首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Isotope feeding and inhibitor experiments were performed in order to elucidate the pathway common to polyamine and alkaloid biosynthesis in root cultures of Senecio vulgaris L. -Difluoromethylarginine, a specific inhibitor of arginine decarboxylase, prevented completely the incorporation of radioactivity from [14C]arginine and [14C]ornithine into spermidine and the pyrrolizidine alkaloid senecionine N-oxide. In contrast, -difluoromethylornithine, a specific ornithine-decarboxylase inhibitor, had no effect on the flow of radioactivity from labelled ornithine and arginine into polyamines and alkaloids. Thus, putrescine, the common precursor of polyamines and pyrrolizidine alkaloids, is exclusively derived via the arginine-agmatine route. Ornithine is rapidly transformed into arginine. Recycling of the guanido moiety of agmatine back to ornithine can be excluded. Putrescine and spermidine were found to be reversibly interconvertable and to excist in a highly dynamic state. In contrast, senecionine N-oxide did not show any turnover but accumulated as a stable metabolic product. In-vivo evidence is presented that the carbon flow from arginine into the polyamine/alkaloid pathway may be controlled by spermidine. The possible importance of the metabolic coupling of pyrrolizidine-alkaloid biosynthesis to polyamine metabolism is discussed.Abbreviations DFMA D,l--difluoromethylarginine - DFMO D,l--difluoromethylornithine - FW fresh weight  相似文献   

2.
Cell-suspension cultures of pyrrolizidinealkaloid-producing species selectively take up and accumulate senecionine (sen) and its N-oxide (sen-Nox). Cultures established from non-alkaloid-producing species are unable to accumulate the alkaloids. The uptake and accumulation of 14C-labelled alkaloids was studied using a Senecio vulgaris cell-suspension culture as well as protoplasts and vacuoles derived from it. The alkaloid uptake exhibits all characteristics of a carrier-mediated transport. The uptake of sen-Nox follows a multiphasic saturation kinetics. The Km-values for sen Nox of 53 M and 310 M are evaluated. Senecionine competitively inhibits sen-Nox uptake, indicating that the tertiary alkaloid and its N-oxide share the same membrane carrier. The N-oxide of sen shows a pH optimum below 5.5, whereas sen is taken up over a range from pH 4 to 8. Activation energies of 90 and 53 kJ·mol-1 are calculated for sen-Nox and sen transport, respectively. At concentrations of 10 to 100 M, sen-Nox is rapidly taken up by cells and protoplasts; within 2 h >90% of total N-oxide is within the cells. By contrast the uptake of sen is less efficient. Vacuoles isolated from protoplasts preloaded with sen-Nox totally retained the alkaloid N-oxide, whereas sen is rapidly lost during the procedure of vacuole preparation. N-oxidation converts the weak lipophilic tertiary base into a charged polar molecule which is excellently adapted to serve as the cellular transport and storage form of pyrrolizidine alkaloids.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DIDS 4,4-diisothiocyanatostilbene-2,2-disulfonic acid - DNP 2,4-dinitrophenol - sen senecionine - sen-Nox senecionine N-oxide  相似文献   

3.
14C-Labelled alkaloid precursors (arginine, putrescine, spermidine) fed to Senecio vulgaris plants via the root system were rapidly taken up and efficiently incorporated into the pyrrolizidine alkaloid senecionine N-oxide (sen-Nox) with total incorporations of 3–6%. Considerable amounts of labelled sen-Nox were translocated into the shoot and were directed mainly into the inflorescences, the major sites of pyrrolizidine-alkaloid accumulation. Detached shoots of S. vulgaris were unable to synthesize pyrrolizidine alkaloids, indicating that the roots are the site of their biosynthesis. Further evidence was obtained from studies with in-vitro systems established from S. vulgaris: root cultures were found to synthesize pyrrolizidine alkaloids but not cell-suspension cultures, tumor cultures or shoot-like teratomas obtained by transformation with Agrobacterium tumefaciens. Studies on transport of [14C]sen-Nox, which was fed either to detached shoots or to the root system of intact plants, indicate that the alkaloid N-oxide does not simply follow the transpiration stream but is specifically channelled to the target tissues such as epidermal stem tissue and flower heads. Exogenously applied [14C]senecionine is rapidly N-oxidized. If the phloem path along the stem is blocked by a steam girdle translocation of labelled sen-Nox is blocked as well. Root-derived sen-Nox accumulated below the girdle and only trace amounts were found in the tissues above. It is most likely that the root-to-shoot transport of sen-Nox occurs mainly if not exclusively via the phloem. In accordance with previous studies the polar, salt-like N-oxides, which are often considered to be artifacts, were found to be the real products of pyrrolizidine-alkaloid biosynthesis as well as the physiological forms for long-distance transport, tissue-specific distribution and cellular accumulation.Abbreviations FW fresh weight - sen senecionine - sen-Nox senecionine N-oxide  相似文献   

