首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorus magic angle spinning nuclear magnetic resonance (NMR) spectra and transversal relaxation of M13 and TMV are analyzed by use of a model, which includes both local backbone motions of the encapsulated nucleic acid molecules and overall rotational diffusion of the rod-shaped virions about their length axis. Backbone motions influence the sideband intensities by causing a fast restricted reorientation of the phosphodiesters. To evaluate their influence on the observed sideband patterns, we extend the model that we used previously to analyze nonspinning 31P NMR lineshapes (Magusin, P.C.M.M., and M. A. Hemminga. 1993a. Biophys. J. 64:1861-1868) to magic angle spinning NMR experiments. Backbone motions also influence the conformation of the phosphodiesters, causing conformational averaging of the isotropic chemical shift, which offers a possible explanation for the various linewidths of the centerband and the sidebands observed for M13 gels under various conditions. The change of the experimental lineshape of M13 as a function of temperature and hydration is interpreted in terms of fast restricted fluctuation of the dihedral angles between the POC and the OCH planes on both sides of the 31P nucleus in the nucleic acid backbone. Backbone motions also seem to be the main cause of transversal relaxation measured at spinning rates of 4 kHz or higher. At spinning rates less than 2 kHz, transversal relaxation is significantly faster. This effect is assigned to slow, overall rotation of the rod-shaped M13 phage about its length axis. Equations are derived to simulate the observed dependence of T2e on the spinning rate.  相似文献   

2.
NMR spectra of ubiquitin in the presence of bicelles at a concentration of 25% w/v have been recorded under sample spinning conditions for different angles of rotation. For an axis of rotation equal to the magic angle, the (1)H/(15)N HSQC recorded without any (1)H decoupling in the indirect dimension corresponds to the classical spectrum obtained on a protein in an isotropic solution and allows the measurement of scalar J-couplings (1) J (NH). For an angle of rotation smaller than the magic angle, the bicelles orient with their normal perpendicular to the spinning axis, whereas for an angle of rotation greater than the magic angle the bicelles orient with their normal along the spinning axis. This bicelle alignment creates anisotropic conditions that give rise to the observation of residual dipolar couplings in ubiquitin. The magnitude of these dipolar couplings depends directly on the angle that the rotor makes with the main magnetic field. By changing this angle in a controlled manner, residual dipolar couplings can be either scaled up or down thus offering the possibility to study simultaneously a wide range of dipolar couplings in the same sample.  相似文献   

3.
Alamethicin was synthesized with 15N incorporated into alanine at position 6 in the peptide sequence. In dispersions of hydrated dimyristoylphosphatidylcholine, solid-state 15N NMR yields an axially symmetric powder pattern indicating that the peptide is reorienting with a single axis of symmetry when associated with lamellar lipids. When incorporated into bilayers that are uniformly oriented with the bilayer normal parallel to the B(o) field, the position of the observed 15N chemical shift is 171 ppm. This is coincident with the sigma parallel to edge of the axially symmetric powder pattern for non-oriented hydrated samples. Thus the axis of motional averaging lies along the bilayer normal. Two-dimensional separated local field spectra were obtained that provide a measure of the N-H dipolar coupling in one dimension and the 15N chemical shift in the other. These data yield a dipolar coupling of 17 kHz corresponding to an average angle of 24 degrees for the N-H bond with respect to the B(o) field axis. An analysis of the possible structures and orientations that could produce the observed spectral parameters show that these values are consistent with an alpha-helical conformation inserted along the bilayer normal.  相似文献   

4.
Magic angle spinning 13C NMR was used to study tobacco mosaic virus (TMV) in solution. Well-resolved 13C NMR spectra were obtained, in which several carbon resonances of amino acids of the TMV coat protein subunits that are not observable by conventional high-resolution NMR spectroscopy can be designed. RNA resonance were absent, however, in the magic angle spinning 13C NMR spectra. Since three different binding sites are available for each nucleotide of the RNA, this is probably due to a line broadening caused by distributions of isotropic chemical shift values. In 13C-enriched TM 13C-13C dipolar interactions also gave rise to line broadening. By suitable pulse techniques that discriminate carbon resonances on the basis of their T1 and T1 rho values, it was possible to select particular groups of carbon nuclei with characteristic motional properties. Magic angle spinning 13C NMR spectra obtained with these pulse techniques are extremely well resolved.  相似文献   

