首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Saccharomyces cerevisiae, the apurinic/apyrimidinic (AP) endonucleases Apn1 and Apn2 act as alternative pathways for the removal of various 3'-terminal blocking lesions from DNA strand breaks and in the repair of abasic sites, which both result from oxidative DNA damage. Here we demonstrate that Tpp1, a homologue of the 3' phosphatase domain of polynucleotide kinase, is a third member of this group of redundant 3' processing enzymes. Unlike Apn1 and Apn2, Tpp1 is specific for the removal of 3' phosphates at strand breaks and does not possess more general 3' phosphodiesterase, exonuclease, or AP endonuclease activities. Deletion of TPP1 in an apn1 apn2 mutant background dramatically increased the sensitivity of the double mutant to DNA damage caused by H2O2 and bleomycin but not to damage caused by methyl methanesulfonate. The triple mutant was also deficient in the repair of 3' phosphate lesions left by Tdp1-mediated cleavage of camptothecin-stabilized Top1-DNA covalent complexes. Finally, the tpp1 apn1 apn2 triple mutation displayed synthetic lethality in combination with rad52, possibly implicating postreplication repair in the removal of unrepaired 3'-terminal lesions resulting from endogenous damage. Taken together, these results demonstrate a clear role for the lesion-specific enzyme, Tpp1, in the repair of a subset of DNA strand breaks.  相似文献   

2.
Escherichia coli exonuclease III and endonuclease III are two distinct DNA-repair enzymes that can cleave apurinic/apyrimidinic (AP) sites by different mechanisms. While the AP endonuclease activity of exonuclease III generates a 3'-hydroxyl group at AP sites, the AP lyase activity of endonuclease III produces a 3'-α,β unsaturated aldehyde that prevents DNA-repair synthesis. Saccharomyces cerevisiae Apn1 is the major AP endonuclease/3'-diesterase that also produces a 3'-hydroxyl group at the AP site, but it is unrelated to either exonuclease III or endonuclease III. apn1 deletion mutants are unable to repair AP sites generated by the alkylating agent methyl methane sulphonate and display a spontaneous mutator phenotype. This work shows that either exonuclease III or endonuclease III can functionally replace yeast Apn1 in the repair of AP sites. Two conclusions can be derived from these findings. The first of these conclusions is that yeast cells can complete the repair of AP sites even though they are cleaved by AP lyase. This implies that AP lyase can contribute significantly to the repair of AP sites and that yeast cells have the ability to process the α,β unsaturated aldehyde produced by endonuclease III. The second of these conclusions is that unrepaired AP sites are strictly the cause of the high spontaneous mutation rate in the apn1 deletion mutant.  相似文献   

3.
The chronological life span of yeast, the survival of stationary (G0) cells over time, provides a model for investigating certain of the factors that may influence the aging of non-dividing cells and tissues in higher organisms. This study measured the effects of defined defects in the base excision repair (BER) system for DNA repair on this life span. Stationary yeast survives longer when it is pre-grown on respiratory, as compared to fermentative (glucose), media. It is also less susceptible to viability loss as the result of defects in DNA glycosylase/AP lyases (Ogg1p, Ntg1p, Ntg2p), apurinic/apyrimidinic (AP) endonucleases (Apn1p, Apn2p) and monofunctional DNA glycosylase (Mag1p). Whereas single BER glycosylase/AP lyase defects exerted little influence over such optimized G0 survival, this survival was severely shortened with the loss of two or more such enzymes. Equally, the apn1delta and apn2delta single gene deletes survived as well as the wild type, whereas a apn1delta apn2delta double mutant totally lacking in any AP endonuclease activity survived poorly. Both this shortened G0 survival and the enhanced mutagenicity of apn1delta apn2delta cells were however rescued by the over-expression of either Apn1p or Apn2p. The results highlight the vital importance of BER in the prevention of mutation accumulation and the attainment of the full yeast chronological life span. They also reveal an appreciable overlap in the G0 maintenance functions of the different BER DNA glycosylases and AP endonucleases.  相似文献   

