首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of the magnetic field dependence of the longitudinal magnetic relaxation rates (NMRD profiles) of solvent protons and deuterons led to the discovery of two classes of solvent binding sites in Ca2+-Mn2+-concanavalin A (CMPL) [Koenig, S. H., Brown, R. D., III, & Brewer, C. F. (1985) Biochemistry (second of three papers in this issue)]. In this paper, we compare proton and deuteron NMRD profiles of Ca2+-Mn2+-lentil lectin (CMLcH) and Ca2+-Mn2+-pea lectin (CMPSA) with those of CMPL. All three metalloproteins are D-mannose/D-glucose-specific lectins that have a high degree of structural similarity and require the metal ions for their biological activities. We have developed a method for the preparation of fully active metal ion derivatives of lentil lectin (LcH) and pea lectin (PSA), including the diamagnetic derivatives Ca2+-Zn2+-LcH and Ca2+-Zn2+-PSA [Bhattacharyya, L., Brewer, C. F., Brown, R. D., III, & Koenig, S. H.(1984) Biochem. Biophys. Res. Commun. 124, 857-862]. The behavior of these two lectins with regard to their NMRD profiles is essentially identical, for both the paramagnetic and diamagnetic forms. Together with CMPL, all three lectins have a common paramagnetic contribution with a negative temperature dependence of the rates, while CMPL contributes an additional component with a positive temperature dependence. The common contribution derives from the class of fast exchanging water molecules observed in the proton NMRD profile of CMPL (Koenig et al., 1985); their protons are calculated to be relatively remote from the Mn2+ ions (4.4 A for CMPL and 5.5 A for LcH and PSA).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Electron density maps based on 2·4 Å and 2·2 Å X-ray diffraction data for crystals of two isolectins of wheat germ agglutinin (designated isolectins 1 and 2) were compared in terms of side-chain identities. While the primary structure of wheat germ agglutinin is not available, a partial amino acid sequence for isolectin 2 has been deduced by inspection of the electron density map and through model building. The positions of the two histidines predicted from amino acid composition studies to be present in isolectin 2 but not in isolectin 1, were located by difference Fourier techniques and analysis of the heavy-atom binding properties of these two isolectins. Both histidines were found to reside in the B-domain of the multi-domain wheat germ agglutinin protomer (A, B, C, D). Histidine 57 lies in the contact region between the two subunits near the molecular dimer axis. The side-chain of histidine 64 forms part of the primary saccharide binding site at the interface where B and C-domains of opposite protomers make contact. In addition, this histidine serves as a major target for heavy-atom binding by platinum and mercury compounds.  相似文献   

3.
Ingestion of red kidney bean phytohemagglutinin causes impaired growth and intestinal malabsorption, and facilitates bacterial colonization in the small intestine of weanling rats. We have studied interactions of the highly purified phytohemagglutinin erythroagglutinating (E4) and mitogenic (L4) isolectins with microvillous membrane vesicles prepared from rat small intestines. E4 and L4 were radioiodinated with 125I by the chloramine-T technique. E4 and L4 isolectins both bound to microvillous membrane vesicles. Binding was saturable and reversible. Each mg of membrane protein bound 744 +/- 86 micrograms E4 and 213 +/- 21 micrograms L4. The apparent Ka for E4 and L4 binding was 2.5 x 10(-6) and 13.0 x 10(-6) M-1, respectively. Binding of each 125I-labelled isolectin was abolished by 100-fold excess of unlabelled isolectin. In each case binding also was inhibited by appropriate oligosaccharide inhibitors, indicating that isolectin-microvillous membrane interactions were mediated by carbohydrate recognition. Patterns of saccharide inhibition of isolectin binding were different for E4 and L4. Competitive binding experiments demonstrated mutual noncompetitive inhibition of E4 and L4 binding consistent with steric hindrance. Therefore, E4 and L4 each bound to its own set of receptors. Based on the known saccharide specificities of E4 and L4, these data indicate that there are differences in expression of complex asparagine-linked biantennary and tri- or tetraantennary oligosaccharides at the microvillous surface. The data also provide the possibility that direct interactions of one or more phytohemagglutinin isolectins with intestinal mucosa in vivo may contribute to the antinutritional effects associated with ingestion of crude red kidney beans.  相似文献   

