首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous biochemical studies on cartilage tissue from a proband with Type II achondrogenesis-hypochondrogenesis (Godfrey, M., and Hollister, D. W. (1988) Am. J. Hum. Genet. 43, 904-913) indicated heterozygosity for a structural abnormality in the triple helical domain of pro-alpha 1 (II) collagen. Here we demonstrate that the mutation in the type II procollagen gene is a single base change that converts the codon for glycine (GGC) at amino acid 943 of the alpha 1 (II) chain to a codon for serine (AGC). The substitution disrupts the invariant Gly-X-Y structural motif necessary for perfect triple helix formation and leads to extensive overmodification, intracellular retention, and reduced secretion of type II collagen. These findings confirm the proposal that new dominant mutations in the type II procollagen gene may account for some cases of Type II achondrogenesis-hypochondrogenesis. Since recent studies (Lee, B., Vissing, H., Ramirez, F., Rogers, D., and Rimoin, D. (1989) Science 244, 978-980) have identified a dominantly inherited type II procollagen gene deletion in a non-lethal form of skeletal dysplasia, namely spondyloepiphyseal dysplasia, the data more generally demonstrate that different type II procollagen gene mutations eventuate in a wide and diverse spectrum of clinical phenotypes.  相似文献   

2.
A 32-wk-gestation female with type II achondrogenesis-hypochondrogenesis has been studied. The clinical features were typical, and radiographs revealed short ribs, hypoplastic ilia, absence of ossification of sacrum, pubis, ischia, tali, calcanei, and many vertebral bodies; the long bones were short with mild metaphyseal flaring. The femoral cylinder index was 6.3. Comparison with previous cases placed the patient toward the mild end of the achondrogenesis-hypochondrogenesis spectrum (Whitley-Gorlin prototype IV). Light microscopy revealed hypercellular cartilage with decreased matrix traversed by numerous fibrous vascular canals. The growth plate was markedly abnormal. Ultrastructural studies revealed prominently dilated rough endoplasmic reticulum containing a fine granular material with occasional fibrils in all chondrocytes. Immunohistologic studies indicated irregular large areas of cartilage matrix staining with monoclonal antibody to human type III collagen. The relative intensity of matrix staining for type II collagen appeared diminished. More striking, however, were intense focal accumulations of type II collagen within small rounded perinuclear structures of most chondrocytes but not other cell types. These results strongly suggest intracellular retention of type II collagen within vacuolar structures, probably within the dilated rough endoplasmic reticulum observed in all chondrocytes by electron microscopy (EM), and imply the presence of an abnormal, poorly secreted type II collagen molecule. Biochemical studies (see companion paper) suggest that this patient had a new dominant lethal disorder caused by a structural abnormality of type II collagen.  相似文献   

3.
In normal hyaline cartilage the predominant collagen type is collagen type II along with its associated collagens, for example, types IX and XI, produced by normal chondrocytes. In contrast, investigations have demonstrated that in vitro a switch from collagen type II to collagen type I occurs. Some authors have detected collagen type I in osteoarthritic cartilage also in vivo, especially in late stages of osteoarthritis, while others have not. In the light of these diverging results, we have attempted to elucidate which type of collagen, type I and/or type II, is synthesized in the consecutive stages of human osteoarthritis. We performed in situ hybridization and immunohistochemistry with cartilage tissue samples from patients suffering from various stages of osteoarthritis. Furthermore, we quantitated our results on the gene expression of collagen type I and type II with the help of real-time PCR. We found that with the progression of the disease not only collagen type II, but also increasing amounts of collagen type I mRNA were produced. This supports the conclusion that collagen type I gradually becomes one of the factors involved in the pathogenesis of osteoarthritis.  相似文献   

