlying mechanisms remain incompletely understood. In the present study, we demonstrated that the CXCR4 formed a complex with the cytolinker protein plectin in a ligand-dependent manner in HEK293 cells stably expressing CXCR4. The glutathione-S-transferase (GST)-CXCR4 C-terminal fusion proteins co-precipitated with the full-length and the N-terminal fragments of plectin isoform 1 but not with the N-terminal deletion mutants of plectin isoform 1, thereby suggesting an interaction between the N-terminus of plectin and the C-terminus of CXCR4. This interaction was confirmed by confocal microscopic reconstructions showing co-distribution of these two proteins in the internal vesicles after ligand-induced internalization of CXCR4 in HEK293 cells stably expressing CXCR4. Knockdown of plectin with RNA interference (RNAi) significantly inhibited ligand-dependent CXCR4 internalization and attenuated CXCR4-mediated intracellular calcium mobilization and activation of extracellular signal regulated kinase 1/2 (ERK1/2). CXCL12-induced chemotaxis of HEK293 cells stably expressing CXCR4 and of Jurkat T cells was inhibited by the plectin RNAi. Moreover, CXCR4 tropic HIV-1 infection in MAGI (HeLa-CD4-LTR-Gal) cells was inhibited by the RNAi of plectin. Thus, plectin appears to interact with CXCR4 and plays an important role in CXCR4 signaling and trafficking and HIV-1 infection.  相似文献   

13.
Tob, a member of the Tob and BTG antiproliferative protein family, plays an important role in many cellular processes including cell proliferation. In this study, we have addressed molecular mechanisms regulating subcellular localization of Tob. Treatment with leptomycin B, an inhibitor of nuclear export signal (NES) receptor, resulted in a change in subcellular distribution of Tob from its pan-cellular distribution to nuclear accumulation, indicating the existence of NES in Tob. Our results have then identified an N-terminal region (residues 2-14) of Tob as a functional NES. They have also shown that Tob has a functional, bipartite nuclear localization signal (NLS) in residues 18-40. Thus, Tob is shuttling between the nucleus and the cytoplasm by its NES and NLS. To examine a possible relationship between subcellular distribution of Tob and its function, we exogenously added a strong NLS sequence or a strong NES sequence or both to Tob. The obtained results have demonstrated that the strong NLS-added Tob has a much weaker activity to inhibit cell cycle progression from G0/G1 to S phase. These results suggest that cytoplasmic localization or nucleocytoplasmic shuttling is important for the antiproliferative function of Tob.  相似文献   

14.
15.
Densin is a member of the leucine-rich repeat (LRR) and PDZ domain (LAP) protein family that binds several signaling molecules via its C-terminal domains, including calcium/calmodulin-dependent protein kinase II (CaMKII). In this study, we identify several novel mRNA splice variants of densin that are differentially expressed during development. The novel variants share the LRR domain but are either prematurely truncated or contain internal deletions relative to mature variants of the protein (180 kDa), thus removing key protein–protein interaction domains. For example, CaMKIIα coimmunoprecipitates with densin splice variants containing an intact C-terminal domain from lysates of transfected HEK293 cells, but not with variants that only contain N-terminal domains. Immunoblot analyses using antibodies to peptide epitopes in the N- and C- terminal domains of densin are consistent with developmental regulation of splice variant expression in brain. Moreover, putative splice variants display different subcellular fractionation patterns in brain extracts. Expression of green fluorescent protein (GFP)-fused densin splice variants in HEK293 cells shows that the LRR domain can target densin to a plasma membrane-associated compartment, but that the splice variants are differentially localized and have potentially distinct effects on cell morphology. In combination, these data show that densin splice variants have distinct functional characteristics suggesting multiple roles during neuronal development.  相似文献   