4.
Transformed root cultures of Datura stramonium, competent in tropane-alkaloid biosynthesis, have been treated with exogenous plant growth regulators. It was found that combinations of -naphthalene-acetic acid, kinetin (N6-furfurylaminopurine) and 2,4-dichlorophenoxyacetic acid induced de-differentiation, causing both the rooty phenotype and the hyoscyamine-biosynthetic capacity to be lost. Alkaloid biosynthesis disappeared rapidly and prior to the loss of morphological integrity. It was observed that the enzymes ornithine decarboxylase (EC 4.1.1.17), arginine decarboxylase (EC 4.1.1.19) and N-methylputrescine oxidase did not show the increase in level normally associated with subculturing the roots. The level of putrescine N-methyltransferase (EC 2.1.1.53) activity, the first enzyme fully committed to hyoscyamine biosynthesis, rapidly declined, about 80% being lost from the roots within 12h. This activity, although showing some temporary restoration, declined further after a few days, and was totally absent from fully dispersed cultures. N-Methylputrescine oxidase persisted at a low level. Following sub-culture of established de-differentiated lines to plant-growth-regulator-free medium, limited root regeneration occurred. The roots formed showed renewed competence in alkaloid biosynthesis and putrescine N-methyltransferase and N-methylputrescine oxidase activities were restored to their normal levels. The relationship between the morphological state and alkaloid-biosynthetic capacity of the cultures is discussed in relation to the overall control of alkaloid biosynthesis.Abbreviations ADC arginine decarboxylase - FW fresh weight - MPO N-methylputrescine oxidase - NAA -naphthalineacetic acid - ODC ornithine decarboxylase - pgr plant growth regulator - PMT putrescine N-methyltransferase We are most grateful to Abigael Peerless and Bridget Chapman for assistance with various part of this work.  相似文献   

5.
Costs of pyrrolizidine alkaloid (Pa) production in vegetative ragwort (Senecio jacobaea) were examined under conditions in which plant growth was limited by light, nitrogen and phosphorus. Measurable costs of Pa production were demonstrated under light-limiting conditions. Plants with higher Pa concentrations grew more slowly than those with lower Pa concentration. Under nitrogen- and phosphorus-limited conditions no trade-off between Pa production and growth was observed.Publication of the Meijendel-comité, new series no. 116  相似文献   

6.
The utilisation and accumulation of 15N-labeled metabolites by a 15N-labeled transformed root culture of Daturastramonium L. was investigated by in vivo 15N-nuclear-magnetic-resonance (NMR) spectroscopy. After resuspension in spent growth medium, the pools of [15N]glutamate and [15N]glutamine were rapidly depleted and there was an increase in the 15N-NMR signals from conjugated putrescines and hyoscyamine. The signal from the conjugated putrescines passed through a maximum 2 d after the roots were resuspended, and it was concluded that putrescine could be stored as putrescine conjugates prior to its utilisation in other pathways. The transient accumulation of 15N-label in the hydroxy-cinnamoylputrescines was reduced when the de-differentiation of the root cultures into a suspension culture was initiated by exposure to a medium containing α-napthaleneacetic acid and kinetin. This led to the hypothesis that phytohormone-induced de-differentiation of the root cultures required the presence of free polyamines, and this was tested using two potent inhibitors of putrescine biosynthesis, dl-α-difluoromethylarginine and dl-α-difluoromethylornithine. In-vivo 15N-NMR spectra of roots grown in 15N-enriched medium supplemented with these inhibitors showed that the 15N-labelling of the conjugated polyamines and hyoscyamine was markedly reduced. dl-α-difluoromethylarginine also prevented the phytohormone induced de-differentiation of the root cultures, and this effect could be reversed by the supply of exogenous putrescine. Thus the supply of putrescine appears to play a crucial role in mediating the phytohormone induced de-differentiation of the root culture. Received: 13 September 1997 / Accepted: 12 November 1997  相似文献   