4.
5.
The methyl-sensitive restriction endonucleases HpaII and HhaI as well as the methyl-insensitive enzyme MspI were used to examine the methylation status of the pro-alpha 1(II) collagen gene of cartilage. Five different cell types with varying abilities to express type II collagen were studied. Chick embryo chondrocytes express type II collagen, while 5-bromodeoxyuridine-treated chondrocytes, retinoic acid-treated chondrocytes, chick embryo fibroblasts, and erythrocytes do not synthesize type II collagen. Both cDNA and genomic probes for the pro-alpha 1(II) collagen gene were used, covering the complete 3' end of the gene and its flanking sequences. The pro-alpha 1(II) collagen DNA was undermethylated in chondrocytes, compared to either fibroblasts or erythrocytes. However, the methylation of the 5-bromodeoxyuridine-treated and retinoic acid-treated chondrocytes was identical to that of control chondrocytes. The methylation pattern of two regions of the gene of the pro-alpha 2(I) collagen chain was identical in all cell types tested, whether or not the gene was expressed. Our results indicate that genes for these collagen chains differ in their methylation pattern. The type II collagen gene shows reduced methylation in expressing cartilage, but does not acquire an increase in methylation in "dedifferentiated" chondrocytes. The changes in DNA methylation that occur during cell differentiation do not appear to be sufficient to explain gene activation and deactivation.  相似文献   

6.
7.
8.
The expression of mRNAs for type I and type II procollagens, transforming growth factor-beta (TGF-beta) and c-fos was studied in developing human long bones by Northern blotting and in situ hybridization. The cells producing bone and cartilage matrix were identified by hybridizations using cDNA probes for types I and II collagen, respectively. Northern blotting revealed that the highest levels of TGF-beta mRNA were associated with the growth plates. By in situ hybridization, this mRNA was localized predominantly in the osteoblasts and osteoclasts of the developing bone, in periosteal fibroblasts and in individual bone marrow cells. These findings are consistent with the view that TGF-beta may have a role in stimulation of type I collagen production and bone formation. Only a low level of TGF-beta mRNA was detected in cartilage where type II collagen mRNA is abundant. In Northern hybridization, the highest levels of c-fos mRNA were detected in epiphyseal cartilage. In situ hybridization revealed two cell types with high levels of c-fos expression: the chondrocytes bordering the joint space and the osteoclasts of developing bone. These differential expression patterns suggest specific roles for TGF-beta and c-fos in osseochondral development.  相似文献   

9.
Type X collagen is a short chain, non-fibrilforming collagen synthesized primarily by hypertrophic chondrocytes in the growth plate of fetal cartilage. Previously, we have also identified type X collagen in the extracellular matrix of fibrillated, osteoarthritic but not in normal articular cartilage using biochemical and immunohistochemical techniques (von der Mark et al. 1992 a). Here we compare the expression of type X with types I and II collagen in normal and degenerate human articular cartilage by in situ hybridization. Signals for cytoplasmic α1(X) collagen mRNA were not detectable in sections of healthy adult articular cartilage, but few specimens of osteoarthritic articular cartilage showed moderate expression of type X collagen in deep zones, but not in the upper fibrillated zone where type X collagen was detected by immunofluorescence. This apparent discrepancy may be explained by the relatively short phases of type X collagen gene activity in osteoarthritis and the short mRNA half-life compared with the longer half-life of the type X collagen protein. At sites of newly formed osteophytic and repair cartilage, α1(X) mRNA was strongly expressed in hypertrophic cells, marking the areas of endochondral bone formation. As in hypertrophic chondrocytes in the proliferative zone of fetal cartilage, type X collagen expression was also associated with strong type II collagen expression.  相似文献   

10.
The transition of type I and type II collagens during cartilage and bone development in the chick embryo was studied by immunofluorescence using antibodies against type I or type II collagens. Type II collagen was found in all cartilaginous structures which showed metachromatic staining. Type I collagen appeared in the perichondrium of the tibia at stage 28 and was also found in osteoid, periosteal and enchondral bone after decalcification, periosteum, and tendons, ligaments, and capsules.Using the immunohistological method it was possible to identify specific collagen types in areas undergoing rapid proliferation and collagen transition, such as diaphyseal and epiphyseal perichondrium, or in enchondral osteogenesis. During enchondral ossification type I collagen is deposited onto the eroded surface of cartilage. It partially diffuses into the cartilage matrix forming a “hybrid” collagen matrix with type II collagen, which is a site for subsequent ossification. During appositional growth of diaphyseal cartilage and differentiation of epiphyseal perichondrium into articular cartilage, perichondral cells switch from type I to type II collagen synthesis when differentiating into chondroblasts. In the transition zones, chondroblasts are imbedded in a “hybrid” matrix consisting of a mixture of type I and type II collagens.  相似文献   

