首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cortical information processing relies critically on the processing of electrical signals in pyramidal neurons. Electrical transients mainly arise when excitatory synaptic inputs impinge upon distal dendritic regions. To study the dendritic aspect of synaptic integration one must record electrical signals in distal dendrites. Since thin dendritic branches, such as oblique and basal dendrites, do not support routine glass electrode measurements, we turned our effort towards voltage-sensitive dye recordings. Using the optical imaging approach we found and reported previously that basal dendrites of neocortical pyramidal neurons show an elaborate repertoire of electrical signals, including backpropagating action potentials and glutamate-evoked plateau potentials. Here we report a novel form of electrical signal, qualitatively and quantitatively different from backpropagating action potentials and dendritic plateau potentials. Strong glutamatergic stimulation of an individual basal dendrite is capable of triggering a fast spike, which precedes the dendritic plateau potential. The amplitude of the fast initial spikelet was actually smaller that the amplitude of the backpropagating action potential in the same dendritic segment. Therefore, the fast initial spike was dubbed “spikelet”. Both the basal spikelet and plateau potential propagate decrementally towards the cell body, where they are reflected in the somatic whole-cell recordings. The low incidence of basal spikelets in the somatic intracellular recordings and the impact of basal spikelets on soma-axon action potential initiation are discussed.  相似文献   

2.
Thin basal dendrites can strongly influence neuronal output via generation of dendritic spikes. It was recently postulated that glial processes actively support dendritic spikes by either ceasing glutamate uptake or by actively releasing glutamate and adenosine triphosphate (ATP). We used calcium imaging to study the role of NR2C/D-containing N-methyl-d-aspartate (NMDA) receptors and adenosine A1 receptors in the generation of dendritic NMDA spikes and plateau potentials in basal dendrites of layer 5 pyramidal neurons in the mouse prefrontal cortex. We found that NR2C/D glutamate receptor subunits contribute to the amplitude of synaptically evoked NMDA spikes. Dendritic calcium signals associated with glutamate-evoked dendritic plateau potentials were significantly shortened upon application of the NR2C/D receptor antagonist PPDA, suggesting that NR2C/D receptors prolong the duration of calcium influx during dendritic spiking. In contrast to NR2C/D receptors, adenosine A1 receptors act to abbreviate dendritic and somatic signals via the activation of dendritic K+ current. This current is characterized as a slow-activating outward-rectifying voltage- and adenosine-gated current, insensitive to 4-aminopyridine but sensitive to TEA. Our data support the hypothesis that the release of glutamate and ATP from neurons or glia contribute to initiation, maintenance and termination of local dendritic glutamate-mediated regenerative potentials.  相似文献   

3.
Action potentials were recorded from single cells isolated from guinea-pig ventricular muscle. Contraction was measured with an optical technique. Tail currents thought to be activated by cytosolic calcium were recorded when action potentials were interrupted by application of a voltage-clamp. A family of tail currents was recorded by interrupting the action potential at various times after the upstroke. The envelope of tail current amplitudes was taken as an index of changes in cytosolic calcium. Consistent with this interpretation, tail currents were negligible following intracellular loading with the calcium chelator BAPTA to suppress calcium transients. The cytosolic calcium transient estimated from the envelope of tails reached a peak approximately 50 ms after the upstroke of the action potential, and fell close to diastolic levels before repolarization was complete; 10 mM caffeine delayed the time to peak contraction, and caused a prolongation of the cytosolic calcium transient estimated from the envelope of tail currents. Caffeine also induced the appearance of a distinct late plateau phase of the action potential. Intracellular BAPTA suppressed the late plateau, contraction and tail currents in cells exposed to caffeine. Exposure to caffeine increased the time constant for decay of tail currents (from approximately 25 to 70 ms). When action potentials were greatly abbreviated by interruption with a voltage-clamp, a progressive decline occurred in the subsequent three contractions and tail currents. There was a progressive reversal of these effects over four responses when the full action potential duration was restored. None of these effects was observed in cells exposed to caffeine. Calcium-activated tail currents appear to be a useful qualitative index of changes in cytosolic calcium. The observations are consistent with the suggestion that cytosolic calcium is reduced during the plateau by a combination of calcium extrusion through Na-Ca exchange and calcium uptake into caffeine-sensitive stores. It also appears that reduction of stores loading during abbreviated action potentials reduces subsequent contraction in cells not exposed to caffeine.  相似文献   