4.
The crystal structures of two closely related members of the multigene family of wheat lectins (isolectins 1 and 2) have been compared. These isolectins differ at five sequence positions, one being located in the saccharide binding site modulating ligand affinity. Crystals of the two isolectins are closely isomorphous (space group C2). The atomic models are based on structure refinement at 1.8 A resolution in the case of isolectin 2 (WGA2) and 2.0 A resolution in the case of isolectin 1 (WGA1). Refinement results for WGA1, recently completed with a crystallographic R-factor of 16.5% (Fo greater than 3 sigma (Fo)), are presented. Examination of a difference Fourier map, [FWGA2-FWGA1], at 2.0 A resolution and direct superposition of the two models indicated an overall close match of the two structures. Local differences are observed in the region of residues 44 to 69, where three sequence differences occur, and at highly mobile external residues on the surface. The average positional discrepancy (root-mean-square delta r) for corresponding protein atoms in the two crystal structures is 0.64 A for independent protomer I and 0.61 A for protomer II (0.29 A and 0.30 A for main-chain atoms). The mean atomic temperature factors are very similar 20.9 versus 22.0 A2). Regions of high flexibility coincide in the two isolectin structures. Of the 210 water sites identified in WGA1, 144 have corresponding positions in WGA2. A set of 51 well-ordered sites was found to be identical in the two independent environments in both structures, and was considered to be important for structure stabilization. Both of the unique sugar binding sites superimpose very closely, exhibiting root-mean-square positional differences ranging from 0.29 A to 0.42 A. The side-chains of the critical tyrosine residues, Tyr73 (P-site) and Tyr159 (S-site), superimpose best, while other highly flexible aromatic groups (Tyr64 and Trp150) and several water sites display large differences in position (0.5 to 1.0 A) and high temperature factors. The aromatic side-chains of Tyr66 in WGA1 and His66 in WGA2 are oriented similarly.  相似文献   

5.
J C Cannon  N D Chasteen 《Biochemistry》1975,14(21):4573-4577
Vanadyl ion, VO(IV), has been used as an electron paramagnetic resonance (EPR) spin label to study the metal-binding properties of human serum transferrin in the presence of bicarbonate. Iron-saturated transferrin does not bind the vanadyl ion. Room temperature titrations of apotransferrin with VO(IV) as monitored by EPR indicate the extent of binding to be pH dependent, with a full 0.2 VO(IV) ions per transferrin molecule bound at pH 7.5 and 9, but only about 1.2 VO(IV) ions bound at pH 6. The EPR spectra of frozen solutions with or without 0.1 M NaCUO4 at 77 K show that there are two spectroscopically nonequivalent binding sites (A and B) with a slight difference in binding constants. One site (A site) exhibits essentially constant binding capacity in the pH range 6-9, but the other (B site) becomes less avialable as the pH is reduced below 7. Results with mixed Fe(III)-VO(IV) transferrin complexes suggest that iron shows a slight tendency to bind at the B site over the A site pH 7.5 and 9.0. Only the B site in both vanadyl and iron transferrins is perturbed by the presence of perchlorate.  相似文献   

6.
7.
The complete amino acid sequence of the alpha chains of both isolectins found in pea seeds has been determined using automated Edman degradation. We show that the alpha chains of these two proteins differ only at their C-termini: isolectin B is two amino acids longer than isolectin A. Furthermore, the alpha chains of both isolectins are shorter than would be predicted from the nucleotide sequence of a cDNA clone for pea lectin. We suggest, therefore, that these proteins arise from differential C-terminal processing. Amino acid composition data and C-terminal analysis show that the beta chains have also been processed at their C-termini, but in this case identical chains for both isolectins are produced.  相似文献   