7.
Chemical ecology of pyrrolizidine alkaloids   总被引:10,自引:0,他引:10  
Thomas Hartmann 《Planta》1999,207(4):483-495
  相似文献   

8.
 In order to test the possibility of enhancing the production of pharmaceutically valuable scopolamine in transgenic cultures, the 35S-h6h transgene that codes for the enzyme hyoscyamine-6β-hydroxylase (EC 1.14.11.11) was introduced into Hyoscyamus muticus L. strain Cairo (Egyptian henbane). This plant was chosen for its capability to produce very high amounts of tropane alkaloids (up to 6% of the dry weight in the leaves of mature plant). To our knowledge, this is the first time such a large population of transgenic cultures has been studied at the morphological, chemical and genetic levels. A great variation was observed in the tropane alkaloid production among the 43 positive transformants. The best clone (KB7) produced 17 mg/l scopolamine, which is over 100 times more than the control clones. However, conversion of hyoscyamine to scopolamine was still incomplete. The expression of h6h was found to be proportional to the scopolamine production, and was the main reason behind the variation in the scopolamine/hyoscyamine ratio in the hairy-root clones. These results indicate that H. muticus strain Cairo has a potential for even more enhanced scopolamine production with more efficient gene-expression systems. Received: 24 December 1998 / Accepted: 13 January 1999  相似文献   

9.
 The effect of sugar concentration on the production of saikosaponins was investigated using a root culture of Bupleurum falcatum L. The formation of the lateral roots, which were induced in the presence of indolebutyric acid, was suppressed as the sugar concentration was increased. After the lateral root tips had emerged from the inoculated roots, however, high concentrations of sugar showed no inhibitory effect on the development of the lateral roots. A two-step culture, with 1% sucrose at the beginning of the culture and addition of 6% sucrose at 14 days, when lateral roots have emerged, greatly improved the productivity, affording 0.8 g/l of saikosaponin-a and -d. Received: 28 October 1999 / Revision received: 19 April 2000 / Accepted: 27 April 2000  相似文献   

10.
 Root cultures, displaying vigorous growth and high embryogenic capacity, were established in the legume forage species Lotus corniculatus (bird’s-foot trefoil). Root cloning as well as plant regeneration was achieved on hormone-free medium, in agitated culture in the dark or under stationary conditions in the light, respectively. These qualities of vigorous growth and regeneration faded with time in hormone-free culture, with slow-growing roots turning brown in color. Addition of the synthetic cytokinin-like hormone benzylaminopurine to the culture medium, however, re-established the aging tissue’s capacity for somatic embryogenesis and plant formation. During continuous initiation of new cultures, it was possible to obtain one root culture (selected from 11 960 seeds at a 65% germination rate) which did not show the typical decline of qualities after prolonged proliferation but distinguished itself by displaying even faster growth and more vigorous embryogenic plant production on hormone-free medium. There was no decline since its initiation 9 months earlier. This super-growing root culture produces plants that show no morphological differences as compared to wild-type regenerants or seedlings. Roots, dissected from plantlets derived from super-root embryogenesis, expressed all the super-root qualities again when cultured in vitro. This is the first report on somatic embryogenesis from sustained root cultures without exogenous hormone application. Such a hormone-free, continuous root culture should provide a superior experimental system for genetic or developmental studies that might be sensitive to exogenous hormones, such as somaclonal variation in transgenesis or, since introduced in a legume species, nodulation in vitro. Received: 22 September 1997 / Accepted: 21 October 1997  相似文献   