5.
Biological membranes are characterized by a high degree of dynamics. In order to understand the function of membrane proteins and even more of membrane-associated peptides, these motional aspects have to be taken into consideration. Solid-state NMR spectroscopy is a method of choice when characterizing topological equilibria, molecular motions, lateral and rotational diffusion as well as dynamic oligomerization equilibria within fluid phase lipid bilayers. Here we show and review examples where the 15N chemical shift anisotropy, dipolar interactions and the deuterium quadrupolar splittings have been used to analyze motions of peptides such as peptaibols, antimicrobial sequences, Vpu, phospholamban or other channel domains. In particular, simulations of 15N and 2H-solid-state NMR spectra are shown of helical domains in uniaxially oriented membranes when rotation around the membrane normal or the helix long axis occurs.  相似文献   

6.
We have determined the relative magnitudes of the intra- and intermolecular contributions to the nuclear magnetic relaxation rates of the methylene protons of the hydrocarbon chains in phosphatidylcholine bilayer vesicles over a range of temperatures and at two NMR frequencies (100 and 220 MHz). These measurements have been made by the isotopic dilution method using deuterated phosphatidylcholines containing fully deuterated hydrocarbon chains. The results showed that both the methylene linewidths and the spin-lattice relaxation rates are dominated by intramolecular dipolar interactions. Both the intra- and intermolecular contributions to the spin-lattice relaxation rate were found to decrease with increasing temperature and to exhibit a frequency dependence, the rates being higher at the lower NMR frequency in both cases. These observations indicate that both intra- and intermolecular dipolar interactions are modulated by anisotropic motions. In the case of the intermolecular dipolar fields, it is proposed that they are modulated both by the rapid rotational isomerization of the hydrocarbon chains as well as by lateral diffusion of the lipid molecules. That the hydrocarbon chain motion must be fairly effective in effecting efficient spin-lattice relaxation is evident from the negligible intramolecular interchain contribution to the relaxation found in the present work.  相似文献   

7.
The local and global dynamics of the chemokine receptor CXCR1 are characterized using a combination of solution NMR and solid-state NMR experiments. In isotropic bicelles (q = 0.1), only 13% of the expected number of backbone amide resonances is observed in (1)H/(15)N HSQC solution NMR spectra of uniformly (15)N-labeled samples; extensive deuteration and the use of TROSY made little difference in the 800 MHz spectra. The limited number of observed amide signals is ascribed to mobile backbone sites and assigned to specific residues in the protein; 19 of the signals are from residues at the N-terminus and 25 from residues at the C-terminus. The solution NMR spectra display no evidence of local backbone motions from residues in the transmembrane helices or interhelical loops of CXCR1. This finding is reinforced by comparisons of solid-state NMR spectra of both magnetically aligned and unoriented bilayers containing either full-length or doubly N- and C-terminal truncated CXCR1 constructs. CXCR1 undergoes rapid rotational diffusion about the normal of liquid crystalline phospholipid bilayers; reductions in the frequency span and a change to axial symmetry are observed for both carbonyl carbon and amide nitrogen chemical shift powder patterns of unoriented samples containing (13)C- and (15)N-labeled CXCR1. In contrast, when the phospholipids are in the gel phase, CXCR1 does not undergo rapid global reorientation on the 10(4) Hz time scale defined by the carbonyl carbon and amide nitrogen chemical shift powder patterns.  相似文献   