4.
The removal of oxidative damage from Saccharomyces cerevisiae DNA is thought to be conducted primarily through the base excision repair pathway. The Escherichia coli endonuclease III homologs Ntg1p and Ntg2p are S. cerevisiae N-glycosylase-associated apurinic/apyrimidinic (AP) lyases that recognize a wide variety of damaged pyrimidines (H. J. You, R. L. Swanson, and P. W. Doetsch, Biochemistry 37:6033-6040, 1998). The biological relevance of the N-glycosylase-associated AP lyase activity in the repair of abasic sites is not well understood, and the majority of AP sites in vivo are thought to be processed by Apn1p, the major AP endonuclease in yeast. We have found that yeast cells simultaneously lacking Ntg1p, Ntg2p, and Apn1p are hyperrecombinogenic (hyper-rec) and exhibit a mutator phenotype but are not sensitive to the oxidizing agents H2O2 and menadione. The additional disruption of the RAD52 gene in the ntg1 ntg2 apn1 triple mutant confers a high degree of sensitivity to these agents. The hyper-rec and mutator phenotypes of the ntg1 ntg2 apn1 triple mutant are further enhanced by the elimination of the nucleotide excision repair pathway. In addition, removal of either the lesion bypass (Rev3p-dependent) or recombination (Rad52p-dependent) pathway specifically enhances the hyper-rec or mutator phenotype, respectively. These data suggest that multiple pathways with overlapping specificities are involved in the removal of, or tolerance to, spontaneous DNA damage in S. cerevisiae. In addition, the fact that these responses to induced and spontaneous damage depend upon the simultaneous loss of Ntg1p, Ntg2p, and Apn1p suggests a physiological role for the AP lyase activity of Ntg1p and Ntg2p in vivo.  相似文献   

5.
Guillet M  Boiteux S 《The EMBO journal》2002,21(11):2833-2841
In Saccharomyces cerevisiae, mutations in APN1, APN2 and either RAD1 or RAD10 genes are synthetic lethal. In fact, apn1 apn2 rad1 triple mutants can form microcolonies of approximately 300 cells. Expression of Nfo, the bacterial homologue of Apn1, suppresses the lethality. Turning off the expression of Nfo induces G(2)/M cell cycle arrest in an apn1 apn2 rad1 triple mutant. The activation of this checkpoint is RAD9 dependent and allows residual DNA repair. The Mus81/Mms4 complex was identified as one of these back-up repair activities. Furthermore, inactivation of Ntg1, Ntg2 and Ogg1 DNA N-glycosylase/AP lyases in the apn1 apn2 rad1 background delayed lethality, allowing the formation of minicolonies of approximately 10(5) cells. These results demonstrate that, under physiological conditions, endogenous DNA damage causes death in cells deficient in Apn1, Apn2 and Rad1/Rad10 proteins. We propose a model in which endogenous DNA abasic sites are converted into 3'-blocked single-strand breaks (SSBs) by DNA N-glycosylases/AP lyases. Therefore, we suggest that the essential and overlapping function of Apn1, Apn2, Rad1/Rad10 and Mus81/Mms4 is to repair 3'-blocked SSBs using their 3'-phosphodiesterase activity or their 3'-flap endonuclease activity, respectively.  相似文献   

6.
Mutagenic and cytotoxic apurinic/apyrimidinic (AP) sites are among the most frequent lesions in DNA. Repair of AP sites is initiated by AP endonucleases and most organisms possess two or more of these enzymes. Saccharomyces cerevisiae has AP endonuclease 1 (Apn1) as the major enzymatic activity with AP endonuclease 2 (Apn2) being an important backup. Schizosaccharomyces pombe also encodes two potential AP endonucleases, and Apn2 has been found to be the main repair activity, while Apn1 has no, or only a limited role in AP site repair. Here we have identified a new 5' exon (exon 1) in the apn1 gene and show that the inactivity of S. pombe Apn1 is due to a nonsense mutation in the fifth codon of this new exon. Reversion of this mutation restored the AP endonuclease activity of S. pombe Apn1. Interestingly, the apn1 nonsense mutation was only found in laboratory strains derived from L972 h(-) and not in unrelated isolates of S. pombe. Since all S. pombe laboratory strains originate from L972 h(-), it appears that all experiments involving S. pombe have been conducted in an apn1(-) mutant strain with a corresponding DNA repair deficiency. These observations have implications both for future research in S. pombe and for the interpretation of previously conducted epistatis analysis.  相似文献   

