首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A major requirement to design an implant is to develop our understanding of the applied internal forces during everyday activities. In the absence of any basic apparatus for measuring forces directly, it is essential to rely on modelling. The major aim of this study was therefore to understand the biomechanical function of subjects with the reversed anatomy Bayley?Walker prosthesis, using an inverse dynamic shoulder model. In this context, the muscle and joint forces of 12 Bayley–Walker subjects were compared to those of 12 normal subjects during 12 activities of daily living.Maximum glenohumeral contact forces for normal and Bayley–Walker subjects were found to be 77% (±15) and 137% (±21) body weight for lifting a 2 kg shopping bag, and the least forces 29% (±4) and 67% (±8) body weight for reaching to opposite axilla, respectively. For normal subjects, middle deltoid, supraspinatus and infraspinatus were found to be the most active muscles across the subjects and tasks. On the other hand, for implanted subjects with a lack of rotator cuff muscles, the middle deltoid and coracobrachialis muscles were found to be the most active. The biomechanical model can therefore be used in order to gain knowledge about the pathology as well as possible post surgical rehab for subjects with reversed shoulder replacement.  相似文献   

2.
Scapula motion is significant for support of the arm and stability of the shoulder. The effect of the humeral elevation on scapular kinematics has been well investigated for normal subjects, but there are limited published studies investigating adaptations after shoulder arthroplasty. Scapula kinematics was measured on 10 shoulders (eight subjects) with a reverse total joint replacement. The measurements were performed using an instrumented palpating technique. Every subject performed three simple tasks: abduction, elevation in scapula plane and forward flexion. Results indicate that, lateral scapula rotation was significantly increased (average of 24.42% over the normal rhythm) but the change was variable. Despite the variability, there is a clear trend correlating humeral performance with increased rotation (R2 0.829). There is clearly an adaptation in lateral scapula rotation in patients with shoulder joint replacement. The reason for this is unclear and may be related to joint pathology or to muscle adaptation following arthroplasty.  相似文献   

3.
Successful design of components for total shoulder arthroplasty has proven to be challenging. This is because of the difficulties in maintaining fixation of the component that inserts into the scapula; i.e., the glenoid component. Glenoid components that are fixated to both the glenoid and acromion (a long process extending medially on the dorsal aspect of the scapula) have the possible advantage of greater stability over those that are fixated to the glenoid alone. In this study, a finite element analysis is used to investigate whether or not acromion fixation is advantageous for glenoid components. Full muscle loading and joint reaction forces are included in the finite element model. Reflective photoelasticity of five scapulae is used to obtain experimental data to compare with results from the finite element analysis, and it confirms the structural behaviour of the finite element model. When implanted with an acromion-fixated prosthesis, it is found that high unphysiological stresses occur in the scapula bone, and that stresses in the fixation are not reduced. Very high stresses are predicted in that part of the prosthesis which connects the acromion to the glenoid. It is found that the very high stresses are partly in response to the muscle and joint reaction forces acting at the acromion. It is concluded that, because of the relatively high forces acting at the acromion, fixation to it may not be the way forward in glenoid component design.  相似文献   

4.
Glenoid component loosening is the most-frequently encountered problem in the total shoulder arthroplasty. The purpose of the study was to investigate whether failure of the glenoid component is caused by stresses generated within the cement mantle, implant materials and at the various interfaces during humeral abduction, using 3-D FE analyses of implanted glenoid structures. FE models, one total polyethylene and the other, metal backed polyethylene, were developed using CT-scan data and submodelling technique, which was based on an overall solution of a natural scapula model acted upon by all the muscles, ligaments and joint reaction forces. Material interfaces were assumed to be fully bonded. Based on the FE stress analysis, the following observations were made. (1) The submodelling technique, which required a large-size submodel and the use of prescribed displacements at cut-boundaries located far away from the glenoid, was crucial for evaluations on glenoid component. (2) Total polyethylene results in lower-peak stresses (tensile: 10 MPa, Von-Mises: 8.31 MPa) in the cement as compared to a metal-backed design (tensile: 11.5 MPa, Von-Mises: 9.81 MPa). The maximum principal (tensile) stresses generated in the cement mantle for both the designs were below its failure strength, but might evoke crack initiation. (3) The cement-bone interface adjacent to the tip of the keel seemed very likely to fail for both the designs. In case of metal-backed design, this interface adjacent to the tip of the keel appears even more likely to fail. (4) High metal-cement interface stresses for a moderate load might indicate failure at higher load. (5) It appears that both the designs were vulnerable to failure in some ways or the other. A part of the subchondral bone along the longitudinal axis of the glenoid cavity should be preserved to strengthen the glenoid structure and to reduce the use of cement.  相似文献   