11.
We have employed a highly specific in situ hybridization protocol that allows differential detection of mRNAs of collagen types I and II in paraffin sections from chick embryo tissues. All probes were cDNA restriction fragments encoding portions of the C-propeptide region of the pro alpha-chain, and some of the fragments also encoded the 3'-untranslated region of mRNAs of either type I or type II collagen. Smears of tendon fibroblasts and those of sternal chondrocytes from 17-d-old chick embryos as well as paraffin sections of 10-d-old whole embryos and of the cornea of 6.5-d-old embryos were hybridized with 3H-labeled probes for either type I or type II collagen mRNA. Autoradiographs revealed that the labeling was prominent in tendon fibroblasts with the type I collagen probe and in sternal chondrocytes with the type II collagen probe; that in the cartilage of sclera and limbs from 10-d-old embryos, the type I probe showed strong labeling of fibroblast sheets surrounding the cartilage and of a few chondrocytes in the cartilage, whereas the type II probe labeled chondrocytes intensely and only a few fibroblasts; and that in the cornea of 6.5-d-old embryos, the type I probe labeled the epithelial cells and fibroblasts in the stroma heavily, and the endothelial cells slightly, whereas the type II probe labeled almost exclusively the epithelial cells except for a slight labeling in the endothelial cells. These data indicate that embryonic tissues express these two collagen genes separately and/or simultaneously and offer new approaches to the study of the cellular regulation of extracellular matrix components.  相似文献   

12.
The distribution of type I, II, III, IV, V and VI collagens in 20 cases of osteosarcoma was demonstrated immunohistochemically using monospecific antibodies to different collagen types. In addition, biochemical analysis was made on collagenous proteins synthesized by tumor cells in short-term cultures obtained from seven representative cases and compared with dermal fibroblasts. In osteoblastic areas, most of the tumor osteoid consisted exclusively of type I collagen. Type V collagen was associated in some of them. Type III and type VI collagens were mainly localized in the perivascular fibrous stroma. Cultured tumor cells from osteoblastic osteosarcomas produced type I collagen exclusively and small amount of type V collagen constantly, while the synthetic activity of type III collagen was extremely low. In contrast, fibroblastic areas were characterized by the codistribution of type I, III, VI collagens and chondroblastic areas by type I, V, VI collagens as well as type II. Furthermore, type IV collagen was demonstrated in the stroma, other than the basement membrane region of blood vessels, in fibroblastic, intramedullary well-differentiated and telangiectatic osteosarcomas. In vitro, the production of variable amounts of type IV collagen, which was not detected in cultured dermal fibroblasts, was also recognized in the osteoblastic, fibroblastic, undifferentiated and intramedullary well-differentiated osteosarcomas examined. These findings suggest that the immunohistochemical approach using monospecific antibodies to different collagen types is useful not only in identifying some specific organoid components, such as tumor osteoid, but also in disclosing the biological properties of osteosarcoma cells with diverse differentiation.  相似文献   

13.
Keloids represent a dysregulated response to cutaneous wounding that results in an excessive deposition of extracellular matrix, especially collagen. However, the molecular mechanisms regulating this pathologic collagen deposition still remain to be elucidated. A previous study by this group demonstrated that transforming growth factor (TGF)-beta1 and -beta2 ligands were expressed at greater levels in keloid fibroblasts when compared with normal human dermal fibroblasts (NHDFs), suggesting that TGF-beta may play a fibrosis-promoting role in keloid pathogenesis.To explore the biomolecular mechanisms of TGF-beta in keloid formation, the authors first compared the expression levels of the type I and type II TGF-beta receptors in keloid fibroblasts and NHDFs. Next, they investigated the phosphorylation of Smad 3, an intracellular TGF-beta signaling molecule, in keloid fibroblasts and NHDFs. Finally, they examined the regulation of TGF-beta receptor II by TGF-beta1, TGF-beta2, and TGF-beta3 ligands.Our findings demonstrated an increased expression of TGF-beta receptors (types I and II) and increased phosphorylation of Smad 3 in keloid fibroblasts relative to NHDFs. These data support a possible role of TGF-beta and its receptors as fibrosis-inducing growth factors in keloids. In addition, all three isoforms of recombinant human TGF-beta proteins could further stimulate the expression of TGF-beta receptor II in both keloids and NHDFs. Taken together, these results substantiate the hypothesis that the elevated levels of TGF-beta ligands and receptors present in keloids may support increased signaling and a potential role for TGF-beta in keloid pathogenesis.  相似文献   