16.
The human BTG/TOB protein family comprises six members (BTG1, BTG2/PC3/Tis21, BTG3/Ana, BTG4/PC3B, TOB1/Tob, and TOB2) that are characterised by a conserved BTG domain. This domain mediates interactions with the highly similar Caf1a (CNOT7) and Caf1b (CNOT8) catalytic subunits of the Ccr4-Not deadenylase complex. BTG/TOB proteins have anti-proliferative activity: knockdown of BTG/TOB can result in increased cell proliferation, whereas over-expression of BTG/TOB leads to inhibition of cell cycle progression. It was unclear whether the interaction between BTG/TOB proteins and the Caf1a/Caf1b deadenylases is necessary for the anti-proliferative activity of BTG/TOB. To address this question, we further characterised surface-exposed amino acid residues of BTG2 and TOB1 that mediate the interaction with the Caf1a and Caf1b deadenylase enzymes. We then analysed the role of BTG2 and TOB1 in the regulation of cell proliferation, translation and mRNA abundance using a mutant that is no longer able to interact with the Caf1a/Caf1b deadenylases. We conclude that the anti-proliferative activity of BTG/TOB proteins is mediated through interactions with the Caf1a and Caf1b deadenylase enzymes. Furthermore, we show that the activity of BTG/TOB proteins in the regulation of mRNA abundance and translation is dependent on Caf1a/Caf1b, and does not appear to require other Ccr4-Not components, including the Ccr4a (CNOT6)/Ccr4b (CNOT6L) deadenylases, or the non-catalytic subunits CNOT1 or CNOT3.  相似文献   

17.
The mammalian sorting nexin (SNX) proteins are involved in the endocytosis and the sorting machinery of transmembrane proteins. Additionally to the family defining phox homology (PX) domain, SNX17 is the only member with a truncated FERM (4.1, ezrin, radixin, and moesin) domain and a unique C-terminal region (together designated as FC unit). By gel filtration and lipid overlay assays we show that SNX17 is a non-self-assembling and a PtdIns(3)P high class affinity protein. A SNX17 affinity to any other phosphoinositides was not detected. By yeast two-hybrid- and GST-trapping assays we identified KRIT1 (krev1 interaction trapped 1) as a new specific interaction partner of the FC unit of SNX17. KRIT1 binds SNX17 by its N-terminal region like the known interaction partner ICAP1alpha (integrin cytoplasmic domain-associated protein-1). The interaction was also detected in HEK 293 cells transiently expressing GFP-tagged KRIT1 and Xpress-tagged SNX17. KRIT1 mutations cause cerebral cavernous malformation (CCM1). Our finding suggests a SNX17 involvement in the indicated KRIT1 function in cell adhesion processes by integrin signaling.  相似文献   

18.
Nrdp1 is a RING finger containing ubiquitin E3 ligase that interacts with and modulates activity of multiple proteins, including ErbB3 and Parkin, a causative protein for early onset recessive juvenile parkinsonism (AR-JP). To investigate the functions of Nrdp1, we have generated stable Tet-On inducible HEK293 cells that overexpress Flag-tagged full length Nrdp1, N-terminal Nrdp1 and C-terminal Nrdp1. We demonstrate that overexpression of full-length Nrdp1, not Nrdp1 N-terminus or Nrdp1 C-terminus in cultured HEK293 cells, inhibits cell growth. In addition, we have treated cells with hydroxynonenal (HNE), 6-hydroxydopamine (6-OHDA), and hydrogen peroxide (H2O2) at different concentrations. We have found that Nrdp1 overexpression sensitizes HEK293 cells to oxidative stressors in a dosage-dependent manner. Our data provide insights into understanding the potential role of Nrdp1 in cell growth, apoptosis and oxidative stress, and in the pathogenesis of Parkinson’s disease.  相似文献   

19.
Cancer Osaka thyroid, also known as Tpl-2 (Cot) is a member of the MAP3K kinase family and plays a key role in the regulation of the immune response to pro-inflammatory stimuli such as lipopolysaccharide (LPS) and tumour necrosis factor-alpha (TNF-alpha). A series of Cot constructs with an N-terminal 6xHis tag were transiently expressed in HEK293 cells: Cot(130-399) (kinase domain), Cot(1-388) (N-terminal and kinase domains), Cot(1-413), Cot(1-438) (containing a putative PEST sequence), Cot(1-457) (containing both PEST and degron sequences) and Cot(1-467) (full-length protein). These Cot proteins were pulled down using an anti-6xHis antibody and separated by 2D electrophoresis. The gels were silver-stained and 21 proteins were detected that did not appear, or had substantially reduced intensity, in the control sample. Three of these were identified by MS and MS/MS analysis as Hsp90, Hsp70 and Grp78. Hsp90 appeared to bind to the kinase domain of Cot and this interaction was further investigated using co-immuno-precipitation with both overexpressed Cot in HEK293 cells and endogenous Cot in Hela cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号