8.
The alignment of pyrene in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer was investigated using two different approaches, namely solid-state (2)H-NMR spectroscopy and molecular dynamics (MD) simulations. Quadrupolar splittings from (2)H-NMR spectra of deuterated pyrene-d(10) in an oriented lipid bilayer give information about the orientation of C-D bonds with respect to the membrane normal. From MD simulations, geometric information is accessible via trajectories. By defining molecular and bond order parameters, the data from MD trajectories and NMR spectra can be compared straightforwardly. To ensure that the results from both methods are comparable, parameters of the experimental and the simulation setup were chosen to be as similar as possible. From simulations, we saw that pyrene prefers a position inside the lipid membrane near the headgroups and has no tendency to diffuse from one monolayer of the membrane to the other. The results from simulation and NMR show that the normal of the molecular plane is aligned nearly perpendicular to the bilayer normal. The long axis of pyrene lies preferentially parallel to the bilayer normal within a range of +/-30 degrees . The results from the two different methods are remarkably consistent. The good agreement can be explained by the fact that the different kind of motions of a pyrene molecule are already averaged within a few nanoseconds, which is the timescale covered by the MD simulation.  相似文献   

9.
Residual dipolar couplings are being increasingly used as structural constraints for NMR studies of biomolecules. A problem arises when dipolar coupling contributions are larger than scalar contributions for a given spin pair, as is commonly observed in solid state NMR studies, in that signs of dipolar couplings cannot easily be determined. Here the sign ambiguities of dipolar couplings in field-oriented bicelles are resolved by variable angle sample spinning (VASS) techniques. The director behavior of field-oriented bicelles (DMPC/DHPC, DMPC/CHAPSO) in VASS is studied by 31P NMR. A stable configuration occurs when the spinning angle is smaller than the magic angle, 54.7°, and the director (or bicelle normal) of the disks is mainly distributed in a plane perpendicular to the rotation axis. Since the dipolar couplings depend on how the bicelles are oriented with respect to the magnetic field, it is shown that the dipolar interaction can be scaled to the same order as the J-coupling by moving the spinning axis from 0° toward 54.7°. Thus the relative sign of dipolar and scalar couplings can be determined.  相似文献   

10.
Solid state deuterium (2H) NMR inversion-recovery and Jeener-Broekaert relaxation experiments were performed on oriented multilamellar dispersions consisting of 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine and 2H exchange-labeled gramicidin D, at a lipid to protein molar ratio (L/P) of 15:1, in order to study the dynamics of the channel conformation of the peptide in a liquid crystalline phase. Our dynamic model for the whole body motions of the peptide includes diffusion of the peptide around its helix axis and a wobbling diffusion around a second axis perpendicular to the local bilayer normal in a simple Maier-Saupe mean field potential. This anisotropic diffusion is characterized by the correlation times, tau R parallel and tau R perpendicular. Aligning the bilayer normal perpendicular to the magnetic field and graphing the relaxation rate, 1/T1Z, as a function of (1-S2N-2H), where S2N-2H represents the orientational order parameter, wer were able to estimate the correlation time, tau R parallel, for rotational diffusion. Although in the quadrupolar splitting, which varies as (3 cos2 theta D-1), has in general two possible solutions to theta D in the range 0 < or = theta D < or = 90 degrees, the 1/T1Z vs. (1-S2N-2H) curve can be used to determine a single value of theta D in this range. Thus, the 1/T1Z vs. (1-S2N-2H) profile can be used both to define the axial diffusion rate and to remove potential structural ambiguities in the splittings. The T1Z anisotropy permits us to solve for the two correlation times (tau R parallel = 6.8 x 10(-9) s and tau R perpendicular = 6 x 10(-6) s). The simulated parameters were corroborated by a Jeener-Broekaert experiment where the bilayer normal was parallel to the principal magnetic field. At this orientation the ratio, J2(2 omega 0)/J1(omega 0) was obtained in order to estimate the strength of the restoring potential in a model-independent fashion. This measurement yields the rms angle, <theta 2>1/2 (= 16 +/- 2 degrees at 34 degrees C), formed by the peptide helix axis and the average bilayer normal.  相似文献   

