首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The extracellular glycoproteins fibrillin-1 and fibrillin-2 are major components of connective tissue microfibrils. Mutations in the fibrillin-1 and fibrillin-2 genes are responsible for the phenotypical manifestations of Marfan syndrome and congenital contractural arachnodactyly respectively, which emphasizes their essential roles in developmental processes of various tissues. Consistent with this last notion, organ culture experiments have indirectly suggested morphogenic roles for fibrillins in lung and kidney development. In order to contribute to the understanding of the roles of fibrillins in developmental and morphogenetic events, we have investigated the distribution of fibrillin-1 and fibrillin-2 in human embryonic and early fetal tissues between the 5th and the 12th gestational week, i.e. at the beginning of organogenesis. Fibrillin-1 and fibrillin-2 were localized immunohistochemically using specific monoclonal antibodies, mAb 69 and mAb 48, respectively. Both fibrillins are widely distributed in various human anlagen, from early developmental stages. In most embryonic and early fetal human organs such as skin, lung, heart, aorta, central nervous system anlage, nerves, and ganglia, fibrillin-1 and fibrillin-2 follow the same temporo-spatial pattern of distribution. However, in other organs such as kidney, liver, rib anlagen, notochord fibrillin-1 and fibrillin-2 are distributed differentially. The present paper is focused on this aspect. These results suggest different roles for fibrillin-1 and -2 in the development of these structures.  相似文献   

2.
Fibrillin-1 and fibrillin-2 constitute the backbone of extracellular filaments, called microfibrils. Fibrillin assembly involves complex multistep mechanisms to result in a periodical head-to-tail alignment in microfibrils. Impaired assembly potentially plays a role in the molecular pathogenesis of genetic disorders caused by mutations in fibrillin-1 (Marfan syndrome) and fibrillin-2 (congenital contractural arachnodactyly). Presently, the basic molecular interactions involved in fibrillin assembly are obscure. Here, we have generated recombinant full-length human fibrillin-1, and two overlapping recombinant polypeptides spanning the entire human fibrillin-2 in a mammalian expression system. Characterization by gel electrophoresis, electron microscopy after rotary shadowing, and reactivity with antibodies demonstrated correct folding of these recombinant polypeptides. Analyses of homotypic and heterotypic interaction repertoires showed N- to C-terminal binding of fibrillin-1, and of fibrillin-1 with fibrillin-2. The interactions were of high affinity with dissociation constants in the low nanomolar range. However, the N- and C-terminal fibrillin-2 polypeptides did not interact with each other. These results demonstrate that fibrillins can directly interact in an N- to C-terminal fashion to form homotypic fibrillin-1 or heterotypic fibrillin-1/fibrillin-2 microfibrils. This conclusion was further strengthened by double immunofluorescence labeling of microfibrils. In addition, the binding epitopes as well as the entire fibrillin molecules displayed very stable properties.  相似文献   

3.
Polycystic ovary syndrome (PCOS) is a common endocrinopathy in women of reproductive age. Although genetic linkage analyses have demonstrated a susceptibility locus for PCOS mapping to the fibrillin-3 gene, the presence of fibrillin proteins in normal and polycystic ovaries has not been characterized. This study compared and contrasted fibrillin-1, -2, and -3 localization in normal and polycystic ovaries. Immunohistochemical stainings of ovaries from 21 controls and 9 patients with PCOS were performed. Fibrillin-1 was ubiquitous in ovarian connective tissue. Fibrillin-2 localized around antral follicles and in areas of folliculolysis. Fibrillin-3 was present in a restricted distribution within the specialized perifollicular stroma of follicles in morphological transition from primordial to primary type [transitional follicles (TFs)]. Fibrillin-1 and -2 stainings of PCOS ovaries were similar to those of the controls. However, in eight of the nine PCOS ovaries, there was a decrease in the number of TFs associated with fibrillin-3, including no staining in five PCOS samples; decreased number of fibrillin-3-associated TFs/mm2 was confirmed by quantitative analysis. Our findings support a role for fibrillin-3 in the pathogenesis of PCOS and suggest fibrillin-3 may function in primordial to primary follicle transition. We propose that loss of fibrillin-3 during folliculogenesis may be an important factor in PCOS pathogenesis. (J Histochem Cytochem 58:903–915, 2010)  相似文献   