7.
The members of the Endo IV family of DNA repair enzymes, including Saccharomyces cerevisiae Apn1 and Escherichia coli endonuclease IV, possess the capacity to cleave abasic sites and to remove 3'-blocking groups at single-strand breaks via apurinic/apyrimidinic (AP) endonuclease and 3'-diesterase activities, respectively. In addition, Endo IV family members are able to recognize and incise oxidative base damages on the 5'-side of such lesions. We previously identified eight amino acid substitutions that prevent E. coli endonuclease IV from repairing damaged DNA in vivo. Two of these substitutions were glycine replacements of Glu145 and Asp179. Both Glu145 and Asp179 are among nine amino acid residues within the active site pocket of endonuclease IV that coordinate the position of a trinuclear Zn cluster required for efficient phosphodiester bond cleavage. We now report the first structure-function analysis of the eukaryotic counterpart of endonuclease IV, yeast Apn1. We show that glycine substitutions at the corresponding conserved amino acid residues of yeast Apn1, i.e., Glu158 and Asp192, abolish the biological function of this enzyme. However, these Apn1 variants do not exhibit the same characteristics as the corresponding E. coli mutants. Indeed, the Apn1 Glu158Gly mutant, but not the E. coli endonuclease IV Glu145Gly mutant, is able to bind DNA. Moreover, Apn1 Asp192Gly completely lacks enzymatic activity, while the activity of the E. coli counterpart Asp179Gly is reduced by approximately 40-fold. The data suggest that although yeast Apn1 and E. coli endonuclease IV exhibit a high degree of structural and functional similarity, differences exist within the active site pockets of these two enzymes.  相似文献   

8.
The Saccharomyces cerevisiae APN1 gene encoding an AP endonuclease/3'-diesterase was engineered in vitro for expression in Escherichia coli. The expression vector directs the synthesis in E. coli of a Mr 40,500 protein that reacts with anti-Apn1 antibodies and has the DNA-repair activities characteristic of Apn1 isolated from yeast. A band corresponding to Apn1 was observed in DNA repair activity gels only with extracts of E. coli harbouring the APN1 expression plasmid. Expression of Apn1 conferred resistance to oxidants and alkylating agents in E. coli lacking exonuclease III and endonuclease IV. For H2O2 damage, this rescue effect was correlated with the repair of oxidative lesions in the bacterial chromosome by the Apn1 protein. Thus, Apn1 can function in bacteria in a manner similar to its proposed multiple functions in yeast.  相似文献   

9.
Yeast Rad27 is a 5'-->3' exonuclease and a flap endo-nuclease. Apn1 is the major apurinic/apyrimidinic (AP) endonuclease in yeast. The rad27 deletion mutants are highly sensitive to methylmethane sulfonate (MMS). By examining the role of Rad27 in different modes of DNA excision repair, we wish to understand why the cytotoxic effect of MMS is dramatically enhanced in the absence of Rad27. Base excision repair (BER) of uracil-containing DNA was deficient in rad27 mutant extracts in that (i) the Apn1 activity was reduced, and (ii) after DNA incision by Apn1, hydrolysis of 1-5 nucleotides 3' to the baseless sugar phosphate was deficient. Thus, some AP sites may lead to unprocessed DNA strand breaks in rad27 mutant cells. The severe MMS sensitivity of rad27 mutants is not caused by a reduction of the Apn1 activity. Surprisingly, we found that Apn1 endonuclease sensitizes rad27 mutant cells to MMS. Deleting the APN1 gene largely restored the resistance of rad27 mutants to MMS. These results suggest that unprocessed DNA strand breaks at AP sites are mainly responsible for the MMS sensitivity of rad27 mutants. In contrast, nucleotide excision repair and BER of oxidative damage were not affected in rad27 mutant extracts, indicating that Rad27 is specifically required for BER of AP sites in DNA.  相似文献   