4.
Focal activation of glutamate receptors in distal dendrites of hippocampal pyramidal cells triggers voltage-dependent Ca(2+) channel-mediated plateau potentials that are confined to the stimulated dendrite. We examined the role of dendritic K(+) conductances in determining the amplitude, duration, and spatial compartmentalization of plateau potentials. Manipulations that blocked SK-type Ca(2+)-activated K(+) channels, including apamin and BAPTA dialysis, increased the duration of plateau potentials without affecting their amplitude or compartmentalization. Manipulations that blocked Kv4.2 A-type K(+) channels, including a dominant-negative Kv4.2 construct and 4-aminopyridine, increased the amplitude of plateau potentials by allowing them to recruit neighboring dendrites. Prolongation of plateau potentials or block of Kv4.2 channels at branch points facilitated the ability of dendritic excitation to trigger fast action potentials. SK channels thus underlie repolarization of dendritic plateau potentials, whereas Kv4.2 channels confine these potentials to single dendritic branches, and both act in concert to regulate synaptic integration.  相似文献   

5.
Genetically-encoded calcium indicators (GECIs) hold the promise of monitoring [Ca(2+)] in selected populations of neurons and in specific cellular compartments. Relating GECI fluorescence to neuronal activity requires quantitative characterization. We have characterized a promising new genetically-encoded calcium indicator-GCaMP2-in mammalian pyramidal neurons. Fluorescence changes in response to single action potentials (17+/-10% DeltaF/F [mean+/-SD]) could be detected in some, but not all, neurons. Trains of high-frequency action potentials yielded robust responses (302+/-50% for trains of 40 action potentials at 83 Hz). Responses were similar in acute brain slices from in utero electroporated mice, indicating that long-term expression did not interfere with GCaMP2 function. Membrane-targeted versions of GCaMP2 did not yield larger signals than their non-targeted counterparts. We further targeted GCaMP2 to dendritic spines to monitor Ca(2+) accumulations evoked by activation of synaptic NMDA receptors. We observed robust DeltaF/F responses (range: 37%-264%) to single spine uncaging stimuli that were correlated with NMDA receptor currents measured through a somatic patch pipette. One major drawback of GCaMP2 was its low baseline fluorescence. Our results show that GCaMP2 is improved from the previous versions of GCaMP and may be suited to detect bursts of high-frequency action potentials and synaptic currents in vivo.  相似文献   

6.
We discuss methods for fast spatiotemporal smoothing of calcium signals in dendritic trees, given single-trial, spatially localized imaging data obtained via multi-photon microscopy. By analyzing the dynamics of calcium binding to probe molecules and the effects of the imaging procedure, we show that calcium concentration can be estimated up to an affine transformation, i.e., an additive and multiplicative constant. To obtain a full spatiotemporal estimate, we model calcium dynamics within the cell using a functional approach. The evolution of calcium concentration is represented through a smaller set of hidden variables that incorporate fast transients due to backpropagating action potentials (bAPs), or other forms of stimulation. Because of the resulting state space structure, inference can be done in linear time using forward-backward maximum-a-posteriori methods. Non-negativity constraints on the calcium concentration can also be incorporated using a log-barrier method that does not affect the computational scaling. Moreover, by exploiting the neuronal tree structure we show that the cost of the algorithm is also linear in the size of the dendritic tree, making the approach applicable to arbitrarily large trees. We apply this algorithm to data obtained from hippocampal CA1 pyramidal cells with experimentally evoked bAPs, some of which were paired with excitatory postsynaptic potentials (EPSPs). The algorithm recovers the timing of the bAPs and provides an estimate of the induced calcium transient throughout the tree. The proposed methods could be used to further understand the interplay between bAPs and EPSPs in synaptic strength modification. More generally, this approach allows us to infer the concentration on intracellular calcium across the dendritic tree from noisy observations at a discrete set of points in space.  相似文献   

