首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heme-binding proteins Shp and HtsA are part of the heme acquisition machinery found in Streptococcus pyogenes. The hexacoordinate heme (Fe(II)-protoporphyrin IX) or hemochrome form of holoShp (hemoShp) is stable in air in Tris-HCl buffer, pH 8.0, binds to apoHtsA with a K(d) of 120 +/- 18 microm, and transfers its heme to apoHtsA with a rate constant of 28 +/- 6s(-1) at 25 degrees C, pH 8.0. The hemoHtsA product then autoxidizes to the hexacoordinate hemin (Fe(III)-protoporphyrin IX) or hemichrome form (hemiHtsA) with an apparent rate constant of 0.017 +/- 0.002 s(-1). HemiShp also rapidly transfers hemin to apoHtsA through a hemiShp.apoHtsA complex (K(d) = 48 +/- 7 microM) at a rate approximately 40,000 times greater than the rate of simple hemin dissociation from hemiShp into solvent (k(transfer) = 43 +/- 3s(-1) versus k(-hemin) = 0.0003 +/- 0.00006 s(-1)). The rate constants for hemin binding to and dissociation from HtsA (k'(hemin) approximately 80 microm(-1) s(-1), k(-hemin) = 0.0026 +/- 0.0002 s(-1)) are 50- and 10-fold greater than the corresponding rate constants for Shp (k(hemin) approximately 1.6 microM(-1) s(-1), k(-hemin) = 0.0003 s(-1)), which implies that HtsA has a more accessible active site. However, the affinity of apoHtsA for hemin (k(hemin) approximately 31,000 microm(-1)) is roughly 5-fold greater than that of apoShp (k(hemin) approximately 5,300 microM(-1)), accounting for the net transfer from Shp to HstA. These results support a direct, rapid, and affinity-driven mechanism of heme and hemin transfer from the cell surface receptor Shp to the ATP-binding cassette transporter system.  相似文献   

2.
Surface proteins Shr, Shp, and the ATP-binding cassette (ABC) transporter HtsABC are believed to make up the machinery for heme uptake in Streptococcus pyogenes. Shp transfers its heme to HtsA, the lipoprotein component of HtsABC, providing the only experimentally demonstrated example of direct heme transfer from a surface protein to an ABC transporter in Gram-positive bacteria. To understand the structural basis of heme transfer in this system, the heme-binding domain of Shp (Shp180) was crystallized, and its structure determined to a resolution of 2.1 Å. Shp180 exhibits an immunoglobulin-like β-sandwich fold that has been recently found in other pathogenic bacterial cell surface heme-binding proteins, suggesting that the mechanisms of heme acquisition are conserved. Shp shows minimal amino acid sequence identity to these heme-binding proteins and the structure of Shp180 reveals a unique heme-iron coordination with the axial ligands being two methionine residues from the same Shp molecule. A negative electrostatic surface of protein structure surrounding the heme pocket may serve as a docking interface for heme transfer from the more basic outer cell wall heme receptor protein Shr. The crystal structure of Shp180 reveals two exogenous, weakly bound hemins, which form a large interface between the two Shp180 molecules in the asymmetric unit. These “extra” hemins form a stacked pair with a structure similar to that observed previously for free hemin dimers in aqueous solution. The propionates of the protein-bound heme coordinate to the iron atoms of the exogenous hemin dimer, contributing to the stability of the protein interface. Gel filtration and analytical ultracentrifugation studies indicate that both full-length Shp and Shp180 are monomeric in dilute aqueous solution.  相似文献   

3.
Lu C  Xie G  Liu M  Zhu H  Lei B 《PloS one》2012,7(5):e37556
The heme acquisition machinery in Group A Streptococcus (GAS) consists of the surface proteins Shr and Shp and ATP-binding cassette transporter HtsABC. Shp cannot directly acquire heme from methemoglobin (metHb) but directly transfers its heme to HtsA. It has not been previously determined whether Shr directly relays heme from metHb to Shp. Thus, the complete pathway for heme acquisition from metHb by the GAS heme acquisition machinery has remained unclear. In this study, the metHb-to-Shr and Shr-to-Shp heme transfer reactions were characterized by spectroscopy, kinetics and protein-protein interaction analyses. Heme is efficiently transferred from the β and α subunits of metHb to Shr with rates that are 7 and 60 times greater than those of the passive heme release from metHb, indicating that Shr directly acquires heme from metHb. The rapid heme transfer from Shr to Shp involves an initial heme donor/acceptor complex and a spectrally and kinetically detectable transfer intermediate, implying that heme is directly channeled from Shr to Shp. The present results show that Shr speeds up heme transfer from metHb to Shp, whereas Shp speeds up heme transfer from Shr to HtsA. Furthermore, the findings demonstrate that Shr can interact with metHb and Shp but not HtsA. Taken together with our published results on the Shp/HtsA reaction, these findings establish a model of the heme acquisition pathway in GAS in which Shr directly extracts heme from metHb and Shp relays it from Shr to HtsA.  相似文献   