11.
Summary We hypothesize that the tritrophic interaction between ants, the aphid Aphis jacobaeae, the moth Tyria jacobaeae, and the plant Senecio jacobaea can explain the genetic variation observed in pyrrolizidine alkaloid concentration in natural populations of S. jacobaea. The ant Lasius niger effectively defends S. jacobaea plants infested with A. jacobaeae against larvae of T. jacobaeae. S. jacobaea plants with A. jacobaeae which are defended by ants escape regular defoliation by T. jacobaeae. Plants with aphids and ants have a lower pyrrolizidine alkaloid concentration than plants without aphids and ants. When these data are fitted to an existing theoretical model for temporal variation in fitness it is shown that varying herbivore pressure by T. jacobaeae in interaction with ants defending aphid-infested plants with a low pyrrolizidine alkaloid concentration can lead to a stable polymorphism in pyrrolizidine alkaloid concentration. Costs of the production and maintenance of pyrrolizidine alkaloids are not accounted for in the model.Publication of the Meijendel-comité, new series no. 114  相似文献   

12.
Benzoic acids are precursors of xanthone biosynthesis which has been studied in cell cultures of Hypericum androsaemum (Hypericaceae) and Centaurium erythraea (Gentianaceae). In both cell cultures, methyl jasmonate induces the intracellular accumulation of a new xanthone. Under these inductive conditions, feeding experiments were performed with [U-14C]L-phenylalanine, [7-14C]benzoic acid and [7-14C]3-hydroxybenzoic acid. All three precursors were efficiently incorporated into the elicited xanthone in H. androsaemum, whereas 3-hydroxybenzoic acid was the only precursor to be incorporated into xanthones in C. erythraea. In addition, an appreciable increase in phenylalanine ammonia-lyase activity occurred only in methyl-jasmonate-treated cell cultures of H. androsaemum. Benzoic acids thus appear to be formed by different pathways in the two cell cultures studied. In H. androsaemum, benzoic acid is derived from cinnamic acid by side-chain degradation. In C. erythraea 3-hydroxybenzoic acid appears to originate directly from the shikimate pathway. Received: 21 January 2000 / Accepted: 12 July 2000  相似文献   

13.
Hairy root cultures of Lithospermum canescens were established using three strains of Agrobacterium rhizogenes: ATCC 15834, LBA 9402 and NCIB 8196. Eight lines resulting from infection with A. rhizogenes ATCC 15834 demonstrated sufficient biomass increase and were submitted to further investigations. The contents of acetylshikonin (ACS) and isobutyrylshikonin (IBS) in transformed hairy roots made up ca. 10% of those observed in natural roots of L. canescens (24.35 and 14.48 mg g−1 DW, respectively). One line, Lc1-D, produced the largest amounts of ACS (2.72 mg g−1 DW) and IBS (0.307 mg g−1 DW). Traces of pyrrolizidine alkaloids (PA), canescine and canescenine, were found in all lines of transformed hairy roots.  相似文献   

14.
Root cultures of Senecio erucifolius (Asteraceae) efficiently took up and incorporated [14C]putrescine and [14C]arginine into the pyrrolizidine alkaloid (PA) senecionine N-oxide. Pulse-chase experiments covering a growth period of 10 to 19 days revealed the absence of any significant alkaloid turnover. The only metabolic activity was a slow but progressive transformation of senecionine N-oxide into its dehydrogenation product, seneciphylline N-oxide. Tracer experiments with single roots showed that the sites of enhanced PA synthesis coincided with the sites of preferred protein synthesis, i.e. root apices, indicating a close correlation between growth activity and alkaloid synthesis. Long-term pulse-chase experiments (10 to 12 days) with 14C-labelled arginine, putrescine and senecionine fed to single roots indicated that in spite of its metabolic inertia, senecionine N-oxide is a mobile compound which is translocated into tissues newly grown during the chase.Dedicated to Dr. Friedrich Constabel on the occasion of his 60th birthday  相似文献   