7.
The detection of surface electromyogram (EMG) by multi-electrode systems is applied in many research studies. The signal is usually recorded by means of spatial filters (linear combination of the potential under at least two electrodes) with vanishing sum of weights. Nevertheless, more information could be extracted from monopolar signals measured with respect to a reference electrode away from the muscle. Under certain conditions, surface EMG signal along a curve parallel to the fibre path has zero mean (property approximately satisfied when EMG is sampled by an array of electrodes that covers the entire support of the signal in space). This property allows estimating monopolar from single differential (SD) signals by pseudoinversion of the matrix relating monopolar to SD signals. The method applies to EMG signals from the external anal sphincter muscle, recorded using a specific cylindrical probe with an array of electrodes located along the circular path of the fibres. The performance of the algorithm for the estimation of monopolar from SD signals is tested on simulated signals. The estimation error of monopolar signals decreases by increasing the number of channels. Using at least 12 electrodes, the estimation error is negligible. The method applies to single fibre action potentials, single motor unit action potentials, and interference signals.The same method can also be applied to reduce common mode interference from SD signals from muscles with rectilinear fibres. In this case, the last SD channel defined as the difference between the potentials of the last and the first electrodes must be recorded, so that the sum of all the SD signals vanishes. The SD signals estimated from the double differential signals by pseudoinvertion are free of common mode.  相似文献   

8.
 Phase-plane analysis of the ionic currents underlying dendritic plateau potentials was carried out to study the nonlinear dynamics and steady-state transfer properties of the dendritic tree in cerebellar Purkinje cells. The results of an analysis of the P-type calcium and delayed rectifier potassium channel system are presented in this study. These channels constitute a simple system that can support bistability and plateau potentials. By requiring both the steady-state current-voltage curve and nullclines to mimic basic plateau potential properties, we obtained well-defined ranges of specific conductance that can support bistability. Hysteresis was found to be surprisingly prevalent in this simple ion-channel system. Using the steady-state current voltage relationship, we derive concise, algebraic expressions for the voltage and current thresholds of state transitions as functions of specific conductance. The significance of bistability in this ion-channel system is discussed with respect to the generation of plateau potentials in Purkinje cells dendrites and the role of the cerebellum in motor control. Received: 13 October 1993/Accepted in revised form: 21 March 1995  相似文献   

9.
The superior colliculus in mammals or the optic tectum in amphibians is a major visual information processing center responsible for generation of orientating responses such as saccades in monkeys or prey catching avoidance behavior in frogs. The conserved structure function of the superior colliculus the optic tectum across distant species such as frogs, birds monkeys permits to draw rather general conclusions after studying a single species. We chose the frog optic tectum because we are able to perform whole-cell voltage-clamp recordings fluorescence imaging of tectal neurons while they respond to a visual stimulus. In the optic tectum of amphibians most visual information is processed by pear-shaped neurons possessing long dendritic branches, which receive the majority of synapses originating from the retinal ganglion cells. Since the first step of the retinal input integration is performed on these dendrites, it is important to know whether this integration is enhanced by active dendritic properties. We demonstrate that rapid calcium transients coinciding with the visual stimulus evoked action potentials in the somatic recordings can be readily detected up to the fine branches of these dendrites. These transients were blocked by calcium channel blockers nifedipine CdCl2 indicating that calcium entered dendrites via voltage-activated L-type calcium channels. The high speed of calcium transient propagation, >300 μm in <10 ms, is consistent with the notion that action potentials, actively propagating along dendrites, open voltage-gated L-type calcium channels causing rapid calcium concentration transients in the dendrites. We conclude that such activation by somatic action potentials of the dendritic voltage gated calcium channels in the close vicinity to the synapses formed by axons of the retinal ganglion cells may facilitate visual information processing in the principal neurons of the frog optic tectum.  相似文献   