4.
The iron-regulated surface determinants (Isd) of Staphylococcus aureus, including surface proteins IsdA, IsdB, IsdC, and IsdH and ATP-binding cassette transporter IsdDEF, constitute the machinery for acquiring heme as a preferred iron source. Here we report hemin transfer from hemin-containing IsdA (holo-IsdA) to hemin-free IsdC (apo-IsdC). The reaction has an equilibrium constant of 10 +/- 5 at 22 degrees C in favor of holo-IsdC formation. During the reaction, holo-IsdA binds to apo-IsdC and then transfers the cofactor to apo-IsdC with a rate constant of 54.3 +/- 1.8 s(-1) at 25 degrees C. The transfer rate is >70,000 times greater than the rate of simple hemin dissociation from holo-IsdA into solvent (k transfer = 54.3 s(-1) versus k -hemin = 0.00076 s(-1)). The standard free energy change, Delta G 0, is -27 kJ/mol for the formation of the holo-IsdA-apo-IsdC complex. IsdC has a higher affinity for hemin than IsdA. These results indicate that the IsdA-to-IsdC hemin transfer is through the activated holo-IsdA-apo-IsdC complex and is driven by the higher affinity of apo-IsdC for the cofactor. These findings demonstrate for the first time in the Isd system that heme transfer is rapid, direct, and affinity-driven from IsdA to IsdC. These results also provide the first example of heme transfer from one surface protein to another surface protein in Gram-positive bacteria and, perhaps most importantly, indicate that the mechanism of activated heme transfer, which we previously demonstrated between the streptococcal proteins Shp and HtsA, may apply in general to all bacterial heme transport systems.  相似文献   

5.

Background  

The heme acquisition machinery in Streptococcus pyogenes is believed to consist of the surface proteins, Shr and Shp, and heme-specific ATP-binding cassette transporter HtsABC. Shp has been shown to rapidly transfer its heme to the lipoprotein component, HtsA, of HtsABC. The function of Shr and the heme source of Shp have not been established.  相似文献   

6.
A direct sensor of O(2), the Dos protein, has been found in Escherichia coli. Previously, the only biological sensors known to respond to O(2) by direct and reversible binding were the FixL proteins of Rhizobia. A heme-binding region in Dos is 60% homologous to the O(2)-sensing PAS domain of the FixL protein, but the remainder of Dos does not resemble FixL. Specifically, the C-terminal domain of Dos, presumed to be a regulatory partner that couples to its heme-binding domain, is not a histidine kinase but more closely resembles a phosphodiesterase. The absorption spectra of Dos indicate that both axial positions of the heme iron are coordinated to side chains of the protein. Nevertheless, O(2) and CO bind to Dos with K(d) values of 13 and 10 microM, respectively, indicating a strong discrimination against CO binding. Association rate constants for binding of O(2) (3 mM(-)(1) s(-)(1)), CO (1 mM(-)(1) s(-)(1)) and even NO (2 mM(-)(1) s(-)(1)) are extraordinarily low and very similar. Displacement of an endogenous ligand, probably Met 95, from the heme iron in Dos triggers a conformational change that alters the activity of the enzymatic domain. This sensing mechanism differs from that of FixL but resembles that of the CO sensor CooA of Rhodospirillum rubrum. Overall the results provide evidence for a heme-binding subgroup of PAS-domain proteins whose working range, signaling mechanisms, and regulatory partners can vary considerably.  相似文献   

7.
The cell-surface lipoprotein SiaA, a component of the SiaABC transporter, acts as the primary receptor for heme in the infamous human pathogen Streptococcus pyogenes. However, little is known about the molecular mechanism of heme binding and release as well as the role of heme-binding ligands that contribute to the uptake of heme into the pathogenic bacteria. The present report aims to clarify the coordination properties of heme iron in SiaA. By substitution of either Met79 or His229 with alanine, the mutant M79A and H229A proteins display significantly decreased heme-binding affinity and substantially increased heme-release rates, as compared with wild-type SiaA protein. Both fluorescence and circular dichroism spectra indicated that heme binding results in alterations in the secondary structure of the protein. Heme release from SiaA is a stepwise process in which heme disassociates firstly from Met79 and then from His229 with distinct conformational changes. His229 may serve as an anchor for heme binding in SiaA and thus may play a major role in the stability of the coordination between heme and the protein.  相似文献   