10.
Schizosaccharomyces pombe Nthpl, an ortholog of the endonuclease III family, is the sole bifunctional DNA glycosylase encoded in its genome. The enzyme removes oxidative pyrimidine and incises 3' to the apurinic/apyrimidinic (AP) site, leaving 3'-alpha,beta-unsaturated aldehyde. Analysis of nth1 cDNA revealed an intronless structure including 5'- and 3'-untranslated regions. An Nth1p-green fluorescent fusion protein was predominantly localized in the nuclei of yeast cells, indicating a nuclear function. Deletion of nth1 confirmed that Nth1p is responsible for the majority of activity for thymine glycol and AP site incision in the absence of metal ions, while nth1 mutants exhibit hypersensitivity to methylmethanesulfonate (MMS). Complementation of sensitivity by heterologous expression of various DNA glycosylases showed that the methyl-formamidopyrimidine (me-fapy) and/or AP sites are plausible substrates for Nth1p in repairing MMS damage. Apn2p, the major AP endonuclease in S. pombe, also greatly contributes to the repair of MMS damage. Deletion of nth1 from an apn2 mutant resulted in tolerance to MMS damage, indicating that Nth1p-induced 3'-blocks are responsible for MMS sensitivity in apn2 mutants. Overexpression of Apn2p in nth1 mutants failed to suppress MMS sensitivity. These results indicate that Nth1p, not Apn2p, primarily incises AP sites and that the resultant 3'-blocks are removed by the 3'-phosphodiesterase activity of Apn2p. Nth1p is dispensable for cell survival against low levels of oxidative stress, but wild-type yeast became more sensitive than the nth1 mutant at high levels. Overexpression of Nth1p in heavily damaged cells probably induced cell death via the formation of 3'-blocked single-strand breaks.  相似文献   

11.
In Schizosaccharomyces pombe the repair of apurinic/apyrimidinic (AP) sites is mainly initiated by AP lyase activity of DNA glycosylase Nth1p. In contrast, the major AP endonuclease Apn2p functions by removing 3'-alpha,beta-unsaturated aldehyde ends induced by Nth1p, rather than by incising the AP sites. S. pombe possesses other minor AP endonuclease activities derived from Apn1p and Uve1p. In this study, we investigated the function of these two enzymes in base excision repair (BER) for methyl methanesulfonate (MMS) damage using the nth1 and apn2 mutants. Deletion of apn1 or uve1 from nth1Delta cells did not affect sensitivity to MMS. Exogenous expression of Apn1p failed to suppress the MMS sensitivity of nth1Delta cells. Although Apn1p and Uve1p incised the oligonucleotide containing an AP site analogue, these enzymes could not initiate repair of the AP sites in vivo. Despite this, expression of Apn1p partially restored the MMS sensitivity of apn2Delta cells, indicating that the enzyme functions as a 3'-phosphodiesterase to remove 3'-blocked ends. Localization of Apn1p in the nucleus and cytoplasm hints at an additional function of the enzyme other than nuclear DNA repair. Heterologous expression of Saccharomyces cerevisiae homologue of Apn1p completely restored the MMS resistance of the nth1Delta and apn2Delta cells. This result confirms a difference in the major pathway for processing the AP site between S. pombe and S. cerevisiae cells.  相似文献   

12.
Caenorhabditis elegans possesses two distinct DNA repair enzymes EXO-3 and APN-1 that have been identified by cross-specie complementation analysis of the Saccharomyces cerevisiae apn1Δ apn2Δ tpp1Δ triple mutant deficient in the ability to repair apurinic/apyrimidinc (AP) sites and DNA strand breaks with blocked 3′-ends. While purified EXO-3 directly incises AP sites and removes 3′-blocking groups, such characterization has not been previously reported for APN-1. We recently documented that C. elegans knockdown for apn-1 is unable to maintain integrity of the genome. Despite the presence of EXO-3, the apn-1 knockdown animals are also defective in the division of the P1 blastomere, an observation consistent with the accumulation of unrepaired DNA lesions suggesting a unique role for APN-1 DNA repair functions. Herein, we show that C. elegans APN-1 is stably expressed as GST-fusion protein in S. cerevisiae only when it carries a nuclear localization signal, and with this requirement rescued the DNA repair defects of the S. cerevisiae apn1Δ apn2Δ tpp1Δ triple mutant. We purified the APN-1 from the yeast expression system and established that it displays AP endonuclease and 3′-diesterase activities. In addition, we showed that APN-1 also possesses a 3′- to 5′-exonuclease and the nucleotide incision repair activity. This latter activity is capable of directly incising DNA at the 5′-side of various oxidatively damaged bases, as previously observed for Escherichia coli endonuclease IV and S. cerevisiae Apn1, underscoring the importance of this family of enzymes in removing these types of lesions. Glycine substitution of the conserved amino acid residue Glu261 of APN-1, corresponding to Glu145 involved in coordinating Zn2+ ions in the active site pocket of E. coli endonuclease IV, resulted in an inactive variant that lose the ability to rescue the DNA repair defects of S. cerevisiae apn1Δ apn2Δ tpp1Δ mutant. Interestingly, the Glu261Gly variant did not sustain purification and yielded a truncated polypeptide. These data suggest that the Glu261 residue of APN-1 may have a broader role in maintaining the structure of the protein.  相似文献   