15.
Hirner AA  Seitz HU 《Planta》2000,210(6):993-998
 Two isoforms of chalcone synthase (CHS) were isolated from cDNA libraries derived from UV-A-irradiated anthocyanin-accumulating (DCb) and non-accumulating (DCs) cell cultures of carrot (Daucus carota L.). The clones designated as DcCHS1, which were present only in the DCb library, had a deduced primary sequence of 389 amino acids and an expected molecular mass of 42.7 kDa, and seem to be alleles of those cloned by Ozeki et al. (1993). The second isoform (DcCHS2) was present in both libraries. It had the highest degree of similarity (97.7%) to parsley CHS over all 397 amino acids. The expected molecular mass of the corresponding protein was 43.6 kDa. Results obtained from Southern blot analysis indicated the existence of at least two CHS genes in carrot. A transient enhancement of the DcCHS1 mRNA level after continuous irradiation with UV-A light could only be observed in anthocyanin-accumulating cultures, whereas an increase in DcCHS2 mRNA was seen in both cell lines. The maximum accumulation of CHS mRNA occurred 48 h after the onset of UV-A irradiation. In the European wild carrot the accumulation of DcCHS1 mRNA was restricted to the red central flowers, whereas the DcCHS2 mRNA was detectable in all red and white petals, as well as leaves, but was absent in stems and roots. The expression of DcCHS1 was restricted to anthocyanin-accumulating cells or organs. The heterologous expression of both cDNAs in Escherichia coli resulted in immunostainable bands of different sizes on the Western blot and high levels of catalytic CHS activity. Received: 2 September 1999 / Accepted: 30 November 1999  相似文献   

16.
The nortropane sulphur analogues 8-thiabicyclo[3.2.1] octan-3-one, 8-thiabicyclo[3.2.1]octan-3a-ol and 8-thiabicyclo[3.2.1]octan-3-ol have been found to have differential effects in vitro on the activities of tropinone reductase I and tropinone reductase II from Datura stramonium L. It has been demonstrated that only tropinone reductase I is able to metabolise 8-thiabicyclo[3.2.1]octan-3-one and that only this enzyme is inhibited by 8-thiabicyclo[3.2.1]octan-3-ol and 8-thiabicyclo[3.2.1]octan-3-ol. A K m of 0.035 mM was determined for 8-thiabicyclo[3.2.1]octan-3-one and I50 values of 0.081 mM and 0.021 mM for 8-thiabicyclo[3.2.1]octan-3-ol and 8-thiabicyclo[3.2.1]octan-3-ol, respectively. The influence that these differential interactions might have on metabolism was investigated in transformed root cultures of D. stramonium. It was found that when these cultures were grown in the presence of either 8-thiabicyclo[3.2.1]octan-3-one or 8-thiabicyclo[3.2.1]octan-3-ol the spectrum of alkaloids that accumulated was altered from that found in control roots in the manner predicted from the observed effects of these inhibitors on the isolated reductases. The effect could be mimicked by feeding pseudotropine, the product of tropinone reductase II. It is concluded that the relative levels of activity of the two tropinone reductases might play an important role in regulating the balance of tropan-3-ols to tropan-3-ols seen in the spectrum of tropane-alkaloid-producing plants.Abbreviations GC/MS gas chromatography/mass spectrometry; - I50 concentration of inhibitor required to reduce the rate of reaction to half the maximal value; - -TBOL 8-thiabicyclo[3.2.1]octan-3-ol; - -TBOL 8-thiabicyclo[3.2.1]octan-3-ol; - TBON 8-thiabicyclo[3.2.1]octan-3-one; - TR tropinone reductase We are most grateful to J. Eagles (I.F.R., Norwich) for GC/MS analysis, to colleagues at I.P.B.P. and I.F.R. for helpful discussions, to the technical staff (Chemistry, Glasgow) and to W. Millar (Chemistry, Glasgow) for assistance with the reduction of TBON. This work was, in part, supported by a grant to B Dräger from the Deutsche Forschungsgemeinschaft (Dr227/I-I). The research reported here was supported by an Academic Research Collaboration Cooperative Award (project No. 215) from the British Council and the Deutscher Akademischer Austauschdienst to R.J. Robins and B. Dräger.  相似文献   

17.
 Jasmonic acid (JA) and its methyl ester (MeJA) at concentrations ranging from 0.001 to 10 μM provoked large increases in methylputrescine levels in normal and hairy roots of Hyoscyamus muticus L.; generally, levels of free putrescine and perchloric acid-soluble conjugated putrescine, spermidine and spermine also increased dramatically. More 14C-putrescine was formed when hairy roots were incubated with labelled ornithine than with arginine; conjugated 14C-putrescine was also rapidly formed. In accord with these results, ornithine decarboxylase (EC 4.1.1.17) activity was higher than that of arginine decarboxylase (EC 4.1.1.19), and MeJA enhanced these activities about two- and fourfold, respectively. Although treatment of root cultures with jasmonates enhanced precursor (putrescine, methylputrescine) levels and accumulation of secondary metabolites such as acid-soluble conjugated di-/polyamines, it provoked only modest increases in tropane alkaloid tissue levels. Received: 24 March 1999 / Revision received: 5 October 1999 / Accepted: 26 October 1999  相似文献   