4.
Fibrillins are microfibril-forming extracellular matrix macromolecules that modulate skeletal development. In humans, mutations in fibrillins result in long bone overgrowth as well as other distinct phenotypes. Whether fibrillins form independent microfibrillar networks or can co-polymerize, forming a single microfibril, is not known. However, this knowledge is required to determine whether phenotypes arise because of loss of singular or composite functions of fibrillins. Immunolocalization experiments using tissues and de novo matrices elaborated by cultured cells demonstrated that both fibrillins can be present in the same individual microfibril in certain tissues and that both fibrillins can co-polymerize in fibroblast cultures. These studies suggest that the molecular information directing fibrillin fibril formation may be similar in both fibrillins. Furthermore, these studies provide a molecular basis for compensation of one fibrillin by the other during fetal life. In postnatal tissues, fibrillin-2 antibodies demonstrated exuberant staining in only one location: peripheral nerves. This surprising finding implicates distinct functions for fibrillin-2 in peripheral nerves, because a unique feature in humans and in mice mutant for fibrillin-2 is joint contractures that resolve over time.  相似文献   

5.
The human genome contains three fibrillins: FBN1 and FBN2, both well characterized, and FBN3, reported only as a cDNA sequence. Like FBN2, the highest expression levels of FBN3 were found in fetal tissues, with only low levels in postnatal tissues. Immunolocalization demonstrated fibrillin-3 in extracellular microfibrils abundant in developing skeletal elements, skin, lung, kidney, and skeletal muscle. Unlike the other two fibrillins, FBN3 expression is high in brain, and FBN3 is alternatively spliced, removing the exon encoding cbEGF2. Like FBN1, FBN3 contains three alternate exons in the 5' UTR. While FBN3 orthologs were identified in cow and chicken, Fbn3 appears to have been inactivated in the mouse genome, perhaps during chromosome fission events. Located on chromosome 19p13.3-13.2, FBN3 is a candidate gene for Weill-Marchesani syndrome.  相似文献   

6.
7.
Fibrillins 1, 2 and 3 make up a family of genes that encode large, cysteine-rich extracellular matrix glycoproteins found in connective tissues, lung, blood vessels and other extensible tissues. Fibrillins 1 and 2 have both overlapping as well as separate distributions in human embryonic and adult tissues. Fibrillin-containing microfibrils are known to modulate morphogenetic events by proper targeting of growth factors to the extracellular matrix. Mutation of the fibrillin-2 gene causes a genetic disorder, congenital contractural arachnodactyly (CCA), that results in flexion contractures. Previously, we have shown a distinct fibrillin-2 distribution in the pericellular matrix of interior tenocytes and later demonstrated a unique fibrillin-2 containing structure that runs along the tendon cell arrays in the canine flexor tendon. We hypothesized that loss of these fibrillin-2 containing structures might affect normal tendon development. To test our hypothesis, connective tissues from mice null for fibrillin-2 gene expression were studied. Murine flexor digitorum longus tendons were evaluated for total collagen content, and the intermolecular collagen cross-links hydroxylysyl and lysyl pyridinoline. The results show decreased collagen cross-links in fibrillin-2 null mice, however total collagen content remained the same when compared to wild type. Bone morphology was studied using micro computed tomography (CT). Fibrillin-2 null mice display a focal area of decreased bone length in the extremities as compared to wild type mice. Together, these results demonstrate a role for fibrillin-2 in bone and soft connective tissue morphological and biochemical processes.  相似文献   

8.
Elastin is an extracellular matrix protein found in adult and neonatal vasculature, lung, skin and connective tissue. It is secreted as tropoelastin, a soluble protein that is cross-linked in the tissue space to form an insoluble elastin matrix. Cross-linked elastin can be found in association with several microfibril-associated proteins including fibrillin-1, fibrillin-2 and fibulin-1 suggesting that these proteins contribute to elastic fiber assembly, structure or function. To date, the earliest reported elastin expression was in the conotruncal region of the developing avian heart at 3.5 days of gestation. Here we report that elastin expression begins at significantly earlier developmental stages. Using a novel immunolabeling method, the deposition of elastin, fibrillin-1 and -2 and fibulin-1 was analyzed in avian embryos at several time points during the first 2 days of development. Elastin was found at the midline associated with axial structures such as the notochord and somites at 23 h of development. Fibrillin-1 and -2 and fibulin-1 were also expressed at the embryonic midline at this stage with fibrillin-1 and fibulin-1 showing a high degree of colocalization with elastin in fibers surrounding midline structures. The expression of these genes was confirmed by conventional immunoblotting and mRNA detection methods. Our results demonstrate that elastin polypeptide deposition occurs much earlier than was previously appreciated. Furthermore, the results suggest that elastin deposition at the early embryonic midline is accompanied by the deposition and organization of a number of extracellular matrix polypeptides. These filamentous extracellular matrix structures may act to transduce or otherwise stabilize dynamic forces generated during embryogenesis.  相似文献   