13.
One of the most frequent lesions formed in cellular DNA are abasic (apurinic/apyrimidinic, AP) sites that are both cytotoxic and mutagenic, and must be removed efficiently to maintain genetic stability. It is generally believed that the repair of AP sites is initiated by the AP endonucleases; however, an alternative pathway seems to prevail in Schizosaccharomyces pombe. A mutant lacking the DNA glycosylase/AP lyase Nth1 is very sensitive to the alkylating agent methyl methanesulfonate (MMS), suggesting a role for Nth1 in base excision repair (BER) of alkylation damage. Here, we have further evaluated the role of Nth1 and the second putative S.pombe AP endonuclease Apn2, in abasic site repair. The deletion of the apn2 open reading frame dramatically increased the sensitivity of the yeast cells to MMS, also demonstrating that the Apn2 has an important function in the BER pathway. The deletion of nth1 in the apn2 mutant strain partially relieves the MMS sensitivity of the apn2 single mutant, indicating that the Apn2 and Nth1 act in the same pathway for the repair of abasic sites. Analysis of the AP site cleavage in whole cell extracts of wild-type and mutant strains showed that the AP lyase activity of Nth1 represents the major AP site incision activity in vitro. Assays with DNA substrates containing base lesions removed by monofunctional DNA glycosylases Udg and MutY showed that Nth1 will also cleave the abasic sites formed by these enzymes and thus act downstream of these enzymes in the BER pathway. We suggest that the main function of Apn2 in BER is to remove the resulting 3′-blocking termini following AP lyase cleavage by Nth1.  相似文献   

14.
Tpp1 is a DNA 3'-phosphatase in Saccharomyces cerevisiae that is believed to act during strand break repair. It is homologous to one domain of mammalian polynucleotide kinase/3'-phosphatase. Unlike in yeast, we found that Tpp1 could confer resistance to methylmethane sulfonate when expressed in bacteria that lack abasic endonuclease/3'-phosphodiesterase function. This species difference was due to the absence of delta-lyase activity in S. cerevisiae, since expression of bacterial Fpg conferred Tpp1-dependent resistance to methylmethane sulfonate in yeast lacking the abasic endonucleases Apn1 and Apn2. In contrast, beta-only lyases increased methylmethane sulfonate sensitivity independently of Tpp1, which was explained by the inability of Tpp1 to cleave 3' alpha,beta-unsaturated aldehydes. In parallel experiments, mutations of TPP1 and RAD1, encoding part of the Rad1/Rad10 3'-flap endonuclease, caused synthetic growth defects in yeast strains lacking Apn1. In contrast, Fpg expression led to a partial rescue of apn1 apn2 rad1 synthetic lethality by converting lesions into Tpp1-cleavable 3'-phosphates. The collected experiments reveal a profound toxicity of strand breaks with irreparable 3' blocking lesions, and extend the function of the Rad1/Rad10 salvage pathway to 3'-phosphates. They further demonstrate a role for Tpp1 in repairing endogenously created 3'-phosphates. The source of these phosphates remains enigmatic, however, because apn1 tpp1 rad1 slow growth could be correlated with neither the presence of a yeast delta-lyase, the activity of the 3'-phosphate-generating enzyme Tdp1, nor levels of endogenous oxidation.  相似文献   