5.
6.
7.
Glenoid component loosening is the dominant cause of failure in total shoulder arthroplasty. It is presumed that loosening in the glenoid is caused by high stresses in the cement layer. Several anchorage systems have been designed with the aim of reducing the loosening rate, the two major categories being "keeled" fixation and "pegged" fixation. However, no three-dimensional finite element analysis has been performed to quantify the stresses in the cement or to compare the different glenoid prosthesis anchorage systems. The objective of this study was to determine the stresses in the cement layer and surrounding bone for glenoid replacement components. A three-dimensional model of the scapula was generated using CT data for geometry and material property definition. Keeled and pegged designs were inserted into the glenoid, surrounded by a 1-mm layer of bone cement. A 90 deg arm abduction load with a full muscle and joint load was applied, following van der Helm (1994). Deformations of the prosthesis, stresses in the cement, and stresses in the bone were calculated. Stresses were also calculated for a simulated case of rheumatoid arthritis (RA) in which bone properties were modified to reflect that condition. A maximum principal stress-based failure model was used to predict what quantity of the cement is at risk of failure at the levels of stress computed. The prediction is that 94 percent (pegged prosthesis) and 68 percent (keeled prosthesis) of the cement has a greater than 95 percent probability of survival in normal bone. In RA bone, however, the situation is reversed where 86 percent (pegged prosthesis) and 99 percent (keeled prosthesis) of the cement has a greater than 95 percent probability of survival. Bone stresses are shown to be not much affected by the prosthesis design, except at the tip of the central peg or keel. It is concluded that a "pegged" anchorage system is superior for normal bone, whereas a "keeled" anchorage system is superior for RA bone.  相似文献   

8.
9.
The gross anatomy of the forelimb of theGalago senegalensis is described. The skeletal, muscular, nervous, and vascular systems are illustrated. TheGalago senegalensis is compared to theTarsius and other selected primates. Also examined in the study are muscle attachments and selected upper limb indices derived from measurements of bone dimensions.  相似文献   

10.
There is little information on bone morphology as it relates to shoulder activities. This study investigated how loads corresponding to functional shoulder activities affect the trabecular architecture of the glenoid. Two different protocols were used. Protocol 1 investigated the material and morphological characteristics of the glenoid by analyzing digitized trabecular bone images obtained from 12 cadaver scapula specimens. Protocol 2 used a finite element analysis (FEA) to compute the principal stress trajectories acting within the glenoid. The principal stresses were derived for five loading conditions, which represent typical functional shoulder activities. The study showed that shoulder activity involved in carrying a light load makes the greatest contribution to the trabecular architecture compared with other shoulder activities considered in this study (p<0.05). With all of the activities considered in this study, the lateral region, particularly in the anterior and posterior portions, showed greater deviation and greater sensitivity to variation under loading conditions than did the other regions (p<0.05). These results suggest that owing to the extra sensitivity of the anterior and posterior parts of the lateral region, these regions may be more informative in the analysis of the trabecular architecture following shoulder musculoskeletal injuries. These results may provide essential design information for shoulder prostheses and contribute to an understanding of morphological changes resulting from injury.  相似文献   

11.
Bone ingrowth simulation for a concept glenoid component design   总被引:5,自引:0,他引:5  
Glenoid component loosening is the major problem of total shoulder arthroplasty. It is possible that uncemented component may be able to achieve superior fixation relative to cemented component. One option for uncemented glenoid is to use porous tantalum backing. Bone ingrowth into the porous backing requires a degree of stability to be achieved directly post-operatively. This paper investigates the feasibility of bone ingrowth with respect to the influence of primary fixation, elastic properties of the backing and friction at the bone prosthesis interface. Finite element models of three glenoid components with different primary fixation configurations are created. Bone ingrowth into the porous backing is modelled based on the magnitude of the relative interface micromotions and mechanoregulation of the mesenchymal stem cells that migrated via the bonded part of the interface. Primary fixation had the most influence on bone ingrowth. The simulation showed that its major role was not to firmly interlock the prosthesis, but rather provide such a distribution of load, that would result in reduction of the peak interface micromotions. Should primary fixation be provided, friction has a secondary importance with respect to bone ingrowth while the influence of stiffness was counter intuitive: a less stiff backing material inhibits bone ingrowth by higher interface micromotions and stimulation of fibrous tissue formation within the backing.  相似文献   