9.
10.
The aim of this study was to examine the comparative localisations of fibrillin-1 and perlecan in the foetal human, wild-type C57BL/6 and HS-deficient hspg2Δ3?/Δ3? exon 3 null mouse intervertebral disc (IVD) using fluorescent laser scanning confocal microscopy. Fibrillin-1 fibrils were prominent components of the outer posterior and anterior annulus fibrosus (AF) of the foetal human IVD. Finer fibrillin-1 fibrils were evident in the inner AF where they displayed an arcade-type arrangement in the developing lamellae. Relatively short but distinct fibrillin-1 fibrils were evident in the central region of the IVD and presumptive cartilaginous endplate and defined the margins of the nuclear sheath in the developing nucleus pulposus (NP). Fibrillin-1 was also demonstrated in the AF of C57BL/6 wild-type mice but to a far lesser extent in the HS-deficient hspg2Δ3?/Δ3? exon 3 null mouse. This suggested that the HS chains of perlecan may have contributed to fibrillin-1 assembly or its deposition in the IVD. The cell–matrix interconnections provided by the fibrillin fibrils visualised in this study may facilitate communication between disc cells and their local biomechanical microenvironment in mechanosensory processes which regulate tissue homeostasis. The ability of fibrillin-1 to sequester TGF-β a well-known anabolic growth factor in the IVD also suggests potential roles in disc development and/or remodelling.  相似文献   

11.
Fibrillin Assembly Requires Fibronectin   总被引:1,自引:0,他引:1       下载免费PDF全文
Fibrillins constitute the major backbone of multifunctional microfibrils in elastic and nonelastic extracellular matrices. Proper assembly mechanisms are central to the formation and function of these microfibrils, and their properties are often compromised in pathological circumstances such as in Marfan syndrome and in other fibrillinopathies. Here, we have used human dermal fibroblasts to analyze the assembly of fibrillin-1 in dependence of other matrix-forming proteins. siRNA knockdown experiments demonstrated that the assembly of fibrillin-1 is strictly dependent on the presence of extracellular fibronectin fibrils. Immunolabeling performed at the light and electron microscopic level showed colocalization of fibrillin-1 with fibronectin fibrils at the early stages of the assembly process. Protein-binding assays demonstrated interactions of fibronectin with a C-terminal region of fibrillin-1, -2, and -3 and with an N-terminal region of fibrillin-1. The C-terminal half of fibrillin-2 and -3 had propensities to multimerize, as has been previously shown for fibrillin-1. The C-terminal of all three fibrillins interacted strongly with fibronectin as multimers, but not as monomers. Mapping studies revealed that the major binding interaction between fibrillins and fibronectin involves the collagen/gelatin-binding region between domains FNI6 and FNI9.  相似文献   

12.
Fibrillins are major constituents of microfibrils, which are essential components of the extracellular matrix of connective tissues where they contribute to the tissue homeostasis. Although it is known that microfibrils are abundantly expressed in the left ventricle of the heart, limited data are available about the presence of microfibrils in the other parts of the myocardial tissue and whether there are age or sex-related differences in the spatial arrangement of the microfibrils. This basic knowledge is essential to better understand the impact of fibrillin-1 pathogenic variants on the myocardial tissue as seen in Marfan related cardiomyopathy. We performed histological analyses on wild-type male and female murine myocardial tissue collected at different time-points (1, 3 and 6 months). Fibrillin-1 and -2 immunofluorescence stainings were performed on cross-sections at the level of the apex, the mid-ventricles and the atria. In addition, other myocardial matrix components such as collagen and elastin were also investigated. Fibrillin-1 presented as long fibres in the apex, mid-ventricles and atria. The spatial arrangement differed between the investigated regions, but not between age groups or sexes. Collagen had a similar broad spatial arrangement to that of fibrillin-1, whereas elastic fibres were primarily present in the atria and the vessels. In contrast to fibrillin-1, limited amounts of fibrillin-2 were observed. Fibrillin-rich fibres contribute to the architecture of the myocardial tissue in a region-dependent manner in wild-type murine hearts. This knowledge is helpful for future experimental set-ups of studies evaluating the impact of fibrillin-1 pathogenic variants on the myocardial tissue.  相似文献   