10.
Intracellular microelectrodes were used to measure resting and action potentials of electric eel electroplax cells from which the middle portion of the anterior moiety had been removed. External electrode studies of this preparation have been described by Chagas and Esquibel (C. R. Acad. Sc., Paris, 260: 3172 ('65)). In the present studies it was found that the resting and action potentials were almost as large as normal in the intact portion of the preparation, whereas these potentials were greatly reduced in the areas from which the anterior moiety had been removed. The reduction in amplitude was greater the farther the microelectrode was from the intact portion, indicating the possibility of decremental spread from the intact portions. The action potentials measured with external electrodes appeared to be an average of potentials from the various areas of the preparation. In other experiments the entire anterior moiety of the electroplax was removed, leaving only the innervated plasma membrane plus some adhering cytoplasm and extracellular material. Various high K+ solutions were used to bathe the inner surface. No action potentials could be elicited from these preparations, but resting potentials as high as 51 mV were observed using external electrodes. The resting potential could be reduced reversibly by carbamylcholine applied to the outer surface. Carbamylcholine applied to the inner surface had no effect.  相似文献   

11.
Brown SP  He S  Masland RH 《Neuron》2000,27(2):371-383
We studied the fine spatial structure of the receptive fields of retinal ganglion cells and its relationship to the dendritic geometry of these cells. Cells from which recordings had been made were microinjected with Lucifer yellow, so that responses generated at precise locations within the receptive field center could be directly compared with that cell's dendritic structure. While many cells with small receptive fields had domeshaped sensitivity profiles, the majority of large receptive fields were composed of multiple regions of high sensitivity. The density of dendritic branches at any one location did not predict the regions of high sensitivity. Instead, the interactions between a ganglion cell's dendritic tree and the local mosaic of bipolar cell axons seem to define the fine structure of the receptive field center.  相似文献   

12.
Summary Two intracellular microelectrodes were used to study electrotonic interaction between cultured embryonic (16- to 20-day-old) chick myocardial cells reaggregated into small spheresin vitro. Under different culture conditions, reaggregates with two types of functional membrane properties were produced: (i) highly differentiated reaggregates, and (ii) reverted reaggregates. In the highly differentiated state, the cells had high stable resting potentials and produced rapidly-rising tetrodotoxin (TTX)-sensitive action potentials in response to electric field stimulation. In the reverted state, the cells exhibited slowrising spontaneous action potentials having prominent pacemaker potentials and TTX-insensitive upstrokes. These states resemble electrophysiological properties of the highly differentiated (18 daysin ovo) and less fully differentiated (3 daysin ovo) intact embryonic chick heart, respectively. Both types of reaggregates had similar ultrastructural appearance, with many elongated cells and intercalated disc-like structures; gap-like junctions were not seen. The highly differentiated cells had input resistances of about 5 M, and exhibited only little electrotonic interaction in response to intracellular current injection either when the cells were at rest or during the action potential plateau. Intracellular stimulation produced propagating action potentials which triggered contraction of the entire reaggregate. Large hyperpolarizing current pulses applied during the action potential plateau caused premature repolarization which also propagated to the other impaled cell. In the reverted reaggregates, electrotonic interaction was weak or absent in about 52% of the impaled cell pairs, moderate in 30%, and strong in 18% (encountered only at interelectrode distances of less than 100 m). The difference in degree of electrotonic interaction may be due to the state of differentiation with respect to the membrane electrical properties.  相似文献   