11.
Stimulated echo pulsed-field gradient 1H magic angle spinning NMR has been used to investigate the mobility of water, ubiquinone and tethered phospholipids, components of a biomimetic model membrane. The diffusion constant of water corresponds to an isotropic motion in a cylinder. When the lipid bilayer is obtained after the fusion of small unilamellar vesicles, the extracted value of lipid diffusion indicates unrestricted motion. The cylindrical arrangement of the lipids permits a simplification of data analysis since the normal bilayer is perpendicular to the gradient axis. This feature leads to a linear relation between the logarithm of the attenuation of the signal intensity and a factor depending on the gradient strength, for lipids covering the inner wall of aluminium oxide nanopores as well as for lipids adsorbed on a polymer sheet rolled into a cylinder. The effect of the bilayer formation on water diffusion has also been observed. The lateral diffusion coefficient of ubiquinone is in the same order of magnitude as the lipid lateral diffusion coefficient, in agreement with its localization within the bilayer.  相似文献   

12.
Relaxation times and integrated intensities have been obtained from dipolar decoupled 13C magnetic resonance spectra of reconstituted fibrils of chick calvaria collagen enriched at the glycine Ca and C′ positions. The data obtained are consistent with a model in which collagen molecules reorient about the long axis of the helix with a rotational diffusion constant (R1) of ~107 s?1, a value similar to that expected for the helix in solution. Data obtained from natural abundance 13C spectra of native (crosslinked) calf achilles tendon and rat tail tendon provide evidence of rapid anisotropic reorientation for at least 75% of the carbons in these tissues. Hence, our preliminary data indicate that, in these materials, the intermolecular interactions in the fibrilar collagen lattice can accommodate rapid reorientation at a majority of carbon sites.  相似文献   

13.
We compared (13)C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled bacterio-opsin (bO), produced either by bleaching bR with hydroxylamine or from a retinal-deficient strain, with those of bacteriorhodopsin (bR), in order to gain insight into the conformational changes of the protein backbone that lead to correct folding after retinal is added to bO. The observed (13)C NMR spectrum of bO produced by bleaching is not greatly different from that of bR, except for the presence of suppressed or decreased peak-intensities. From careful evaluation of the intensity differences between cross polarization magic angle spinning (CP-MAS) and dipolar decoupled-magic angle spinning (DD-MAS) spectra, it appears that the reduced peak-intensities arise from reduced efficiency of cross polarization or interference of internal motions with proton decoupling frequencies. In particular, the E-F and F-G loops and some transmembrane helices of the bleached bO have acquired internal motions whose frequencies interfere with proton decoupling frequencies. In contrast, the protein backbone of the bO from the retinal-negative cells is incompletely folded. Although it contains mainly a-helices, its very broad (13)C NMR signals indicate that its tertiary structure is different from bR. Importantly, this changed structure is identical in form to that of bleached bO from wild-type bR after it was regenerated with retinal in vitro, and bleached with hydroxylamine. We conclude that the binding of retinal is essential for the correct folding of bR after it is inserted in vitro into the lipid bilayer, and the final folded state does not revert to the partially folded form upon removal of the retinal.  相似文献   

14.
Solid-state 2H NMR spectroscopy has been employed to study the channel conformation of gramicidin A (GA) in unoriented 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC) multilayers. Quadrupolar echo spectra were obtained at 44 degrees C and 53 degrees C, from gramicidin A labels in which the proton attached to the alpha carbon of residue 3, 4, 5, 10, 12, or 14 was replaced with deuterium. Because of the nearly axially symmetric electric field gradient tensor, the quadrupolar splittings obtained from an unoriented multilamellar dispersion of DMPC and singly labeled GA directly yield unambiguous orientational constraints on the C-2H bonds. The average of the ratios of the quadrupolar splittings of the left-handed amino acids to those of the right-handed amino acids, (delta vQL/delta vQD), is expected to be 0.97 +/- 0.04 for a relaxed right-handed beta 6.3LD helix, while a ratio of 0.904 +/- 0.003 is expected for a left-handed beta LD6.3 helix. Since we have experimentally determined this ratio to be 1.01 +/- 0.04, we conclude that that the helix sense of the channel conformation of GA is right-handed. Assuming that the dominant motions are fast axial diffusion of the gramicidin molecule and reorientation of the diffusion axis with respect to the local bilayer normal, then the theoretical splittings may all be scaled down by a constant motional narrowing factor. In this case, a relaxed right-handed beta LD6.3 helix, whose axis of motional averaging is roughly along the presumed helix axis, gave the best fit to experimental results. The reasonably uniform correspondence between the splittings predicted by the relaxed right-handed beta LD6.3 helix and the observed splittings, for labels from both the inner and outer turn of GA, did not reflect a peptide backbone flexibility gradient, since an outer turn (i.e., the turn of the helix closest to the interface with water) with greater flexibility would show additional motional narrowing for labels located there.  相似文献   

