首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Placental transfer of the long-chain polyunsaturated fatty acids (LCPUFA) arachidonic (AA) and docosahexaenoic (DHA) acids is selectively high to maintain accretion to fetal tissues, especially the brain. The objectives of the present study were to investigate the essential fatty acid (EFA) and LCPUFA status at birth of preterm and term Brazilian infants and their mothers, from a population of characteristically low intake of n-3 LCPUFA, and to evaluate the association between fetal and maternal status, by the determination of the fatty acid composition of the erythrocyte membrane. Blood samples from umbilical cord of preterm (26-36 weeks of gestation; n = 30) and term (37-42 weeks of gestation; n = 30) infants and the corresponding maternal venous blood were collected at delivery. The LCPUFA composition of the erythrocyte membrane and DHA status were similar for mothers of preterm and term infants. Neonatal AA was higher (P < 0.01) whereas its precursor 18:2n-6 was lower (P < 0.01) than maternal levels, as expected. There was no difference in LCPUFA erythrocyte composition between preterm and term infants, except for DHA. Term infants presented a worse DHA status than preterm infants (P < 0.01) and than their mothers (P < 0.01) at delivery. There was a negative correlation of neonatal DHA with maternal AA and a positive correlation between neonatal AA and maternal AA and 18:2n-6 only at term. These results suggest that the persistent low DHA maternal status, together with the comparatively better AA and 18:2n-6 status, might have affected maternal-fetal transfer of DHA when gestation was completed up to term, and possibly contributed to the worse DHA status of term neonates compared with the preterm neonates.  相似文献   

2.
Reevaluation of the DHA requirement for the premature infant   总被引:1,自引:1,他引:0  
The long-chain polyunsaturated fatty acid (LC-PUFA) intake in preterm infants is crucial for normal central nervous system development and has the potential for long-lasting effects that extend beyond the period of dietary insufficiency. While much attention has focused on improving their nutritional intake, many premature infants do not receive an adequate DHA supply. We demonstrate that enterally fed premature infants exhibit daily DHA deficit of 20 mg/kg.d, representing 44% of the DHA that should have been accumulated. Furthermore, the DHA content of human milk and current preterm formulas cannot compensate for an early DHA deficit which may occur during the first month of life. We recommend breast-feeding, which supplies preformed LC-PUFA, as the preferred method of feeding for preterm infants. However, to fulfill the specific DHA requirement of these infants, we recommend increasing the DHA content of human milk either by providing the mothers with a DHA supplement or by adding DHA directly to the milk. Increasing the DHA content above 1% total fatty acids appears to be safe and may enhance neurological development particularly that of infants with a birth weight below 1250 g. We estimate that human milk and preterm formula should contain 1.5% of fatty acid as DHA to prevent the appearance of a DHA deficit and to compensate for the early DHA deficit.  相似文献   

3.
The intake of the essential fatty acid precursor α-linolenic acid (ALA) contributes to ensure adequate n-3 long-chain polyunsaturated fatty acid (LC-PUFA) bioavailability. Conversely, linoleic acid (LA) intake may compromise tissue n-3 PUFA status as its conversion to n-6 LC-PUFA shares a common enzymatic pathway with the n-3 family. This study aimed to measure dietary ALA and LA contribution to LC-PUFA biosynthesis and tissue composition. Rats were fed with control or experimental diets moderately enriched in ALA or LA for 8 weeks. Liver Δ6- and Δ5-desaturases were analyzed and FA composition was determined in tissues (red blood cells, liver, brain and heart). Hepatic Δ6-desaturase activity was activated with both diets, and Δ5-desaturase activity only with the ALA diet. The ALA diet led to higher n-3 LC-PUFA composition, including DHA in brain and heart. The LA diet reduced n-3 content in blood, liver and heart, without impacting n-6 LC-PUFA composition. At levels relevant with human nutrition, increasing dietary ALA and reducing LA intake were both beneficial in increasing n-3 LC-PUFA bioavailability in tissues.  相似文献   