8.
From the results of two-dimensional isoelectric focusing, SDS-gel electrophoresis and from immunochemical data it became evident that lectin I and lectin II (corresponding to fractions Geodia I and Geodia II isolated on immobilized lactose) from the sponge Geodia cydonium are apparently identical mixtures of several isolectins, the pI values of their subunits ranging, in contrast to our previous report, from 4.8–7.5. The hypothetical concept of sugar-mediated, specific lectin-lectin interactions (self-recognition) could not be verified by binding of FITC-labelled isolectins (Geodia I) to the lectin subunits, which had been purified by SDS-polyacrylamide gel electrophoresis and blotted onto nitrocellulose membranes. The concept should also be dismissed on the basis of carbohydrate analyses revealing in contradiction with previous results the exclusive presence of alkali-labile bound tetraglucose on the purified isolectins (1 mol/mol lectin protein). The combining site of the isolectins was shown by a quantitative microprecipitation inhibition assay to be most complementar to oligosaccharides of the β-galactoside series and to interact specifically with particular structural elements of the subterminal sugar(s). Carbohydrates of the anti aggregation receptor, which are assumed to represent the functional ligand of the Geodia-isolectins in vivo, could be demonstrated to have a high affinity for the lectin combining site, exceeding that of the best disaccharide inhibitor, lactose, by five orders of magnitude. A preliminary chemical characterization of the receptor carbohydrate revealed that D-galactose and D-glucose (each approx. 200 mol/mol receptor) are organized in an oligosaccharide, which could be cleaved from the protein by trifluoroacetolysis.  相似文献   

9.
The nuclear Overhauser effects (NOEs) observed between heme substituent protons and a small number of nearby protein side chain protons in the water-elimination Fourier transform NOE spectroscopy (WEFT-NOESY) spectra of high- and low-spin wild-type nitrophorin (NP) 2 and its ligand complexes have been analyzed and compared with those observed for the same complexes of wild-type NP3. These assignments were made on naturally abundant isotope samples, with the most useful protein side chains being those of Ile120, Leu122, and Leu132 for NP2 and NP3, and Thr121, Leu123, and Leu133 for NP1 and NP4. It is found that the NOEs observed are identical, with extremely similar protein side chain proton chemical shifts. This is strong evidence that the structure of NP3, for which no X-ray crystal structures are available, is essentially identical to that of NP2, at least near the heme binding pocket. Similarly, the NOEs observed between heme substituents and protein side chains for NP1 and NP4 also indicate that the structures of the protein having both A and B heme orientations are very similar to each other, as well as to the proteins with major B heme orientation of NP2 and NP3. These A and B connectivities can be seen, even though the two heme orientations have similar populations in NP1 and NP4, which complicates the analysis of the NOESY spectra. The histamine complex of wild-type NP2 shows significant shifts of the Leu132 side chain protons relative to all other ligand complexes of NP1-NP4 because of the perturbation of the structure near Leu132 caused by the histamine's side chain ammonium hydrogen bond to the Asp29 side chain carboxylate.  相似文献   

10.
The alpha-D-galactopyranosyl-binding lectin previously purified from Bandeiraea simplicifolia seeds (Hayes, C.H., and Goldstein, I.J. (1974) J. Biol. Chem. 249, 1904) is shown to consist of five isolectins separable on polyacrylamide gel electrophoresis at pH 9.5. The isolectins are tetrameric structures composed of various combinations of two different glycoprotein subunits designated A and B. The A and B subunits appear to be immunochemically indistinguishable against rabbit antisera prepared from the isolectin mixture. The A subunit contains no methionine, whereas the B subunit contains 1 residue. The subunits migrate differently on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and, although each subunit contains 1 residue of cysteine, they react differently toward 5,5'-dithiobis(2-nitrobenzoic acid). The carbohydrate binding specificity of the two subunits differs significantly: the A subunit exhibits a primary specificity for alpha-D-GalNAcp but also reacts with alpha-D-Galp units, whereas the B subunit shows a sharp specificity toward alpha-D-Galp residues. The differences in carbohydrate binding specificity were exploited in separating the isolectins. B. simplicifolia I isolectins (A4) and (A3B) were purified on a Bio-Gel melibionate column, and (A2B2), (AB3), and (B4) were separated on a column of insolubilized blood group A substance.  相似文献   