13.
Latent transforming growth factor beta-binding protein 1 (LTBP-1) targets latent complexes of transforming growth factor beta to the extracellular matrix, where the latent cytokine is subsequently activated by several different mechanisms. Fibrillins are extracellular matrix macromolecules whose primary function is architectural: fibrillins assemble into ultrastructurally distinct microfibrils that are ubiquitous in the connective tissue space. LTBPs and fibrillins are highly homologous molecules, and colocalization in the matrix of cultured cells has been reported. To address whether LTBP-1 functions architecturally like fibrillins, microfibrils were extracted from tissues and analyzed immunochemically. In addition, binding studies were conducted to determine whether LTBP-1 interacts with fibrillins. LTBP-1 was not detected in extracted beaded-string microfibrils, suggesting that LTBP-1 is not an integral structural component of microfibrils. However, binding studies demonstrated interactions between LTBP-1 and fibrillins. The binding site was within three domains of the LTBP-1 C terminus, and in fibrillin-1 the site was defined within four domains near the N terminus. Immunolocalization data were consistent with the hypothesis that LTBP-1 is a fibrillin-associated protein present in certain tissues but not in others. In tissues where LTBP-1 is not expressed, LTBP-4 may substitute for LTBP-1, because the C-terminal end of LTBP-4 binds equally well to fibrillin. A model depicting the relationship between LTBP-1 and fibrillin microfibrils is proposed.  相似文献   

14.
Fibrillin microfibrils are polymeric structures present in connective tissues. The importance of fibrillin microfibrils to connective tissue function has been demonstrated by the multiple genetic disorders caused by mutations in fibrillins and in microfibril-associated molecules. However, knowledge of microfibril structure is limited, largely due to their insolubility. Most previous studies have focused on how fibrillin-1 is organized within microfibril polymers. In this study, an immunochemical approach was used to circumvent the insolubility of microfibrils to determine the role of fibrillin-2 in postnatal microfibril structure. Results obtained from studies of wild type and fibrillin-1 null tissues, using monoclonal and polyclonal antibodies with defined epitopes, demonstrated that N-terminal fibrillin-2 epitopes are masked in postnatal microfibrils and can be revealed by enzymatic digestion or by genetic ablation of Fbn1. From these studies, we conclude that fetal fibrillin polymers form an inner core within postnatal microfibrils and that microfibril structure evolves as growth and development proceed into the postnatal period. Furthermore, documentation of a novel cryptic site present in EGF4 in fibrillin-1 underscores the molecular complexity and tissue-specific differences in microfibril structure.  相似文献   

15.
Fibrillins constitute the major backbone of multifunctional microfibrils in elastic and non-elastic extracellular matrices, and are known to interact with several binding partners including tropoelastin and integrins. Here, we study the evolution of fibrillin proteins. Following sequence collection from 39 organisms representative of the major evolutionary groups, molecular evolutionary genetics and phylogeny inference software were used to generate a series of evolutionary trees using distance-based and maximum likelihood methods. The resulting trees support the concept of gene duplication as a means of generating the three vertebrate fibrillins. Beginning with a single fibrillin sequence found in invertebrates and jawless fish, a gene duplication event, which coincides with the appearance of elastin, led to the creation of two genes. One of the genes significantly evolved to become the gene for present-day fibrillin-1, while the other underwent evolutionary changes, including a second duplication, to produce present-day fibrillin-2 and fibrillin-3. Detailed analysis of several sequences and domains within the fibrillins reveals distinct similarities and differences across various species. The RGD integrin-binding site in TB4 of all fibrillins is conserved in cephalochordates and vertebrates, while the integrin-binding site within cbEGF18 of fibrillin-3 is a recent evolutionary change. The proline-rich domain in fibrillin-1, glycine-rich domain in fibrillin-2 and proline-/glycine-rich domain in fibrillin-3 are found in all analyzed tetrapod species, whereas it is completely replaced with an EGF-like domain in cnidarians, arthropods, molluscs and urochordates. All collected sequences contain the first 9-cysteine hybrid domain, and the second 8-cysteine hybrid domain with exception of arthropods containing an atypical 10-cysteine hybrid domain 2. Furin cleavage sites within the N- and C-terminal unique domains were found for all analyzed fibrillin sequences, indicating an essential role for processing of the fibrillin pro-proteins. The four cysteines in the unique N-terminus and the two cysteines in the unique C-terminus are also highly conserved.  相似文献   