13.
Electrical properties of developing rat heart. Effects of dexamethasone   总被引:1,自引:0,他引:1  
Action potentials recorded from perinatal rat ventricles exhibited a plateau (phase 2), followed by a rapid repolarization characteristics of all mammalian ventricular cells. Within the second postnatal week, a number of distinct changes occurred in the contour of action potentials. An early slow depolarization, at the foot of the action potential, preceded the beginning of phase zero. The early slow depolarization was observed until day 12 and disappeared by day 13. A second slow depolarization occurred during the terminal phase of the rapid upstroke of the action potential, persisted through day 13 and disappeared by day 14. On day 12, what had been a homogeneous contour of action potentials seen during the first week converted into a heterogeneous contour. Occasionally, action potentials similar to those recorded from Purkinje fibres in adult heart were recorded from hearts as young as 12 days. By day 14, signs of a spike (the hallmark of action potentials from adult heart) were apparent in some fibres. Treatment of newborn rats with dexamethasone on the second day after birth prevented the disappearance of the second slow depolarization. In adult and aged rat hearts, dexamethasone treatment induced a slow depolarization and a plateau in the region of overshoot. In view of the time-dependent change of the second slow depolarization it is suggested that this phase of the action potential is influenced by the levels of circulating glucocorticoid in developing heart and by changes in calcium sensitivity observed in this species. Heterogeneity of action potentials observed on day 12 postnatal may precede structural differentiation of myofilaments.  相似文献   

14.
1. A sucrose gap system was used to record action potentials and mechanical responses of flounder heart.2. Diltiazem eliminated mechanical responses and strongly inhibited the action potential plateau while nifedipine only slightly reduced cardiac contractions without significantly changing the action potential.3. Verapamil slightly hyperpolarized flounder heart but was without effect on either the action potential or mechanical activity except at very high concentrations.4. Lanthanum was ineffective at 2 mM on flounder heart, but manganese at 3 mM substantially inhibited electrical and mechanical responses accompanied by a small hyperpolarization. Substitution of manganese for calcium abolished all flounder cardiac activity.5. BAY K 8644 enhanced cardiac force and enhanced the action potential plateau while depolarizing the preparations. Calcium-free salines abolished heart contractions and the action potential plateau while the spike phase persisted.6. Low sodium salines enhanced while sodium-free salines abolished all heart activity as did tetrodotoxin above I μM. Tetrodotoxin abolished the action potential spike leaving only a small plateau phase.7. Substituting lithium for sodium hyperpolarized the heart, enhanced contractions and prolonged the action potential plateau. Ouabain enhanced cardiac activity and depolarized the heart but ferosemide was without effect on either electrical or mechanical activity.8. TEA at 6 mM had a modest positive inotropic effect and negative chronotropic effect on the heart while the action potential plateau phase was enhanced.9. These results indicate that extracellular sodium and calcium are crucial in flounder heart electrogenesis but such a major role for potassium could not be established.  相似文献   

15.
In excitable cells, voltage-gated calcium influx provides an effective mechanism for the activation of exocytosis. In this study, we demonstrate that although rat anterior pituitary lactotrophs, somatotrophs, and gonadotrophs exhibited spontaneous and extracellular calcium-dependent electrical activity, voltage-gated calcium influx triggered secretion only in lactotrophs and somatotrophs. The lack of action potential-driven secretion in gonadotrophs was not due to the proportion of spontaneously firing cells or spike frequency. Gonadotrophs exhibited calcium signals during prolonged depolarization comparable with signals observed in somatotrophs and lactotrophs. The secretory vesicles in all three cell types also had a similar sensitivity to voltage-gated calcium influx. However, the pattern of action potential calcium influx differed among three cell types. Spontaneous activity in gonadotrophs was characterized by high amplitude, sharp spikes that had a limited capacity to promote calcium influx, whereas lactotrophs and somatotrophs fired plateau-bursting action potentials that generated high amplitude calcium signals. Furthermore, a shift in the pattern of firing from sharp spikes to plateau-like spikes in gonadotrophs triggered luteinizing hormone secretion. These results indicate that the cell type-specific action potential secretion coupling in pituitary cells is determined by the capacity of their plasma membrane oscillator to generate threshold calcium signals.  相似文献   