11.
Human alpha(1)-acid glycoprotein (AGP) is an important drug binding plasma protein which affects pharmacokinetical properties of various therapeutic agents. For the first time, interpretation of the induced circular dichroism (ICD) spectra of drug-AGP complexes is presented yielding valuable information on the protein binding environment. ICD spectra were obtained by novel ligands of which AGP induced optical activity have never been reported (primaquine, mefloquine, propranolol, terazosin, carbamazepine, rhodamine B) and by re-investigation of ICD spectra of protein-bound drugs published earlier (chlorpromazine, dipyridamole, prazosin). Spectroscopic features of the ICD and absorption bands of drugs combined with native AGP indicated chiral non-degenerate exciton coupling between the guest chromophore and the indole ring of an adjacent tryptophan (Trp) residue. Results of additional CD experiments performed by using recombinant AGP mutants showed no changes in the ligand binding ability of W122A in sharp contrast with the W25A which was unable to induce extrinsic CD signal with either ligand. Thus, these findings unequivocally prove that, likely via pi-pi stacking mechanism, Trp25 is essentially involved in the AGP binding of drugs studied here as well as of related compounds. Survey of the AGP binding data published in the literature support this conclusion. Our results provide a fast and efficient spectroscopic tool to determine the inclusion of ligand molecules into the beta-barrel cavity of AGP where the conserved Trp25 is located and might be useful in ligand-binding studies of other lipocalin proteins.  相似文献   

12.
Ingestion of red kidney bean phytohemagglutinin causes impaired growth and intestinal malabsorption, and facilitates bacterial colonization in the small intestine of weanling rats. We have studied interactions of the highly purified phytohemagglutinin erythroagglutinating (E4) and mitogenic (L4) isolectins with microvillous membrane vesicles prepared from rat small intestines. E4 and L4 were radioiodinated with 125I by the chloramine-T technique. E4 and L4 isolectins both bound to microvillous membrane vesicles. Binding was saturable and reversible. Each mg of membrane protein bound 744±86 μg E4 and 213±21 μg L4. The apparent Ka for E4 and L4 binding was 2.5·10−6 and 13.0·10−6 M−1, respectively. Binding of each 125I-labelled isolectin was abolished by 100-fold excess of unlabelled isolectin. In each case binding also was inhibited by appropriate oligosaccharide inhibitors, indicating that isolectin-microvillous membrane interactions were mediated by carbohydrate recognition. Patterns of saccharide inhibition of isolectin binding were different for E4 and L4. Competitive binding experiments demonstrated mutual noncompetitive inhibition of E4 and L4 binding consistent with steric hindrance. Therefore, E4 and L4 each bound to its own set of receptors. Based on the known saccharide specificities of E4 and L4, these data indicate that there are differences in expression of complex asparagine-linked biantennary and tri- or tetraantennary oligosaccharides at the microvillous surface. The data also provide the possibility that direct interactions of one or more phytohemagglutinin isolectins with intestinal mucosa in vivo may contribute to the antinutritional effects associated with ingestion of crude red kidney beans.  相似文献   

13.
The interactions of Sepharose 4B-immobilized concanavalin A (ConA) with 10 glycoasparagines derived from ovalbumin were investigated quantitatively by frontal affinity chromatography. In this method, a carbohydrate solution is applied continuously to a ConA-Sepharose column and the retardation of the elution front is measured as a parameter of the strength of the interaction. The dissociation constant (Kd) for each saccharide with ConA can be determined. An analysis of the binding of p-nitrophenyl-alpha,D-mannoside has shown that the binding properties of ConA do not change essentially after immobilization on Sepharose 4B. Each of the ovalbumin glycoasparagines was labeled with tritium by the reductive methylation method for analysis. A comparison of the Kd values obtained showed that the binding of ConA varies considerably with very slight structural differences of the glycosyl chain. The results suggest that ConA recognizes a specific glycosyl chain structure, Man alpha 1-6(Man alpha 1-3)Man, in which at least one hydroxyl group at the C-3 position of C-6-linked mannose should be free. The glycoasparagines containing this structure bound strongly to ConA-Sepharose with dissociation constants below 3.4 X 10(-7) M.  相似文献   