16.
During the previous cloning of the fibrillin gene (FBN1), we isolated a partial cDNA coding for a fibrillin-like peptide and mapped the corresponding gene (FBN2) to human chromosome 5. (Lee, B., M. Godfrey, E. Vitale, H. Hori, M. G. Mattei, M. Sarfarazi, P. Tsipouras, F. Ramirez, and D. W. Hollister. 1991. Nature [Lond.]. 352:330-334). The study left, however, unresolved whether or not the FBN2 gene product is an extracellular component structurally related to fibrillin. Work presented in this report clarifies this important point. Determination of the entire primary structure of the FBN2 gene product demonstrated that this polypeptide is highly homologous to fibrillin. Immunoelectron microscopy localized both fibrillin proteins to elastin-associated extracellular microfibrils. Finally, immunohistochemistry revealed that the fibrillins co-distribute in elastic and non-elastic connective tissues of the developing embryo, with preferential accumulation of the FBN2 gene product in elastic fiber-rich matrices. These results support the original hypothesis that the fibrillins may have distinct but related functions in the formation and maintenance of extracellular microfibrils. Accordingly, we propose to classify the FBN1 and FBN2 gene products as a new family of extracellular proteins and to name its members fibrillin-1 and fibrillin-2, respectively.  相似文献   

17.
18.
Current models of the elastic properties and structural organization of fibrillin-containing microfibrils are based primarily on microscopic analyses of microfibrils liberated from connective tissues after digestion with crude collagenase. Results presented here demonstrate that this digestion resulted in the cleavage of fibrillin-1 and loss of specific immunoreactive epitopes. The proline-rich region and regions near the second 8-cysteine domain in fibrillin-1 were easily cleaved by crude collagenase. Other sites that may also be cleaved during microfibril digestion and extraction were identified. In contrast to collagenase-digested microfibrils, guanidine-extracted microfibrils contained all fibrillin-1 epitopes recognized by available antibodies. The ultrastructure of guanidine-extracted microfibrils differed markedly from that of collagenase-digested microfibrils. Fibrillin-1 filaments splayed out, extending beyond the width of the periodic globular beads. Both guanidine-extracted and collagenase-digested microfibrils were subjected to extensive digestion by crude collagenase. Collagenase digestion of guanidine-extracted microfibrils removed the outer filaments, revealing a core structure. In contrast to microfibrils extracted from tissues, cell culture microfibrils could be digested into short units containing just a few beads. These data suggest that additional cross-links stabilize the long beaded microfibrils in tissues. Based on the microfibril morphologies observed after these experiments, on the crude collagenase cleavage sites identified in fibrillin-1, and on known antibody binding sites in fibrillin-1, a model is proposed in which fibrillin-1 molecules are staggered in microfibrils. This model further suggests that the N-terminal half of fibrillin-1 is asymmetrically exposed in the outer filaments, whereas the C-terminal half of fibrillin-1 is present in the interior of the microfibril.  相似文献   

19.
Fibrillin-1 and fibrillin-2 are large cysteine-rich glycoproteins that serve two key physiological functions: as supporting structures that impart tissue integrity and as regulators of signaling events that instruct cell performance. The structural role of fibrillins is exerted through the temporal and hierarchical assembly of microfibrils and elastic fibers, whereas the instructive role reflects the ability of fibrillins to sequester transforming growth factor β (TGFβ) and bone morphogenetic protein (BMP) complexes in the extracellular matrix. Characterization of fibrillin mutations in human patients and in genetically engineered mice has demonstrated that perturbation of either function manifests in disease. More generally, these studies have indicated that fibrillins are integral components of a broader biological network of extracellular, cell surface, and signaling molecules that orchestrate morphogenetic and homeostatic programs in multiple organ systems. They have also suggested that the relative composition of fibrillin-rich microfibrils imparts contextual specificity to TGFβ and BMP signaling by concentrating the ligands locally so as to regulate cell differentiation within a spatial context during organ formation (positive regulation) and by restricting their bioavailability so as to modulate cell performance in a timely fashion during tissue remodeling/repair (negative regulation). Correlative evidence suggests functional coupling of the cell-directed assembly of microfibrils and targeting of TGFβ and BMP complexes to fibrillins. Hence, the emerging view is that fibrillin-rich microfibrils are molecular integrators of structural and instructive signals, with TGFβ and BMPs as the nodal points that convert extracellular inputs into discrete and context-dependent cellular responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号