4.
5.
Studies suggested that in human adults, linoleic acid (LA) inhibits the biosynthesis of n-3 long-chain polyunsaturated fatty acids (LC-PUFA), but their effects in growing subjects are largely unknown. We used growing pigs as a model to investigate whether high LA intake affects the conversion of n-3 LC-PUFA by determining fatty acid composition and mRNA levels of Δ5- and Δ6 desaturase and elongase 2 and -5 in liver and brain. In a 2 × 2 factorial arrangement, 32 gilts from eight litters were assigned to one of the four dietary treatments, varying in LA and α-linolenic acid (ALA) intakes. Low ALA and LA intakes were 0.15 and 1.31, and high ALA and LA intakes were 1.48 and 2.65 g/kg BW0.75 per day, respectively. LA intake increased arachidonic acid (ARA) in liver. ALA intake increased eicosapentaenoic acid (EPA) concentrations, but decreased docosahexaenoic acid (DHA) (all P < 0.01) in liver. Competition between the n-3 and n-6 LC-PUFA biosynthetic pathways was evidenced by reductions of ARA (>40%) at high ALA intakes. Concentration of EPA (>35%) and DHA (>20%) was decreased by high LA intake (all P < 0.001). Liver mRNA levels of Δ5- and Δ6 desaturase were increased by LA, and that of elongase 2 by both ALA and LA intakes. In contrast, brain DHA was virtually unaffected by dietary LA and ALA. Generally, dietary LA inhibited the biosynthesis of n-3 LC-PUFA in liver. ALA strongly affects the conversion of both hepatic n-3 and n-6 LC-PUFA. DHA levels in brain were irresponsive to these diets. Apart from Δ6 desaturase, elongase 2 may be a rate-limiting enzyme in the formation of DHA.  相似文献   

6.
Docosahexanoic acid (DHA) and arachidonic acid (ARA) are long chain essential fatty acids used as supplements in commercial infant formula. DHA/ARA deficient states are associated with adverse neurological outcomes in animals and humans. Preterm infants are at risk for DHA/ARA deficiency. A few clinical reports on the effects of fatty acid supplementation have shown benefit in preterm, low birth weight, and normal infants in the first year of life, whereas others did not. Studies in animals have reported shortened gestation, fetal growth retardation, reduced infant body mass, and increased fetal mortality with consumption of fatty acids during pregnancy. To understand the data that support fatty acid supplementation in infant formula, a review of the animal model literature was undertaken, to examine the effects of DHA/ARA on neurodevelopment, including the effects on visual acuity. Several points emerged from this review. (1) Animal studies indicate that requirements for DHA/ARA vary depending on developmental age. Alterations of the ratio of DHA/ARA can impact developmental outcome. (2) The available studies suggest that while supplementation of DHA/ARA in an appropriate ratio can increase tissue levels of these fatty acids in the brain and retina, tissues sensitive to depletion of fatty acids, the benefit of routine supplementation remains unclear. Few studies measure functional outcome relative to changes in physiologic pools of DHA/ARA after supplementation. (3) Animal literature does not support a clear long-term benefit of replenishing DHA/ARA tissue levels and administration of these fatty acids at concentrations above those in human milk suggests adverse effects on growth, survival, and neurodevelopment.  相似文献   

7.
To investigate involvement of the central nervous system in the ontogeny of behaviour, diets of differing quality were used to rear yellowtail Seriola quinqueradiata larvae and juveniles. Artemia nauplii enriched with oleic acid (OA), eicosapentaenoic acid (EPA), or two different concentration levels of docosahexaenoic acid (DHA) were fed to yellowtail larvae (LT 7 mm; 13 days old) for 12 days, and their behavioural development was analysed together with growth, survival, activity and fatty acid composition. Yellowtail fed with DHA–enriched Artemia showed mutual attraction behaviour at 11 mm LT, while those fed with OA– or EPA–enriched Artemia did not show this behaviour at the same size. While fish in the OA group showed poor growth, survival and activity index, fish in the EPA group were similar to the two DHA groups. In addition, most fish tested, including the OA group, showed clear optokinetic responses. Fatty acid composition of the diet was reflected in that of the fish body. Therefore, dietary DHA in the larval stage is considered to be essential for the development of schooling behaviour in the yellowtail.  相似文献   

8.
9.
This study aimed to investigate the effects and possible interactions of birth weight and n-3 polyunsaturated fatty acid (PUFA) supplementation of the maternal diet on the fatty acid status of different tissues of newborn piglets. These effects are of interest as both parameters have been associated with pre-weaning mortality. Sows were fed a palm oil diet or a diet containing 1% linseed, echium or fish oil from day 73 of gestation. As fish oil becomes a scarce resource, linseed and echium oil were supplemented as sustainable alternatives, adding precursor fatty acids for DHA to the diet. At birth, the lightest and heaviest male piglet per litter were killed and samples from liver, brain and muscle were taken for fatty acid analysis. Piglets that died pre-weaning had lower birth weights than piglets surviving lactation (1.27±0.04 v. 1.55±0.02 kg; P<0.001), but no effect of diet on mortality was found. Lower DHA concentrations were observed in the brain of the lighter piglets compared with their heavier littermates (9.46±0.05 v. 9.63±0.04 g DHA/100 g fatty acids; P=0.008), suggesting that the higher incidence of pre-weaning mortality in low birth weight piglets may be related to their lower brain DHA status. Adding n-3 PUFA to the sow diet could not significantly reduce this difference in DHA status, although numerically the difference in the brain DHA concentration between the piglet weight groups was smaller when fish oil was included in the sow diet. Independent of birth weight, echium or linseed oil in the sow diet increased the DHA concentration of the piglet tissues to the same extent, but the concentrations were not as high as when fish oil was fed.  相似文献   