14.
A recent method has been developed to effect metal ion substitution at the Mn2+ site in the lentil lectin (Bhattacharyya et al. (1984) Biochem. Biophys. Res. Commun. 124, 857-862). We report here the preparation of cobalt substituted lentil lectin, containing Co2+ at the S1 site and Ca2+ at the S2 site. The cobalt derivative possesses full saccharide binding activity and can be used for spectroscopic studies. The near UV and visible CD spectra of the derivative are shown, and its spectral properties are compared with various cobalt complexes of concanavalin A.  相似文献   

15.
Rhizomes of stinging nettle (Urtica dioica) contain a complex mixture of isolectins. Ion exchange chromatography with a high resolution fast protein liquid chromatography system revealed six isoforms which exhibit identical agglutination properties and carbohydrate-binding specificity and in addition have the same molecular structure and virtually identical biochemical properties. However, since the U. dioica agglutinin isolectins differ definitely with respect to their amino acid composition, it is likely that at least some of them are different polypeptides coded for by different genes.  相似文献   

16.
High-resolution proton NMR spectra are reported for the paramagnetic ferric native and cyano complexes of the five major horseradish root peroxidase (HRP) isoenzymes (A1, A2, A3, B, and C). Axial imidazole resonances are observed in the native and cyano-complex spectra of all the isoenzymes, thus indicating the presence of a common axial histidine ligand. Proton NMR spectra outside the usual diamagnetic region are identical for sets of A1 and A2 isoenzymes and for the B and C isoenzyme set. Variation in heme residue chemical shift positions may be controlled in part by porphyrin vinyl side chain-protein interactions. Diverse upfield spectra among the isoenzymes reflect amino acid substitutions and/or conformational differences near the prosthetic group, as signals in this region must result from amino acid residues in proximity to the heme center. Acid-base dependence studies reveal an "alkaline" transition that converts the native high-spin iron (III) porphyrin to the low-spin state. The transition occurs at pH 9.3, 9.4, 9.8, and 10.9 for respective HRP A1, A2, A3, and C isoenzymes, respectively. Significantly, this ordering also reflects specific activities for the isoenzymes in the order A1 = A2 greater than A3 greater than B = C. Identical proton NMR spectra for A1/A2 and B/C isoenzyme sets parallel equivalent specific activities for members of a particular set. Proton NMR spectra thus appear to be highly sensitive to protein modifications that affect catalytic activity.  相似文献   

17.
Five isolectins with marked specificity for alpha-linked galactose were purified from the wild jack (Artocarpus hirsuta) seeds by affinity chromatography on cross-linked guar gum. They were composed of a glycosylated subunit A (Mr = 16 kDa) and a nonglycosylated subunit B (Mr = 11 kDa) in noncovalent association. The isolectins which eluted as a single peak of Mr 45 kDa on gel filtration in Biogel P-100 and in a TSK G-3000 SW high pressure column, were resolved into five peaks on electrophoresis at pH 4.5. Sodium dodecyl sulphate polyacrylamide gel electrophoreogram of the major isolectin band suggested that the isolectins may be the five possible tetrameric combinations of A and B subunits. The combined isolectins bound only two molecules of 4-methyl umbelliferyl alpha-D-galactoside with a binding constant of 4.75 x 10(4) M-1. The pH optimum of sugar binding was 7.0. The isolectins specifically bound to human IgG and IgA but not to IgM.  相似文献   