8.
Neudesin is a secreted protein with neurotrophic activity in neurons and undifferentiated neural cells. We report here that neudesin is an extracellular heme-binding protein and that its neurotrophic activity is dependent on the binding of heme to its cytochrome b(5)-like heme/steroid-binding domain. At first, we found that at least a portion of the purified recombinant neudesin appeared to bind hemin because the purified neudesin solution was tinged with green and had a sharp absorbance peak at 402 nm. The addition of exogenous hemin extensively increased the amount of hemin-bound neudesin. In contrast, neudesinDeltaHBD, a mutant lacking the heme-binding domain, could not bind hemin. The neurotrophic activity of the recombinant neudesin that bound exogenous hemin (neudesin-hemin) was significantly greater than that of the recombinant neudesin in either primary cultured neurons or Neuro2a cells, suggesting that the activity of neudesin depends on hemin. The neurotrophic activity of neudesin was enhanced by the binding of Fe(III)-protoporphyrin IX, but neither Fe(II)-protoporphyrin IX nor protoporphyrin IX alone. The inhibition of endogenous neudesin by RNA interference significantly decreased cell survival in Neuro2a cells. This indicates that endogenous neudesin possibly contains hemin. The experiment with anti-neudesin antibody suggested that the endogenous neudesin detected in the culture medium of Neuro2a cells was associated with hemin because it was not retained on a heme-affinity column at all. Neudesin is the first extracellular heme-binding protein that shows signal transducing activity by itself. The present findings may shed new light on the function of extracellular heme-binding proteins.  相似文献   

9.
In the heme-based oxygen sensor Dos from Escherichia coli, one of the axial ligands (Met 95) of a six-coordinate heme can be replaced by external ligands such as O(2), NO, and CO, which causes a switch in phosphodiesterase activity. To gain insight into the bidirectional switching mechanism, we have studied the interaction of ligands with the sensor domain DosH by flash photolysis experiments with femtosecond time resolution. The internal ligand can be photodissociated from the ferrous heme and recombines with time constants of 7 and 35 ps. This is somewhat slower than recombination of the external ligands NO, with which picosecond rebinding occurs with unprecedented efficiency (>99%) with a predominant phase of approximately 5 ps, and O(2) (97% in 5 ps, Liebl, U., Bouzhir-Sima, L., Négrerie, M., Martin, J.-L., and Vos, M. H. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 12771-12776). Dissociated CO displays geminate rebinding in 1.5 ns with a very high yield (60%). Together these results indicate that the heme environment provides a very tight pocket for external ligands, presumably preventing frequent switching events. Additional CO dissociation and rebinding experiments on a longer time scale reveal that (a) Met 95 binding, in 100 micros, occurs in competition with bimolecular CO binding, and (b) subsequent replacement of Met 95 by CO on the millisecond time scale occurs faster than in rapid-mixing experiments, suggesting a slow further relaxation. A minimal ligand binding model is proposed that suggests that Met 95 displacement from the heme is facilitated by the presence of an external ligand in the heme environment. Furthermore, the orders of magnitude difference between Met 95 binding after dissociation of internal and external ligands, as well as the spectral characteristics of photodissociation intermediates, indicate substantial rearrangement of the heme environment associated with ligand sensing. Further remarkable observations include evidence for stable (>4 ns) photooxidation of six-coordinate ferrous heme, with a quantum yield of 4-8%.  相似文献   

10.
In heme deficiency, protein synthesis in reticulocytes is inhibited by activation of heme-regulated alpha-subunit of eukaryotic initiation factor-2alpha (eIF-2alpha) kinase (HRI). Previous studies indicate that HRI contains two distinct heme-binding sites per HRI monomer. To study the role of the N terminus in the heme regulation of HRI, two N-terminally truncated mutants, Met2 and Met3 (deletion of the first 103 and 130 amino acids, respectively), were prepared. Met2 and Met3 underwent autophosphorylation and phosphorylated eIF-2alpha with a specific activity of approximately 50% of that of the wild type HRI. These mutants were significantly less sensitive to heme regulation both in vivo and in vitro. In addition, the heme contents of purified Met2 and Met3 HRI were less than 5% of that of the wild type HRI. These results indicated that the N terminus was important but was not the only domain involved in the heme-binding and heme regulation of HRI. Heme binding of the individual HRI domains showed that both N terminus and kinase insertion were able to bind hemin, whereas the C terminus and the catalytic domains were not. Thus, both the N terminus and the kinase insertion, which are unique to HRI, are involved in the heme binding and the heme regulation of HRI.  相似文献   