10.
Mechanistic pathways linking maternal polyunsaturated fatty acid (PUFA) status with gestational length are poorly delineated. This study examined whether inflammation and sleep quality serve as mediators, focusing on the antiinflammatory ω-3 docosahexaenoic acid (DHA; 22:6n3) and proinflammatory ω-6 arachidonic acid (AA; 20:4n6). Pregnant women (n = 135) provided a blood sample and completed the Pittsburgh Sleep Quality Index (PSQI) at 20–27 weeks gestation. Red blood cell (RBC) fatty acid levels were determined by gas chromatography and serum inflammatory markers [interleukin (IL)-6, IL-8, tumor necrosis factor-α, IL-1β, and C-reactive protein] by electrochemiluminescence using high sensitivity kits. Both higher serum IL-8 (95% CI = 0.10,3.84) and poor sleep (95% CI = 0.03,0.28) served as significant mediators linking lower DHA:AA ratios with shorter gestation. Further, a serial mediation model moving from the DHA:AA ratio → sleep → IL-8 → length of gestation was statistically significant (95% CI = 0.02, 0.79). These relationships remained after adjusting for depressive symptoms, age, BMI, income, race, and smoking. No interactions with race were observed in relation to length of gestation as a continuous variable. However, a significant interaction between race and the DHA:AA ratio in predicting preterm birth was observed (p = 0.049); among African Americans only, odds of preterm birth decreased as DHA:AA increased (p = 0.048). These data support a role for both inflammatory pathways and sleep quality in linking less optimal RBC PUFA status with shorter gestation in African American and European American women and suggest that African-Americans have greater risk for preterm birth in the context of a low DHA:AA ratio.  相似文献   

11.
The worldwide increase in aquaculture production and the concurrent decrease of wild fish stocks has made the replacement of fish oil in aquafeeds an industry priority. Oil from a plant source Echium plantagineum L., Boraginaceae, has high levels of stearidonic acid (SDA, 18:4omega3, 14%) a biosynthetic precursor of omega-3 long-chain (> or =C(20)) polyunsaturated fatty acids (omega3 LC-PUFA). Atlantic salmon (Salmo salar L.) parr were fed a control fish oil diet (FO) or one of 3 experimental diets with 100% canola oil (CO) 100% SDA oil (SO), and a 1:1 mix of CO and SDA oil (MX) for 42 days. There were no differences in the growth or feed efficiency between the four diets. However, there were significant differences in the fatty acid (FA) profiles of the red and white muscle tissues. Significantly higher amounts of SDA, eicosapentaenoic acid (20:5omega3, EPA), docosahexaenoic acid (22:6omega3, DHA) and total omega3 FA occurred in both red and white muscle tissues of fish fed SO and FO compared with those fed CO. Feeding SO diet resulted in omega3 LC-PUFA amounts in the white and red muscle being comparable to the FO diet. This study shows that absolute concentration (mug/g) of EPA, DHA and total omega3 have been maintained over 6 weeks for Atlantic salmon fed 14% SDA oil. The balance between increased biosynthesis and retention of omega3 LC-PUFA to maintain the concentrations observed in the SO fed fish remains to be conclusively determined, and further studies are needed to ascertain this.  相似文献   

12.
Reports suggest that the placenta in preterm birth may provide clues to predicting the risk of individuals developing chronic diseases in later life. Placental delivery of long chain polyunsaturated fatty acids (LCPUFA) (constituents of the cell membrane and precursors of prostaglandins) is essential for the optimal development of the central nervous system of the fetus. The present study examines the levels of LCPUFA and their association with placental weight and birth outcome in 58 women delivering preterm and 44 women delivering at term. Docosahexaenoic acid (DHA) and arachidonic acid (ARA) levels were lower (p<0.01) in women delivering preterm. There was a positive association of placental DHA with placental weight (p=0.036) and nervonic acid with head circumference (p=0.040) in the preterm group. Altered placental LCPUFA status exists in Indian mothers delivering preterm, which may influence the birth outcome.  相似文献   