14.
The distribution of type I and II collagen synthesis in the temporomandibular joint (TMJ) area of 1- to 28-day-old rats was studied after hybridization with probes to pro alpha1(I) and pro alpha1(II) collagen mRNA, and stain intensity through the various cartilaginous zones of the mandibular condyle and other areas of TMJ was assessed. The pro alpha(I) collagen mRNA was detected in the perichondrium/periosteum, in the fibrous and undifferentiated cell layers of the mandibular condyle, in the articular disc, and in all bone structures and muscles. The pro alpha1(II) collagen mRNA was found in the condylar cartilage and the articular fossa. Intensity in the condyle was highest in the chondroblastic layer and decreased towards the lower hypertrophic layer. In the condylar cartilage of the 21- to 28-day-old rats the chondroblastic cell zone was relatively narrow compared with the younger animals, whereas the reverse seems to be the case in the cartilage of the articular fossa. Changes in the pro alpha1(II) collagen mRNA were observed in the osseochondral junction area of the primary spongiosa, in that at the age of 5 days intense staining was found, whereas no staining was observed by 14 days. In the mineralizing zone, however, the majority of osteoblastic cells gave a positive signal with the pro alpha1(I) collagen probe. In conclusion, type II collagen synthesis of the mandibular condyle is restricted to its upper area. This differs from the long bone epiphyseal plate, where this type of collagen is produced virtually throughout the cartilage. Type II collagen synthesis of the fossal cartilage seems to increase as a function of age.  相似文献   

15.
In vivo mammary epithelial cells rest upon a basement membrane composed in part of type IV collagen which is synthesized by these cells. In this study, basement membrane collagen is shown to be selectively recognized by normal mammary ducts and alveoli for attachment and growth when compared to the types of collagen derived from stroma (types I or III) or cartilage (type II). Cell attachment and growth on type I collagen is inhibited by the proline analogue, cis-hydroxyproline, which blocks normal collagen production. These effects of cis-hydroxyproline are not apparent when a basement membrane collagen substratum is provided. Unlike normal mammary epithelium, mammary fibroblasts show little preference for the collagen to which they will attach. A requirement of type IV collagen synthesis for normal mammary epithelial cell attachment and growth on stromal collagen in vitro may have significance in vivo where a basement membrane scaffold may be necessary for normal mammary morphogenesis and growth.  相似文献   

16.
The action of purified rheumatoid synovial collagenase and human neutrophil elastase on the cartilage collagen types II, IX, X and XI was examined. At 25 degrees C, collagenase attacked type II and type X (45-kDa pepsin-solubilized) collagens to produce specific products reflecting one and at least two cleavages respectively. At 35 degrees C, collagenase completely degraded the type II collagen molecule to small peptides whereas a large fragment of the type X molecule was resistant to further degradation. In contrast, collagen type IX (native, intact and pepsin-solubilized type M) and collagen type XI were resistant to collagenase attack at both 25 degrees C and 35 degrees C even in the presence of excess enzyme. Mixtures of type II collagen with equimolar amounts of either type IX or XI did not affect the rate at which the former was degraded by collagenase at 25 degrees C. Purified neutrophil elastase, shown to be functionally active against soluble type III collagen, had no effect on collagen type II at 25 degrees C or 35 degrees C. At 25 degrees C collagen types IX (pepsin-solubilized type M) and XI were also resistant to elastase, but at 35 degrees C both were susceptible to degradation with type IX being reduced to very small peptides. Collagen type X (45-kDa pepsin-solubilized) was susceptible to elastase attack at 25 degrees C and 35 degrees C as judged by the production of specific products that corresponded closely with those produced by collagenase. Although synovial collagenase failed to degrade collagen types IX and XI, all the cartilage collagen species examined were degraded at 35 degrees C by conditioned culture medium from IL1-activated human articular chondrocytes. Thus chondrocytes have the potential to catabolise each cartilage collagen species, but the specificity and number of the chondrocyte-derived collagenase(s) has yet to be resolved.  相似文献   