11.
The pathogenic bacterium Staphylococcus aureus has adopted specialized mechanisms for scavenging iron from its host. The cell-wall- and cell-membrane-associated iron-regulated surface determinant (Isd) proteins (IsdH, IsdB, IsdA, IsdC, IsdDEF, IsdG, and IsdI) allow S. aureus to scavenge iron from the heme in hemoglobin and haptoglobin-hemoglobin. Of these, IsdE chaperones heme to the ATP-binding-cassette-type transmembrane transporter (IsdF). IsdH, IsdB, IsdA, and IsdC contain at least one heme-binding near transporter (NEAT) domain. Previous studies have shown that ferric heme is transferred unidirectionally in the sequence IsdA-NEAT (Tyr-proximal amino acid)?→?IsdC-NEAT (Tyr)?→?IsdE (His). IsdA-NEAT does not transfer heme directly to IsdE. To challenge and probe this unusual unidirectional mechanism, the double mutant IsdE(M78A; H229A)-IsdE(MH)-was constructed and used in studies of heme transfer between IsdA-NEAT, IsdC-NEAT, and IsdE. This study probed the specific requirements in the heme binding site that enforce the unidirectional property of the system. Significantly, heme transfer from holo-IsdE(MH) to apo-IsdA-NEAT now occurs, breaking the established mechanism. The unique unidirectional heme-transfer properties now function under an affinity-driven mechanism. Overall, the heme proximal and distal ligands must play a crucial role controlling a gate that stops heme transfer between the native IsdE and IsdA-NEAT. We propose that these amino acids are the key control elements in the specific unidirectional protein-protein-gated release mechanism exhibited by the Isd system.  相似文献   

12.
The human pathogen Corynebacterium diphtheriae utilizes hemin and hemoglobin as iron sources for growth in iron-depleted environments. The use of hemin iron in C. diphtheriae involves the dtxR- and iron-regulated hmu hemin uptake locus, which encodes an ABC hemin transporter, and the surface-anchored hemin binding proteins HtaA and HtaB. Sequence analysis of HtaA and HtaB identified a conserved region (CR) of approximately 150 amino acids that is duplicated in HtaA and present in a single copy in HtaB. The two conserved regions in HtaA, designated CR1 and CR2, were used to construct glutathione S-transferase (GST) fusion proteins (GST-CR1 and GST-CR2) to assess hemin binding by UV-visual spectroscopy. These studies showed that both domains were able to bind hemin, suggesting that the conserved sequences are responsible for the hemin binding property previously ascribed to HtaA. HtaA and the CR2 domain were also shown to be able to bind hemoglobin (Hb) by the use of an enzyme-linked immunosorbent assay (ELISA) method in which Hb was immobilized on a microtiter plate. The CR1 domain exhibited a weak interaction with Hb in the ELISA system, while HtaB showed no significant binding to Hb. Competitive binding studies demonstrated that soluble hemin and Hb were able to inhibit the binding of HtaA and the CR domains to immobilized Hb. Moreover, HtaA was unable to bind to Hb from which the hemin had been chemically removed. Alignment of the amino acid sequences of CR domains from various Corynebacterium species revealed several conserved residues, including two highly conserved tyrosine (Y) residues and one histidine (H) residue. Site-directed mutagenesis studies showed that Y361 and H412 were critical for the binding to hemin and Hb by the CR2 domain. Biological assays showed that Y361 was essential for the hemin iron utilization function of HtaA. Hemin transfer experiments demonstrated that HtaA was able to acquire hemin from Hb and that hemin bound to HtaA could be transferred to HtaB. These findings are consistent with a proposed mechanism of hemin uptake in C. diphtheriae in which hemin is initially obtained from Hb by HtaA and then transferred between surface-anchored proteins, with hemin ultimately transported into the cytosol by an ABC transporter.  相似文献   