13.
Blood levels of polyunsaturated fatty acids (PUFA) are considered biomarkers of status. Alpha-linolenic acid, ALA, the plant omega-3, is the dietary precursor for the long-chain omega-3 PUFA eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). Studies in normal healthy adults consuming western diets, which are rich in linoleic acid (LA), show that supplemental ALA raises EPA and DPA status in the blood and in breast milk. However, ALA or EPA dietary supplements have little effect on blood or breast milk DHA levels, whereas consumption of preformed DHA is effective in raising blood DHA levels. Addition of ALA to the diets of formula-fed infants does raise DHA, but no level of ALA tested raises DHA to levels achievable with preformed DHA at intakes similar to typical human milk DHA supply. The DHA status of infants and adults consuming preformed DHA in their diets is, on average, greater than that of people who do not consume DHA. With no other changes in diet, improvement of blood DHA status can be achieved with dietary supplements of preformed DHA, but not with supplementation of ALA, EPA, or other precursors.  相似文献   

14.

Background

Omega-3 long-chain polyunsaturated fatty acids (LC-PUFA), especially DHA (docosahexaenonic acid) are essential for brain development and physical health. Low blood Omega-3 LC-PUFA have been reported in children with ADHD and related behavior/learning difficulties, as have benefits from dietary supplementation. Little is known, however, about blood fatty acid status in the general child population. We therefore investigated this in relation to age-standardized measures of behavior and cognition in a representative sample of children from mainstream schools.

Participants

493 schoolchildren aged 7–9 years from mainstream Oxfordshire schools, selected for below average reading performance in national assessments at age seven.

Method

Whole blood fatty acids were obtained via fingerstick samples. Reading and working memory were assessed using the British Ability Scales (II). Behaviour (ADHD-type symptoms) was rated using the revised Conners’ rating scales (long parent and teacher versions). Associations were examined and adjusted for relevant demographic variables.

Results

DHA and eicosapentaenoic acid (EPA), accounted for only 1.9% and 0.55% respectively of total blood fatty acids, with DHA showing more individual variation. Controlling for sex and socio-economic status, lower DHA concentrations were associated with poorer reading ability (std. OLS coeff. = 0.09, p = <.042) and working memory performance (0.14, p = <.001). Lower DHA was also associated with higher levels of parent rated oppositional behavior and emotional lability (−0.175, p = <.0001 and −0.178, p = <.0001).

Conclusions

In these healthy UK children with below average reading ability, concentrations of DHA and other Omega-3 LC-PUFA were low relative to adult cardiovascular health recommendations, and directly related to measures of cognition and behavior. These findings require confirmation, but suggest that the benefits from dietary supplementation with Omega-3 LC-PUFA found for ADHD, Dyspraxia, Dyslexia, and related conditions might extend to the general school population.  相似文献   

15.
A number of research studies have reported abnormal plasma fatty acid profiles in children with ADHD along with some benefit of n?3 to symptoms of ADHD. However, it is currently unclear whether (lower) long chain-polyunsaturated fatty acids (LC-PUFAs) are related to ADHD pathology or to associated behaviours. The aim of this study was to test whether (1) ADHD children have abnormal plasma LC-PUFA levels and (2) ADHD symptoms and associated behaviours are correlated with LC-PUFA levels. Seventy-two, male children with (n=29) and without a clinical diagnosis of ADHD (n=43) were compared in their plasma levels of LC-PUFA. Plasma DHA was higher in the control group prior to statistical correction. Callous–unemotional (CU) traits were found to be significantly negatively related to both eicosapentaenoic acid (EPA), and total omega-3 in the ADHD group. The findings unveil for the first time that CU and anti-social traits in ADHD are associated with lower omega-3 levels.  相似文献   

16.
Infants fed vegetable oil-based formulas may have poorer visual function, lower cognitive scores and acquire learning tasks more slowly in comparison with those breast fed or those fed formulas supplemented with docosahexaenoate. The aim of the present study was to determine the reversibility of losses in brain function associated with the loss of brain DHA. Rats were fed very low or adequate levels of n-3 fatty acids through three generations. The n-3 fatty acid deficient animals of the F3 generation were then given an n-3 adequate diet containing alpha-linolenic and docosahexaenoic acids (DHA) at birth, weaning (3 weeks) or young adulthood (7 weeks). The spatial task performance of these animals returned to the n-3 adequate diet was then compared using the Morris water at two different ages, at 9 or 13 weeks. Our results indicate that animals repleted since birth or at weaning were able to achieve nearly the same level of brain DHA and spatial task performance as animals maintained for three generations on an n-3 adequate diet. In the case of young adult animals, the degree of DHA and behavioral performance recovery depended upon the duration of dietary repletion with substantial recovery in animals after 6 weeks but little recovery of function after two weeks. The significance of these findings is that they indicate that at least some of the adverse effects of DHA deficiency during neurodevelopment may be reversible with an n-3 fatty acid supplemented diet.  相似文献   