18.
Hirotani M  Kuroda R  Suzuki H  Yoshikawa T 《Planta》2000,210(6):1006-1013
 A cDNA encoding UDP-glucose: baicalein 7-O-glucosyltransferase (UBGT) was isolated from a cDNA library from hairy root cultures of Scutellaria baicalensis Georgi probed with a partial-length cDNA clone of a UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) from grape (Vitis vinifera L.). The heterologous probe contained a glucosyltransferase consensus amino acid sequence which was also present in the Scutellaria cDNA clones. The complete nucleotide sequence of the 1688-bp cDNA insert was determined and the deduced amino acid sequences are presented. The nucleotide sequence analysis of UBGT revealed an open reading frame encoding a polypeptide of 476 amino acids with a calculated molecular mass of 53 094 Da. The reaction product for baicalein and UDP-glucose catalyzed by recombinant UBGT in Escherichia coli was identified as authentic baicalein 7-O-glucoside using high-performance liquid chromatography and proton nuclear magnetic resonance spectroscopy. The enzyme activities of recombinant UBGT expressed in  E. coli were also detected towards flavonoids such as baicalein, wogonin, apigenin, scutellarein, 7,4′-dihydroxyflavone and kaempferol, and phenolic compounds. The accumulation of UBGT mRNA in hairy roots was in response to wounding or salicylic acid treatments. Received: 8 September 1999 / Accepted: 4 October 1999  相似文献   

19.
In order to study the evolution of pathways of plant secondary metabolism, we use the biosynthesis of pyrrolizidine alkaloids (PAs) as a model system. PAs are regarded as part of the plant’s constitutive defense against herbivores. Homospermidine synthase (HSS) is the first specific enzyme of PA biosynthesis. The gene encoding HSS has been recruited from the gene encoding deoxyhypusine synthase (DHS) from primary metabolism at least four times independently during angiosperm evolution. One of these recruitments occurred within the monocot lineage. We have used the PA-producing orchid Phalaenopsis to identify the cDNAs encoding HSS, DHS and the substrate protein for DHS, i.e., the precursor of the eukaryotic initiation factor 5A. A cDNA identified from maize was unequivocally characterized as DHS. From our study of Phalaenopsis, several pseudogenes emerged, of which one was shown to be a “processed pseudogene”, and others to be transcribed. Sequence comparison of the HSS- and DHS-encoding sequences from this investigation with those of monocot species taken from the databases suggest that HSS and probably the ability to produce PAs is an old feature within the monocot lineage. This result is discussed with respect to the recent discovery of structural related PAs within grasses.  相似文献   

20.
The two isoenzymes of NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14), previously identified in root nodules of Phaseolus vulgaris L., have both been shown to be located in root-nodule plastids. The nodule specific NADH-GOGAT II accounts for the majority of the activity in root nodules, and is present almost exclusively in the central tissue of the nodule. However about 20% of NADH-GOGAT I activity is present in the nodule cortex, at about the same specific activity as this isoenzyme is found in the central tissue. Glutamine synthetase (GS; EC 6.3.1.2) occurs predominantly as the polypeptide in the central tissue, whereas in the cortex, the enzyme is represented mainly by the polypeptide. Over 90% of both GS and NADH-GOGAT activities are located in the central tissue of the nodule and GS activity exceeds NADH-GOGAT activity by about twofold in this region. Using the above information, a model for the subcellular location and stoichiometry of nitrogen metabolism in the central tissue of P. vulgaris root nodules is presented.Abbreviations Fd-GOGAT ferredoxin-dependent glutamate synthase - GOGAT glutamate synthase - GS glutamine synthetase - NADH-GOGAT NADH-dependent glutamate synthase - IEX-HPLC ion-exchange high-performance liquid chromatography  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号