13.
Lactoferrin (Lf) and transferrin (Tf) are iron-binding proteins that can bind various metal ions. This study demonstrates the heme-binding activity of bovine Lf and Tf using biotinylated hemin. When both proteins were coated on separate plate wells, each directly bound biotinylated hemin. On the other hand, when biotinylated hemin was immobilized on an avidin-coated plate, soluble native Lf bound to the immobilized biotinylated hemin whereas native Tf did not, suggesting that a conformational change triggered by coating on the plate allows the binding of denatured Tf with hemin. Incubation of Lf with hemin-agarose resulted in negligible binding of Lf with biotinylated hemin. Lf in bovine milk also bound to immobilized biotinylated hemin. These results demonstrate that bovine Lf has specific heme-binding activity, which is different from Tf, suggesting that either Tf lost heme-binding activity during its evolution or that Lf evolved heme-binding activity from its Tf ancestral gene. Additionally, Lf in bovine milk may bind heme directly, but may also bind heme indirectly by interaction with other milk iron- and/or heme-binding proteins.  相似文献   

14.
Iron is an essential nutrient that is required for the growth of the bacterial pathogen Listeria monocytogenes. In cell cultures, this microbe secretes hemin/hemoglobin-binding protein 2 (Hbp2; Lmo2185) protein, which has been proposed to function as a hemophore that scavenges heme from the environment. Based on its primary sequence, Hbp2 contains three NEAr transporter (NEAT) domains of unknown function. Here we show that each of these domains mediates high affinity binding to ferric heme (hemin) and that its N- and C-terminal domains interact with hemoglobin (Hb). The results of hemin transfer experiments are consistent with Hbp2 functioning as an Hb-binding hemophore that delivers hemin to other Hbp2 proteins that are attached to the cell wall. Surprisingly, our work reveals that the central NEAT domain in Hbp2 binds hemin even though its primary sequence lacks a highly conserved YXXXY motif that is used by all other previously characterized NEAT domains to coordinate iron in the hemin molecule. To elucidate the mechanism of hemin binding by Hbp2, we determined crystal structures of its central NEAT domain (Hbp2N2; residues 183–303) in its free and hemin-bound states. The structures reveal an unprecedented mechanism of hemin binding in which Hbp2N2 undergoes a major conformational rearrangement that facilitates metal coordination by a non-canonical tyrosine residue. These studies highlight previously unrecognized plasticity in the hemin binding mechanism of NEAT domains and provide insight into how L. monocytogenes captures heme iron.  相似文献   

15.
The urea-induced unfolding of 'N' isomer (occurring at pH 7.0) and 'B' isomer (occurring at pH 9.0) of human serum albumin was studied by fluorescence and circular dichroism spectroscopic measurements. Urea-induced destabilization in different domains of both the isomers was monitored by using domain specific ligands, hemin (domain-I), chloroform, bilirubin (domain-II), and diazepam (domain-III). Urea-induced denaturation of N and B isomers of HSA showed a two-step, three-state transition with accumulation of intermediates around 4.8-5.2M and 3.0-3.4M urea concentrations, respectively. During first transition (0-4.8M urea for N isomer and 0-3.0M urea for B isomer) a continuous decrease in diazepam binding suggested major conformational changes in domain-III prior to intermediate formation. On the other hand, binding of hemin, a ligand for domain-IB and chloroform, whose binding site is located in domain-IIA remains unchanged up to 5.0M urea for N isomer and 3.0M urea for B isomer. Similarly, fluorescence intensity of Trp-214 that resides in domain-IIA remained unchanged up to the above-said urea concentrations and decreased thereafter. Absence of any decrease in hemin binding, chloroform binding, and Trp-214 fluorescence suggested the non-involvement of domain-IB and domain-IIA in intermediate formation. A significant increase in bilirubin binding prior to intermediate formation showed favorable conformational rearrangement in bilirubin binding cavity formed by loop 4 of domain-IB and loop 3 of domain-IIA. Further, a nearly complete abolishment of bilirubin binding to both isomers around 7.0M and 6.0M urea concentrations, respectively, indicated complete separation of domain-I from domain-II from each other. From these observations it can be concluded that N to B transition of human serum albumin shifted the intermediate formation towards lower urea concentration (3.0-3.4M urea for B isomer as against 4.8-5.2M urea for N isomer). Further both the intermediates were found to possess similar alpha-helical (approximately 39%) content and ligand binding properties.  相似文献   