17.
Long-chain polyunsaturated fatty acids, notably arachidonic (AA) and docosahexaenoic (DHA) acids are abundant in brain and may be conditionally essential in fetal life. We investigated umbilical artery (UA) and vein (UV) fatty acid compositions and early neonatal neurological condition in 317 term infants. Neurological condition was summarized as a clinical classification and a 'neurological optimality score' (NOS). Neurologically abnormal infants (n=27) had lower UV DHA and essential fatty acid (EFA) status. NOS correlated positively with AA (UV), and EFA (UV) and DHA status (UV and UA) and negatively with 18:2omega6 and omega9 (UV), and 20:3omega9, omega7 and C18 trans fatty acids (UV and UA). UV DHA, AA, saturated fatty acids, gestational age and obstetrical optimality score explained 16.2% of the NOS variance. Early postnatal neurological condition seems negatively influenced by lower fetal DHA, AA and EFA status. C18 trans fatty acids and 18:2omega6 may exert negative effects by impairment of LCP status.  相似文献   

18.
Formula supplemented with docosahexaenoic acid (DHA) improves retinal function of preterm infants but the optimal dose is unknown. In a randomized controlled trial we examined the effect of increasing the DHA concentration of human milk and formula on circulating fatty acids of preterm infants. Infants born <33 weeks gestation were fed high-DHA milk (1% total fat as DHA) or standard-DHA milk (0.2-0.3% DHA) until reaching their estimated due date (EDD). Milk arachidonic acid (AA) concentration was approximately 0.5% for both groups. At EDD, erythrocyte membrane phospholipid DHA was elevated in the high-DHA group compared with standard-DHA (mean+/-SD, high-DHA 6.8+/-1.2, standard-DHA 5.2+/-0.7, p<0.0005) but AA was lower (high-DHA 14.9+/-1.3, standard-DHA 16.0+/-1.2, p<0.0005). Feeding preterm infants human milk and formula with 1% DHA raises but does not saturate erythrocyte phospholipids with DHA. Milk exceeding 1% DHA may be required to increase DHA status to levels seen in term infants.  相似文献   

19.
IntroductionAlthough omega (n)-3 long-chain polyunsaturated fatty acids (LCPUFA), particularly docosahexaenoic acid (DHA), intakes are important during infancy, the optimal method of increasing infant status remains unclear. We hypothesized that high-dose infant fish oil supplementation would have greater relative effects upon n-3 LCPUFA status at six months of age than breast milk fatty acids.Patients and methodsInfants (n=420) were supplemented daily from birth to six months with fish oil or placebo. In a subset of infants, LCPUFA levels were measured in cord blood, breast milk and in infant blood at 6 months.ResultsDHA levels increased in the fish oil group relative to placebo (p<05). Breast milk DHA was the strongest predictor of infant erythrocyte DHA levels (p=<001). This remained significant after adjustment for cord blood DHA, supplementation group and adherence.ConclusionIn this cohort, breast milk DHA was a greater determinant of infant erythrocyte n?3 LCPUFA status, than direct supplementation with fish oil.  相似文献   

20.
As the global population grows more of our fish and seafood are being farmed. Fish are the main dietary source of the omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, but these cannot be produced in sufficient quantities as are now required for human health. Farmed fish have traditionally been fed a diet consisting of fishmeal and fish oil, rich in n-3 LC-PUFA. However, the increase in global aquaculture production has resulted in these finite and limited marine ingredients being replaced with sustainable alternatives of terrestrial origin that are devoid of n-3 LC-PUFA. Consequently, the nutritional value of the final product has been partially compromised with EPA and DHA levels both falling. Recent calls from the salmon industry for new sources of n-3 LC-PUFA have received significant commercial interest. Thus, this review explores the technologies being applied to produce de novo n-3 LC-PUFA sources, namely microalgae and genetically engineered oilseed crops, and how they may be used in aquafeeds to ensure that farmed fish remain a healthy component of the human diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号