12.
13.
Macroscopical and histological examinations were carried out in order to investigate the anatomy of the limbus glenoidalis, with respect to its surrounding structures such as tendons and ligaments. Basically the crosscut limbus glenoidalis has a triangular shape, however, especially in its anterior part, it has a meniscoid or labiate form. Histologically the limbus glenoidalis consists exclusively of connective tissue, rich in cells and fibers. It originates from the fibrocartilaginous rim of the glenoid surface, which merges into the hyalin cartilage. The bundles of fibers have a circular arrangement with radially and reticularly interwoven structures near the tendons of the biceps and triceps muscle.  相似文献   

14.
The notching phenomenon is one of the major concerns with reversed total shoulder arthroplasty. Repetitive contact between the humeral implant and the scapula (mechanical notching) produces progressive abrasion of the implant if the moving part is made of polyethylene. Its debris may then lead to active osteolysis (biological notching). Inversion of bearing materials, i.e. Glenosphere made of polyethylene and humeral Inlay made of metal, aims at the reduction of this phenomenon. However, the question arises if the tribological behavior would then be different. On an experimental setup, the gravimetric wear of both material configurations was measured after loading and moving over 500,000 cycles. The abrasion of the polyethylene Inlay due to mechanical notching was calculated by means of 3D CAD models with different notching stages. The loss of mass due to gravimetric wear was compared to the loss of mass caused by mechanical notching. After 500,000 cycles the measured amount of wear of the polyethylene components was between 8 and 10 mg for both tribological pairings. The calculated loss of mass of the polyethylene Inlay caused by mechanical notching ranged from 73 to 3881 mg. The results of this study indicate that the gravimetric polyethylene wear in the estimated life-time is very low and not significantly different between both material configurations. However, the polyethylene abrasion due to mechanical notching in the configuration with polyethylene Inlay is by far more important than any gravimetric wear. These results support the continued use of inverted bearings in reversed total shoulder arthroplasty.  相似文献   

15.
16.
We present a one-dimensional (1D) fluid dynamic model that can predict blood flow and blood pressure during exercise using data collected at rest. To facilitate accurate prediction of blood flow, we developed an impedance boundary condition using morphologically derived structured trees. Our model was validated by computing blood flow through a model of large arteries extending from the thoracic aorta to the profunda arteries. The computed flow was compared against measured flow in the infrarenal (IR) aorta at rest and during exercise. Phase contrast-magnetic resonance imaging (PC-MRI) data was collected from 11 healthy volunteers at rest and during steady exercise. For each subject, an allometrically-scaled geometry of the large vessels was created. This geometry extends from the thoracic aorta to the femoral arteries and includes the celiac, superior mesenteric, renal, inferior mesenteric, internal iliac and profunda arteries. During rest, flow was simulated using measured supraceliac (SC) flow at the inlet and a uniform set of impedance boundary conditions at the 11 outlets. To simulate exercise, boundary conditions were modified. Inflow data collected during steady exercise was specified at the inlet and the outlet boundaries were adjusted as follows. The geometry of the structured trees used to compute impedance was scaled to simulate the effective change in the cross-sectional area of resistance vessels and capillaries due to exercise. The resulting computed flow through the IR aorta was compared to measured flow. This method produces good results with a mean difference between paired data to be 1.1 ± 7 cm3 s? 1 at rest and 4.0 ± 15 cm3 s? 1 at exercise. While future work will improve on these results, this method provides groundwork with which to predict the flow distributions in a network due to physiologic regulation.  相似文献   