17.
We studied the interaction of proteoglycan subunit with both types I and II collagen. All three molecular species were isolated from the ox. Type II collagen, prepared from papain-digested bovine nasal cartilage, was characterized by gel electrophoresis, amino acid analysis and CM-cellulose chromatography. By comparison of type I collagen, prepared from papain-digested calf skin, with native calf skin acid-soluble tropocollagen, we concluded that the papain treatment left the collagen molecules intact. Interactions were carried out at 4 degrees C in 0.06 M-sodium acetate, pH 4.8, and the results were studied by two slightly different methods involving CM-cellulose chromatography and polyacrylamide-gel electrophoresis. It was demonstrated that proteoglycan subunit, from bovine nasal cartilage, bound to cartilage collagen. Competitive-interaction experiments showed that, in the presence of equal amounts of calf skin acid-soluble tropocollagen (type I) and bovine nasal cartilage collagen (type II), proteoglycan subunit bound preferentially to the type I collagen. We suggest from these results that, although not measured under physiological conditions, it is unlikely that the binding in vivo between type II collagen and proteoglycan is appreciably stronger than that between type I collagen and proteoglycan.  相似文献   

18.
Transforming growth factor-beta stimulates the production of the extracellular matrix, whereas TNF-alpha has antifibrotic activity. Understanding the molecular mechanism underlying the antagonistic activities of TNF-alpha against TGF-beta is critical in the context of tissue repair and maintenance of tissue homeostasis. In the present study, we demonstrated a novel mechanism by which TNF-alpha blocks TGF-beta-induced gene and signaling pathways in human dermal fibroblasts. We showed that TNF-alpha prevents TGF-beta-induced gene trans activation, such as alpha2(I) collagen or tissue inhibitor of metalloproteinases 1, and TGF-beta signaling pathways, such as Smad3, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinases, without inducing levels of inhibitory Smad7 in human dermal fibroblasts. TNF-alpha down-regulates the expression of type II TGF-beta receptor (TbetaRII) proteins, but not type I TGF-beta receptor (TbetaRI), in human dermal fibroblasts. However, neither TbetaRII mRNA nor TbetaRII promoter activity was decreased by TNF-alpha. TNF-alpha-mediated decrease of TbetaRII protein expression was not inhibited by the treatment of fibroblasts with either a selective inhibitor of I-kappaB-alpha phosphorylation, BAY 11-7082, or a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor, PD98059. Calpain inhibitor I (ALLN), a protease inhibitor, inhibits TNF-alpha-mediated down-regulation of TbetaRII. We found that TNF-alpha triggered down-regulation of TbetaRII, leading to desensitization of human dermal fibroblasts toward TGF-beta. Furthermore, these events seemed to cause a dramatic down-regulation of alpha2(I) collagen and tissue inhibitor of metalloproteinases 1 in systemic sclerosis fibroblasts. These results indicated that TNF-alpha impaired the response of the cells to TGF-beta by regulating the turnover of TbetaRII.  相似文献   

19.
20.
Summary The distribution of types I, II, III, V and IX collagens in healing fractures of the rabbit tibia has been demonstrated by immunofluorescent techniques. It has also been shown that the mechanical stability of the healing fracture affects both the distribution and types of the collagens present.The initial fibrous matrix contains types III and V collagens; type I collagen was only located in this matrix if unfixed tissue was used. In mechanically stable fractures, cancellous bone forms over the entire periosteal surface by 5–7 days; type I collagen is laid down within the previous fibrous matrix. The trabeculae are heterogeneous in their collagen content. The cavities contain a matrix of types III and V collagens. Small nodules of cartilage may be present between 7 and 14 days; these contain types II and IX collagens.In mechanically unstable fractures, cancellous bone is initially formed away from the fracture gap. The fibrous tissue over the gap is replaced by cartilage; types II and IX collagens are laid down on the pre-existing fibrous matrix. The cartilage is replaced by endochondral ossification. At the ossification front, type I collagen is found around the chondrocyte lacunae of the spicules of cartilage. The new trabeculae contain a core of cartilage which is surrounded by a bone matrix of types I and V collagens.The fracture gaps are invaded by fibrous tissue, which contain types III and V collagens. This is later replaced by cancellous bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号