15.
Stimulated echo pulsed-field gradient 1H magic angle spinning NMR has been used to investigate the mobility of water, ubiquinone and tethered phospholipids, components of a biomimetic model membrane. The diffusion constant of water corresponds to an isotropic motion in a cylinder. When the lipid bilayer is obtained after the fusion of small unilamellar vesicles, the extracted value of lipid diffusion indicates unrestricted motion. The cylindrical arrangement of the lipids permits a simplification of data analysis since the normal bilayer is perpendicular to the gradient axis. This feature leads to a linear relation between the logarithm of the attenuation of the signal intensity and a factor depending on the gradient strength, for lipids covering the inner wall of aluminium oxide nanopores as well as for lipids adsorbed on a polymer sheet rolled into a cylinder. The effect of the bilayer formation on water diffusion has also been observed. The lateral diffusion coefficient of ubiquinone is in the same order of magnitude as the lipid lateral diffusion coefficient, in agreement with its localization within the bilayer.  相似文献   

16.
In the established interpretation of nuclear magnetic resonance (NMR) spectra of phospholipid bilayers in the gel state, the molecules are assumed to perform rotational diffusion about their long axis. Here we present an alternative model of the molecular mobility in this phase, which considers the positions of the lipid molecules in the two-dimensional bilayer lattice as fixed within the NMR timescale. Instead we assume an intramolecular two-site hopping of the hydrocarbon chains about their long axis. It is shown that deuterium NMR spectra of chain-labeled compounds are very sensitive to the precise angle of this flip-flop motion near 90°, so that the diversity of these gel-phase spectra is easily explained by slight variations of this angle. In addition, it is argued that the axial symmetry of 13C spectra of carbonyl-labeled phospholipids might also result from this intramolecular mobility.  相似文献   

17.
Six saturated acylglycerols (1-myristoyl-sn-glycerol, 1-palmitoyl-sn-glycerol, 1,2-dimyristoyl-sn-glycerol, 1,2-dipalmitoyl-sn-glycerol, 1,2-dipalmitoyl-rac-glycerol, and 1,3-dimyristoylglycerol) were studied in their various polymorphic forms (sub-alpha, alpha, beta') by natural abundance C-13 nuclear magnetic resonance (NMR) with magic angle spinning (MASNMR). C-13 MASNMR does not require single crystals and can observe relatively disordered crystals, distinct advantages over crystallographic diffraction methods. Well resolved spectra were obtained for each acylglycerol, and the chemical shifts of corresponding carbons were different for each crystalline phase and the isotropic liquid phase; moreover, in the case of monoacylglycerols, the symmetrically nonequivalent molecules in the same crystalline structure gave distinct C-13 resonances for the same carbon. The C-13 chemical shifts corresponding to each polymorphic phase were interpreted in terms of differences in intramolecular bond distances, intermolecular interactions (such as H bonding), and molecular motions. Mobilities of the glycerol backbone and acyl chains were assessed by the C-13 linewidths and the C-H dipolar relaxation rates. The chemical shift anisotropy(ies) (delta sigma) of the carbonyl group(s) of each acylglycerol was determined from slow-spinning MAS spectra, and was discussed in terms of the conformational and/or motional changes for the carbonyl carbon(s).  相似文献   