17.
The widespread use of FEA within orthopaedics is often prohibited by the limits of available computational power, with simplifications to the model often necessary in order to permit solution. An example of this includes the use of osseous models that exclude muscular loading, and may consist of only a partial or truncated region of the anatomy. However, is it possible to make such simplifications without affecting the predictive quality of the model? This issue has been considered using the specific example of the total shoulder reconstruction, where the effects of including the entire osseous region and/or the muscle loadings, has been evaluated. The effect of including the muscle loadings and the entire osseous structure was seen to increase with distance from the articular surface of the glenoid prosthesis. Stresses in the cement mantle were reduced in the absence of either the entire scapula bone or the muscle loading. The study suggests that the use of a fully defined scapula (hard- and soft-tissue) is particularly important when investigating fixation, whilst less comprehensive models should be appropriate for studies of the prosthesis exclusively.  相似文献   

18.
The excursions of wing elements and the activity of eleven shoulder muscles were studied by cineradiography and electromyography in European starlings (Sturnus vulgaris) flying in a wind tunnel at speeds of 9–20 m s?1. At the beginning of downstroke the humerus is elevated 80–90° above horizontal, and both elbow and wrist are extended to 90° or less. During downstroke, protraction of the humerus (55°) remains constant; elbow and wrist are maximally extended (120° and 160°, respectively) as the humerus passes through a horizontal orientation. During the downstroke-upstroke transition humeral depression ceases (at about 20° below horizontal) and the humerus begins to retract. However, depression of the distal wing continues by rotation of the humerus and adduction of the carpometacarpus. Humeral retraction (to within about 30° of the body axis) is completed early in upstroke, accompanied by flexion of the elbow and carpometacarpus. Thereafter the humerus begins to protract as elevation continues. At mid-upstroke a rapid counterrotation of the humerus reorients the ventral surface of the wing to face laterad; extension of the elbow and carpometacarpus are initiated sequentially. The upstroke-downstroke transition is characterized by further extension of the elbow and carpometacarpus, and the completion of humeral protraction. Patterns of electromyographic activity primarily coincide with the transitional phases of the wingbeat cycle rather than being confined to downstroke or upstroke. Thus, the major downstroke muscles (pectoralis, coracobrachialis caudalis, sternocoracoideus, subscapularis, and humerotriceps) are activated in late upstroke to decelerate, extend, and reaccelerate the wing for the subsequent downstroke; electromyographic activity ends well before the downstroke is completed. Similarly, the upstroke muscles (supracoracoideus, deltoideus major) are activated in late downstroke to decelerate and then reaccelerate the wing into the upstroke; these muscles are deactivated by mid-upstroke. Only two muscles (scapulohumeralis caudalis, scapulotriceps) exhibit electromyographic activity exclusively during the downstroke. Starlings exhibit a functional partitioning of the two heads of the triceps (the humerotriceps acts with the pectoralis group, and does not overlap with the scapulotriceps). The biphasic pattern of the biceps brachii appears to correspond to this partitioning.  相似文献   

19.
20.
The excursions of the scapulocoracoid and forelimb and the activity of 18 shoulder muscles were studied by simultaneous cineradiography and electromyography in Savannah Monitor lizards (Varanus exanthematicus) walking on a treadmill at speeds of 0.7–1.1 km/hour. During the propulsive phase, the humerus moves anteroposteriorly 40–55° and rotates a total of 30–40°. Simultaneously, the coracoid translates posteriorly along the tongue-and-groove coracosternal joint by a distance equivalent to about 40% the length of the coracoid. Biceps brachii, coraco-brachialis brevis and longus, the middle and posterior parts of the latissimus dorsi and pectoralis, serratus anterior, serratus anterior superficialis, subscapularis, supracoracoideus, and triceps usually become active during the late swing phase and continue activity throughout most or all of propulsion. The anterior part of the latissimus dorsi is active during the transition from propulsive to swing phases. Brachialis, deltoideus scapularis, levator scapulae, the anterior part of pectoralis, scapulo-humeralis posterior, and subcoracoideus are active primarily during the swing phase; they are occasionally active during propulsion. Deltoideus clavicularis, scapulo-humeralis posterior, sternocoracoideus, and the posterior part of the trapezius are biphasic, with activity in both the propulsive and swing phases. A number of shoulder muscles in Varanus exanthematicus and Didelphis virginiana (the Virginia opossum) are similar in attachments, in activity patterns with respect to phases of the step cycle, and in apparent actions. These similarities are interpreted as a pattern inherited from the ancestors of higher tetrapods. The sliding coracosternal joint permits an increase in step length without demanding greater excursion at the shoulder and elbow joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号