18.
The binding of diamagnetic Cd(II) and paramagnetic Co(II) ions to the metal-free form of crab, Cancer pagurus, metallothionein (MT) was studied by various spectroscopic techniques. Both reconstituted and native Cd(II)-MT containing 6 mol Cd(II)/mol protein display electronic absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra which were indistinguishable. The stoichiometric replacement of Cd(II) ions in native Cd(II)6-MT by paramagnetic Co(II) ions enabled the geometry of the metal-binding sites to be probed. The electronic absorption and MCD spectra of Co(II)6-MT revealed features characteristic of distorted tetrahedral tetrathiolate Co(II) coordination for all six metal-binding sites. The stepwise incorporation of Cd(II) and Co(II) ions into this protein was monitored by electronic absorption and CD, and by electronic absorption and EPR spectroscopy, respectively. The results indicate that the metal-thiolate cluster structure is generated when more than four metal ions are bound. Below this titration point separate tetrahedral tetrathiolate complexes exist. This suggests that the cluster formation occurs in a two-step process. Furthermore, the spectroscopic features in both Cd(II)- and Co(II)-metal derivatives above the full metal occupancy of six suggest the existence of one additional metal-binding site. The subsequent loss of one Cd(II) ion from crab Cancer Cd(II)7-MT in the gel filtration studies demonstrate the low metal-binding affinity of the latter site. While the spectroscopic properties indicate an exclusively tetrahedral type of metal-thiolate sulfur coordination for the binding of the first six metal ions, they suggest that the seventh metal ion is coordinated in a different fashion.  相似文献   

19.
Kim M  Xu Q  Murray D  Cafiso DS 《Biochemistry》2008,47(2):670-679
The binding and recognition of ligands by bacterial outer membrane transport proteins is mediated in part by interactions made through their extracellular loops. Here, site-directed spin labeling (SDSL) and electron paramagnetic resonance (EPR) spectroscopy were used to examine the effect of stabilizing solutes on the extracellular loops in BtuB, the vitamin B12 transporter, and FecA, the ferric citrate transporter. EPR spectra from the extracellular loops of FecA and BtuB arise from dynamic backbone segments, and distance measurements made by double electron-electron resonance indicate that the second extracellular loop in BtuB samples a wide range of conformations. These conformations are dramatically restricted upon substrate binding. In addition, the EPR spectra from nitroxide labels attached to the extracellular loops in BtuB and FecA are highly sensitive to solutes, and at every site examined the motion of the label is significantly reduced in the presence of stabilizing osmolytes, such as polyethylene glycols. For the second extracellular loop in BtuB, the solute-induced structural changes are small, but they are sufficient to bring spin-labeled side chains into tertiary contact with other portions of the protein. The spectroscopic changes seen by SDSL suggest that high concentrations of stabilizing solutes, such as those used to generate membrane protein crystals, result in a more compact and ordered state of the protein than is seen under more physiological conditions.  相似文献   

20.
The fluorescence polarization properties of hen egg white lysozyme and of an iodine oxidized derivative of lysozyme in which tryptophan-108 was selectively modified, were investigated. Using the addition law of anisotropy of mixed systems, the contribution of tryptophan-108 to the anisotropy spectrum of lysozyme and lysozyme-chitotetraose complex was separated. The rate of fluorescence polarization was studied as a function of pH. The major contribution to this rate is shown to arise from internal rotations of the indole side-chain of tryptophan-108 as well as from structural changes around tryptophan-62 and 63. From the dependence of the fluorescence polarization of lysozyme and IL with saccharide concentration, the existence of the simultaneous binding of two saccharide molecules to the enzyme cleft was inferred. At low chitotetraose concentration, the subsites A, B and C are occupied with an association constant of 8 × 104m?1 whereas at high saccharide concentration, both subsites A–B–C and E–F are occupied. The association constants of a series of saccharides to subsites E–F were measured and all found to be around 2 × 102m?1. The dependence of the rate of depolarization with saccharide concentration was determined and showed that, upon binding of the first saccharide molecule to subsites A, B and C, the rate of internal rotation of tryptophan-108 and tryptophan-62 and 63 was much reduced whereas upon further binding of a saccharide molecule in subsites E–F the rates are enhanced. This behaviour was interpreted as an indication that the binding of saccharide in subsites E–F induces changes in conformation of the enzyme which affect the entire active site architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号