18.
Two-dimensional solid-state 2H NMR spectroscopy of specifically deuteriated lipids is used to detect and to characterize the rate and mode of slow motions in two lipid bilayer systems. Lateral diffusion of lipid molecules over the curved surface of dipalmitoylphosphatidylcholine liposomes can be detected by two-dimensional exchange 2H NMR and it is shown that molecular orientational exchange is complete on the timescale of 100 ms. In contrast, it is shown that for the glycolipid 1,2-di-O-tetradecyl-3-O-Beta-D-glucopyranosyl)-sn-glycerol (beta-DTGL), there is no evidence of a corresponding orientational exchange in the liquid-crystalline phase suggesting that this lipid forms relatively flat bilayers. In the gel phase of hydrated multibilayers of beta-DTGL, a slow (10(3) s(-1)) whole molecule axial motion is demonstrated at 40 degrees C. Comparison of the experimental and simulated 2D-NMR ridge patterns suggests that large angle jumps about the long molecular axis, rather than small step Brownian diffusion, can best account for the 2D-exchange spectra of beta-DTGL in the gel phase. The significance of this technique for the study of dynamics in other biological systems is discussed.  相似文献   

19.
We have recorded (13)C NMR spectra of [2-(13)C]-, [1-(13)C]-, [3-(13)C],- and [1,2,3-(13)C(3)]Ala-labeled bacteriorhodopsin (bR), and its mutants, A196G, A160G, and A103C, by means of cross polarization-magic angle spinning (CP-MAS) and dipolar decoupled-magic angle spinning (DD-MAS) techniques, to reveal the conformation and dynamics of bR, with emphasis on the loop and C-terminus structures. The (13)C NMR signals of the loop (C-D, E-F, and F-G) regions were almost completely suppressed from [2-(13)C]-, [1-(13)C]Ala-, and [1-(13)C]Gly-labeled bR, due to the presence of conformational fluctuation with correlation times of 10(-4) s that interfered with the peak-narrowing by magic angle spinning. The observation of such suppressed peaks for specific residues provides a unique means of detecting intermediate frequency motions on the time scale of ms or micros in the surface loops of membrane proteins. Instead, the three well-resolved (13)C CP-MAS NMR signals of [2-(13)C]Ala-bR, at 50.38, 49.90, and 47.96 ppm, were ascribed to the C-terminal alpha-helix previously proposed from the data for [3-(13)C]Ala-bR: the former two peaks were assigned to Ala 232 and 238, in view of the results of successive proteolysis experiments, while the highest-field peak was ascribed to Ala 235 prior to Pro 236. Even such (13)C NMR signals were substantially broadened when (13)C NMR spectra of fully labeled [1,2,3-(13)C]Ala-bR were recorded, because the broadening and splitting of peaks due to the accelerated transverse relaxation rate caused by the increased number of relaxation pathways through a number of (13)C-(13)C homo-nuclear dipolar interactions and scalar J couplings, respectively, are dominant among (13)C-labeled nuclei. In addition, approximate correlation times for local conformational fluctuations of different domains, including the C-terminal tail, C-terminal alpha-helix, loops, and transmembrane alpha-helices, were estimated by measurement of the spin-lattice relaxation times in the laboratory frame and spin-spin relaxation times under the conditions of cross-polarization-magic angle spinning, and comparative study of suppressed specific peaks between the CP-MAS and DD-MAS experiments.  相似文献   

20.
NMR spectra of ubiquitin in the presence of bicelles at a concentration of 32% w/v have been recorded at 700 MHz under sample spinning conditions at the magic angle (54.7°) and at an angle of 45.5°. At the magic angle, the 1H–15N HSQC spectrum of ubiquitin in bicelles is virtually indistinguishable from the one recorded on the protein in solution. Spinning the sample at the magic angle creates an isotropic environment with no preferred bicelle orientations, thus allowing the determination of scalar coupling constants. For an angle of rotation of 45.5°, the bicelles orient with their normal perpendicular to the spinning axis leading to the observation of strong residual dipolar couplings and chemical shift variations of the 15N resonances. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号