16.
Ishida M  Dohmae N  Shiro Y  Oku T  Iizuka T  Isogai Y 《Biochemistry》2004,43(30):9823-9833
Natural c-type cytochromes are characterized by the consensus Cys-X-X-Cys-His heme-binding motif (where X is any amino acid) by which the heme is covalently attached to protein by the addition of the sulfhydryl groups of two cysteine residues to the vinyl groups of the heme. In this work, the consensus sequence was used for the heme-binding site of a designed four-helix bundle, and the apoproteins with either a histidine residue or a methionine residue positioned at the sixth coordination site were synthesized and reacted with iron protoporphyrin IX (protoheme) under mild reducing conditions in vitro. These polypeptides bound one heme per helix-loop-helix monomer via a single thioether bond and formed four-helix bundle dimers in the holo forms as designed. They exhibited visible absorption spectra characteristic of c-type cytochromes, in which the absorption bands shifted to lower wavelengths in comparison with the b-type heme binding intermediates of the same proteins. Unexpectedly, the designed cytochromes c with bis-His-coordinated heme iron exhibited oxidation-reduction potentials similar to those of their b-type intermediates, which have no thioether bond. Furthermore, the cytochrome c with His and Met residues as the axial ligands exhibited redox potentials increased by only 15-30 mV in comparison with the cytochrome with the bis-His coordination. These results indicate that highly positive redox potentials of natural cytochromes c are not only due to the heme covalent structure, including the Met ligation, but also due to noncovalent and hydrophobic environments surrounding the heme. The covalent attachment of heme to the polypeptide in natural cytochromes c may contribute to their higher redox potentials by reducing the thermodynamic stability of the oxidized forms relatively against that of the reduced forms without the loss of heme.  相似文献   

17.
18.
The EcDos protein belongs to a group of heme-based sensors that detect their ligands with a heme-binding PAS domain. Among these various heme-PAS proteins, EcDos is unique in having its heme iron coordinated at both axial positions to residues of the protein. To achieve its high affinities for ligands, one of the axial heme-iron residues in EcDos must be readily displaceable. Here we present evidence from mutagenesis, ligand-binding measurements, and magnetic circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopies about the nature of the displaceable residue in the heme-PAS domain of EcDos, i.e., EcDosH. The magnetic circular dichroism spectra in the near-infrared region establish histidine-methionine coordination in met-EcDos. To determine whether in deoxy-EcDos coordination of the sixth axial position is also to methionine, methionine 95 was substituted with isoleucine. This substitution caused the ferrous heme iron to change from an exclusively hexacoordinate low-spin form (EcDosH) to an exclusively pentacoordinate high-spin form (M95I EcDosH). This was accompanied by a modest acceleration of the dissociation rates of ligands but a dramatic increase (60-1300-fold) in the association rate constants for binding of O(2), CO, and NO. As a result, the affinity for O(2) was enhanced 10-fold in M95I EcDosH, but the partition constant M = [K(d)(O(2))/K(d)(CO)] between CO and O(2) was raised to about 30 from the extraordinarily low EcDosH value of 1. Thus a major consequence of the increased O(2) affinity of this sensor was the loss of its unusually strong ligand discrimination.  相似文献   

19.
The free form of human cytoplasmic arginyl-tRNA synthetase (hcArgRS) is hypothesized to participate in ubiquitin-dependent protein degradation by offering arginyl-tRNA(Arg) to arginyl-tRNA transferase (ATE1). We investigated the effect of hemin on hcArgRS based on the fact that hemin regulates several critical proteins in the "N-end rule" protein degradation pathway. Extensive biochemical evidence has established that hemin could bind to both forms of hcArgRS in vitro. Based on the spectral changes of the Soret band on site-directed protein mutants, we identified Cys-115 as a specific axial ligand of hemin binding that is located in the Add1 domain. Hemin inhibited the catalytic activity of full-length and N-terminal 72-amino acid-truncated hcArgRSs by blocking amino acid activation. Kinetic analysis demonstrated that the K(m) values for tRNA(Arg), arginine, and ATP in the presence of hemin were not altered, but k(cat) values dramatically decreased compared with those in the absence of hemin. By comparison, the activity of prokaryotic ArgRS was not affected obviously by hemin. Gel filtration chromatography suggested that hemin induced oligomerization of both the isolated Add1 domain and the wild type enzyme, which could account for the inhibition of catalytic activity. However, the catalytic activity of an hcArgRS mutant with Cys-115 replaced by alanine (hcArgRS-C115A) was also inhibited by hemin, suggesting that hemin binding to Cys-115 is not responsible for the inhibition of enzymatic activity and that the specific binding may participate in other biological functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号