16.
17.
18.
Brevetoxin-3 (PbTx-3), described to increase the open probability of voltage-dependent sodium channels, caused trains of action potentials and fast oscillatory changes in fluorescence intensity of fluo-3-loaded rat skeletal muscle cells in primary culture, indicating that the toxin increased intracellular Ca(2+) levels. PbTx-3 did not elicit calcium transients in dysgenic myotubes (GLT cell line), lacking the alpha1 subunit of the dihydropyridine receptor (DHPR), but after transfection of the alpha1DHPR cDNA to GLT cells, PbTx-3 induced slow calcium transients that were similar to those of normal cells. Ca(2+) signals evoked by PbTx-3 were inhibited by blocking either IP(3) receptors, with 2-aminoethoxydiphenyl borate, or phospholipase C with U73122. PbTx-3 caused a tetrodotoxin-sensitive increase in intracellular IP(3) mass levels, dependent on extra-cellular Na(+). A similar increase in IP(3) mass was induced by high K(+) depolarization but no action potential trains (nor calcium signals) were elicited by prolonged depolarization under current clamp conditions. The increase in IP(3) mass induced by either PbTx-3 or K(+) was also detected in Ca(2+)-free medium. These results establish that the effect of the toxin on both intracellular Ca(2+) and IP(3) levels occurs via a membrane potential sensor instead of directly by Na(+) flux and supports the notion of a train of action potentials being more efficient as a stimulus than sustained depolarization, suggesting that tetanus is the physiological stimulus for the IP(3)-dependent calcium signal involved in regulation of gene expression.  相似文献   

19.
This study was designed to characterize the dendritic organization of cochlear nucleus (CN) cells grown in primary cell culture and to assess differences among cultures grown from different regions of CN. Cultures were prepared from postnatal mice and processed using microtubule-associated protein 2 (MAP2) or gamma-aminobutyric acid (GABA) immunohistochemistry. CN neurons were successfully cultured from preparations grown from either the anteroventral subdivision of the nucleus (AVCN), the posterior region [posteroventral (PVCN) and dorsal (DCN) subnuclei], or the whole CN, although the cultured neurons did not exhibit complex dendritic patterns characteristic of CN neurons in vivo. Neurons cultured from the entire nucleus exhibited an increased rate of survival compared to those cultured from either the anterior or posterior regions, although similar types of cells were observed in all preparations. The majority of cultured CN neurons were GABA-positive and had soma areas that were similar to the areas of immature GABAergic neurons measured in CN sections. Small cells (soma areas or=120 microm(2)) were also present in significant numbers. Overall, CN cultures consisted of a heterogeneous population of neurons that had less elaborate dendritic organizations than cells of corresponding size that have been described in adult animals in vivo.  相似文献   

20.
Synaptic plasticity is thought to induce memory traces in the brain that are the foundation of learning. To ensure the stability of these traces in the presence of further learning, however, a regulation of plasticity appears beneficial. Here, we take up the recent suggestion that dendritic inhibition can switch plasticity of excitatory synapses on and off by gating backpropagating action potentials (bAPs) and calcium spikes, i.e., by gating the coincidence signals required for Hebbian forms of plasticity. We analyze temporal and spatial constraints of such a gating and investigate whether it is possible to suppress bAPs without a simultaneous annihilation of the forward-directed information flow via excitatory postsynaptic potentials (EPSPs). In a computational analysis of conductance-based multi-compartmental models, we demonstrate that a robust control of bAPs and calcium spikes is possible in an all-or-none manner, enabling a binary switch of coincidence signals and plasticity. The position of inhibitory synapses on the dendritic tree determines the spatial extent of the effect and allows a pathway-specific regulation of plasticity. With appropriate timing, EPSPs can still trigger somatic action potentials, although backpropagating signals are abolished. An annihilation of bAPs requires precisely timed inhibition, while the timing constraints are less stringent for distal calcium spikes. We further show that a wide-spread motif of local circuits—feedforward inhibition—is well suited to provide the temporal precision needed for the control of bAPs. Altogether, our model provides experimentally testable predictions and demonstrates that the inhibitory switch of plasticity can be a robust and attractive mechanism, hence assigning an additional function to the inhibitory elements of neuronal microcircuits beyond modulation of excitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号