15.
The 8-oxo-7,8-dihydrodeoxyguanosine (8oxoG), a major mutagenic DNA lesion, results either from direct oxidation of guanines or misincorporation of 8oxodGTP by DNA polymerases. At present, little is known about the mechanisms preventing the mutagenic action of 8oxodGTP in Saccharomyces cerevisiae. Herein, we report for the first time the identification of an alternative repair pathway for 8oxoG residues initiated by S. cerevisiae AP endonuclease Apn1, which is endowed with a robust progressive 3'-->5' exonuclease activity towards duplex DNA. We show that yeast cell extracts, as well as purified Apn1, excise misincorporated 8oxoG, providing a damage-cleansing function to DNA synthesis. Consistent with these results, deletion of both OGG1 encoding 8oxoG-DNA glycosylase and APN1 causes nearly 46-fold synergistic increase in the spontaneous mutation rate, and this enhanced mutagenesis is primarily due to G . C to T . A transversions. Expression of the bacterial 8oxodGTP triphosphotase MutT in the apn1Delta ogg1Delta mutant reduces the mutagenesis. Taken together, our results indicate that Apn1 is involved in an S. cerevisiae 8-oxoguanine-DNA glycosylase (Ogg1)-independent repair pathway for 8oxoG residues. Interestingly, the human major AP endonuclease, Ape1, also exhibits similar exonuclease activity towards 8oxoG residues, raising the possibility that this enzyme could participate in the prevention of mutations that would otherwise result from the incorporation of 8oxodGTP.  相似文献   

16.
The recently sequenced Saccharomyces cerevisiae genome was searched for a gene with homology to the gene encoding the major human AP endonuclease, a component of the highly conserved DNA base excision repair pathway. An open reading frame was found to encode a putative protein (34% identical to the Schizosaccharomyces pombe eth1(+) [open reading frame SPBC3D6.10] gene product) with a 347-residue segment homologous to the exonuclease III family of AP endonucleases. Synthesis of mRNA from ETH1 in wild-type cells was induced sixfold relative to that in untreated cells after exposure to the alkylating agent methyl methanesulfonate (MMS). To investigate the function of ETH1, deletions of the open reading frame were made in a wild-type strain and a strain deficient in the known yeast AP endonuclease encoded by APN1. eth1 strains were not more sensitive to killing by MMS, hydrogen peroxide, or phleomycin D1, whereas apn1 strains were approximately 3-fold more sensitive to MMS and approximately 10-fold more sensitive to hydrogen peroxide than was the wild type. Double-mutant strains (apn1 eth1) were approximately 15-fold more sensitive to MMS and approximately 2- to 3-fold more sensitive to hydrogen peroxide and phleomycin D1 than were apn1 strains. Elimination of ETH1 in apn1 strains also increased spontaneous mutation rates 9- or 31-fold compared to the wild type as determined by reversion to adenine or lysine prototrophy, respectively. Transformation of apn1 eth1 cells with an expression vector containing ETH1 reversed the hypersensitivity to MMS and limited the rate of spontaneous mutagenesis. Expression of ETH1 in a dut-1 xthA3 Escherichia coli strain demonstrated that the gene product functionally complements the missing AP endonuclease activity. Thus, in apn1 cells where the major AP endonuclease activity is missing, ETH1 offers an alternate capacity for repair of spontaneous or induced damage to DNA that is normally repaired by Apn1 protein.  相似文献   

17.
Abasic (apurinic/apyrimidinic; AP) sites are generated in vivo through spontaneous base loss and by enzymatic removal of bases damaged by alkylating agents and reactive oxygen species. In Saccharomyces cerevisiae, the APN1 and APN2 genes function in alternate pathways of AP site removal. Apn2-like proteins have been identified in other eukaryotes including humans, and these proteins form a distinct subfamily within the exonuclease III (ExoIII)/Ape1/Apn2 family of proteins. Apn2 and other members of this subfamily contain a carboxyl-terminal extension not present in the ExoIII/Ape1-like proteins. Here, we purify the Apn2 protein from yeast and show that it is a class II AP endonuclease. Deletion of the carboxyl terminus does not affect the AP endonuclease activity of the protein, but this protein is defective in the removal of AP sites in vivo. The carboxyl terminus may enable Apn2 to complex with other proteins, and such a multiprotein assembly may be necessary for the efficient recognition and cleavage of AP sites in vivo.  相似文献   

18.
Demple B  Sung JS 《DNA Repair》2005,4(12):1442-1449
Many oxidative DNA lesions are handled well by base excision repair (BER), but some types may be problematic. Recent work indicates that 2-deoxyribonolactone (dL) is such a lesion by forming stable, covalent cross-links between the abasic residue and DNA repair proteins with lyase activity. In the case of DNA polymerase beta, the reaction is potentiated by incision of dL by Ape1, the major mammalian AP endonuclease. When repair is prevented, polymerase beta is the most reactive cross-linking protein in whole-cell extracts. Cross-linking with dL is largely avoided by processing the damage through the "long-patch" (multinucleotide) BER pathway. However, if excess damage leads to the accumulation of unrepaired oxidative lesions in DNA, there may be a danger of polymerase beta-mediated cross-link formation. Understanding how cells respond to such complex damage is an important issue. In addition to its role in defending against DNA damage caused by exogenous agents, Ape1 protein is essential for coping with the endogenous DNA damage in human cells grown in culture. Suppression of Ape1 using RNA-interference technology causes arrest of cell proliferation and activation of apoptosis in various cell types, correlated with the accumulation of unrepaired abasic DNA damage. Notably, all these effects are reversed by expression of the unrelated protein Apn1 of S. cerevisiae, which shares only the enzymatic repair function with Ape1 (AP endonuclease).  相似文献   

19.
DNA base excision repair (BER) is initiated by DNA glycosylases that recognize and remove damaged bases. The phosphate backbone adjacent to the resulting apurinic/apyrimidinic (AP) site is then cleaved by an AP endonuclease or glycosylase-associated AP lyase to invoke subsequent BER steps. We have used a genetic approach in Saccharomyces cerevisiae to determine whether or not AP sites are blocks to DNA replication and the biological consequences if AP sites persist in the genome. We previously reported that yeast cells deficient in the two AP endonucleases (apn1 apn2 double mutant) are extremely sensitive to killing by a model DNA alkylating agent methyl methanesulfonate (MMS) and that this sensitivity can be reduced by deleting the MAG1 3-methyladenine DNA glycosylase gene. Here we report that in the absence of the AP endonucleases, deletion of two Escherichia coli endonuclease III homologs, NTG1 and NTG2, partially suppresses MMS-induced killing, which indicates that the AP lyase products are deleterious unless they are further processed by an AP endonuclease. The severe MMS sensitivity seen in AP endonuclease deficient strains can also be rescued by treatment of cells with the AP lyase inhibitor methoxyamine, which suggests that the product of AP lyase action on an AP site is indeed an extremely toxic lesion. In addition to the AP endonuclease interactions, deletion of NTG1 and NTG2 enhances the mag1 mutant sensitivity to MMS, whereas overexpression of MAG1 in either the ntg1 or ntg2 mutant severely affects cell growth. These results help to delineate alkylation base lesion flow within the BER pathway.  相似文献   

20.
Karumbati AS  Wilson TE 《Genetics》2005,169(4):1833-1844
In budding yeast, Apn1, Apn2, Tpp1, and Rad1/Rad10 are important enzymes in the removal of spontaneous DNA lesions. apn1 apn2 rad1 yeast are inviable due to accumulation of abasic sites and strand breaks with 3' blocking lesions. We found that tpp1 apn1 rad1 yeast exhibited slow growth but frequently gave rise to spontaneous slow growth suppressors that segregated as single-gene mutations. Using a candidate gene approach, we identified several tpp1 apn1 rad1 suppressors. Deleting uracil glycosylase suppressed both tpp1 apn1 rad1 and apn1 apn2 rad1 growth defects by reducing the abasic site burden. Mutants affecting the Chk1-Pds1 metaphase-anaphase checkpoint only suppressed tpp1 apn1 rad1 slow growth. In contrast, most S-phase checkpoint mutants were synthetically lethal in a tpp1 apn1 rad1 background. Epistasis analyses showed an additive effect between chk1 and ung1, indicating different mechanisms of suppression. Loss of Chk1 partially restored cell-growth parameters in tpp1 apn1 rad1 yeast, but at the same time exacerbated chromosome instability. We propose a model in which recombinational repair during S phase coupled with failure of the metaphase-anaphase checkpoint allows for tolerance of persistent single-strand breaks at the expense of genome stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号