首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibition of phosphatidylinositol 3-kinase by quercetin and analogs.   总被引:6,自引:0,他引:6  
Phosphatidylinositol (PtdIns) 3-kinase is an enzyme involved in cellular responses to growth factors. Quercetin (2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyrano-4-one), a naturally occuring bioflavinoid, was found to inhibit PtdIns 3-kinase with an IC50 of 1.3 micrograms/ml (3.8 microM); inhibition appears to be directed towards the ATP binding site of the kinase. Analogs of quercetin were also investigated as PtdIns 3-kinase inhibitors, with the most potent compounds exhibiting IC50's in the range of 1.7-8.4 micrograms/ml (5-19 microM). In contrast, genistein, a potent tyrosine kinase inhibitor of the isoflavone class, did not inhibit PtdIns 3-kinase significantly (IC50 greater than 30 micrograms/ml). These findings suggest that flavinoids may serve as potent inhibitors of PtdIns 3-kinase. Furthermore, the enzyme is much more sensitive to substituents at the 3-position of the flavinoid ring than are other protein and PtdIns kinases, suggesting that specific inhibitors of PtdIns 3-kinase can be developed to explore the biological role of the enzyme in cellular proliferation and growth factor response.  相似文献   

2.
Inostamycin, which was recently isolated from Streptomyces sp. MH816-AF15 as an inhibitor of cytidine 5'-diphosphate 1,2-diacyl-sn-glycerol (CDP-DG): inositol transferase, caused a G1-phase accumulation in the cell cycle of small cell lung carcinomas. To investigate whether the cytostatic effect of inostamycin is restricted to lung carcinoma cell lines or applicable to other type of cells, we tested five oral squamous cell carcinoma (SCC) cell lines. Cell growth was suppressed in 62.5--125 ng/ml inostamycin in the culture medium in all oral cancer cell lines tested, with non-viable cells being <1%, indicating inostamycin is cytostatic on SCC cell lines. Decrease in cyclin D1 mRNA and protein expression due to the inostamycin treatment was accompanied by suppression of phosphorylated retinoblastoma susceptibility gene product (pRB-P) levels. Moreover, flow cytometric analysis showed that inostamycin induced an increase in G1/G0 cells (1.2--3.2 fold) over 24 h. These results suggest that inostamycin is a useful agent for tumour dormant cytostatic therapy for oral SCC.  相似文献   

3.
Phosphatidyl inositol has been found to inhibit strongly the activity of a cyclic AMP-independent protein kinase located on the external surface of goat epididymal intact spermatozoa. Phosphatidyl inositol at a concentration as low as 10 micrograms/ml inhibited nearly 50% of the ecto-kinase activity for the phosphorylation of the exogenous protein substrate: casein. Phosphatidyl ethanolamine at a relatively high concentration (125 micrograms/ml) inhibited slightly (approx 25%) the activity of the enzyme whereas other phospholipids: phosphatidyl serine and choline, diacyl glycerol, phosphatidic acid and myo-inositol-2-phosphate had no appreciable effect on the kinase activity. Phosphatidyl inositol has also served as a potent inhibitor of the phosphorylation of sperm ecto-phosphoproteins by the endogenous kinase activity of intact spermatozoa. By thin layer chromatography it has been shown that the observed inhibitory effect of the phospholipid was not due to any impurities or degraded products of phosphatidyl inositol. Phosphatidyl inositol inhibited the kinase activity noncompetitively with respect to casein and Mg2+ but uncompetitively with respect to ATP. The results raised the possibility that phosphatidyl inositol-mediated high affinity inhibition of protein kinase(s), may constitute a novel mechanism for the regulatory actins of the phospholipid in mammalian cells.  相似文献   

4.
Mitoxantrone, a new anthraquinone, showed inhibitory an effect on protein kinase C (PKC) activity. Its IC50 value was 4.4 micrograms/ml (8.5 microM), which is much lower than those of the well-known anthracyclines daunorubicin and doxorubicin, the IC50 values of which are more than 100 micrograms/ml (> 170 microM). Kinetic studies demonstrated that mitoxantrone inhibited PKC in a competitive manner with respect to histone H1, and its Ki value was 6.3 microM (Ki values of daunorubicin and doxorubicin were 0.89 and 0.15 mM, respectively), and in a non-competitive manner with respect to phosphatidylserine and ATP. Inhibition of phosphorylation by mitoxantrone was observed with various substrates including S6 peptide, myelin basic protein and its peptide substrate derived from the amino-terminal region. Their IC50 values were 0.49 microgram/ml (0.95 microM), 1.8 micrograms/ml (3.5 microM), and 0.82 microgram/ml (1.6 microM), respectively. Mitoxantrone did not markedly inhibit the activity of cyclic AMP-dependent protein kinase, casein kinase I or casein kinase II, at concentrations of less than 10 micrograms/ml. On the other hand, brief exposure (5 min) of HL60 cells to mitoxantrone caused the inhibition of cell growth with an IC50 value of 52 ng/ml (0.1 microM). In HL60 cells, most of the PKC activity (about 90%) was detected in the cytosolic fraction. When HL60 cells exposed to 10 micrograms/ml mitoxantrone for 5 min were observed with fluorescence microscopy, the fluorescence elicited from mitoxantrone was detected in the extranuclear area. These results indicated that mitoxantrone is a potent inhibitor of PKC, and this inhibition may be one of the mechanisms of antitumor activity of mitoxantrone.  相似文献   

5.
Various derivatives of thiazolidine-diones have been identified as tyrosine protein kinase inhibitors. The epidermal growth factor (EGF) receptor kinase and c-src kinase were inhibited in vitro with IC50 values in the range of 1-7 microM. The v-abl tyrosine protein kinase was not inhibited by thiazolidine-diones. Inhibition was found to be specific for tyrosine protein kinases. Inhibition of serine/threonine protein kinases was not observed. The active derivatives were shown to inhibit EGF-induced receptor autophosphorylation, either in vitro or in intact cells, and were also found to inhibit growth of the EGF-dependent BALB/MK and A431 cell lines (IC50 1-3 microM). Growth of the interleukin-3-dependent myeloid cell line FDC-P1 was inhibited with equal efficiency. Thus, in these cell lines, members of the c-src kinase family are also potential targets for inhibition by the compounds.  相似文献   

6.
Sulfur containing constituents of garlic are considered responsible for conveying the antioxidative properties of garlic preparations. The radical scavenging properties of garlic preparations against oxygen radicals, specifically their ability to inhibit the formation of superoxide anions, were investigated using human granulocytes activated with 10 nM phorbol myristyl acetate (PMA). A garlic powder preparation inhibited the production of superoxide with a calculated IC50 of 390 micrograms/ml. An 8-10% alliin enriched garlic extract (alliinase inactivated) did not inhibit superoxide production even at concentrations as high as 1000 micrograms/ml. When the extract was mixed with garlic powder (90% garlic powder, 10% garlic extract), there was a clear inhibition of superoxide production with an IC50 value of 295 micrograms/ml. An even stronger inhibitory effect could be achieved when garlic powder was added to garlic extract (10% garlic powder, 90% extract, IC50 = 160 micrograms/ml). These experimental results suggest that the alliin metabolite allicin may be responsible for the oxygen radical scavenging properties of garlic.  相似文献   

7.
Free oxygen radical scavenging activity of brahma rasayana (BR) was studied by in vitro and in vivo models. Addition of aqueous extract of BR was found to scavenge the lipid peroxides already present in rat liver homogenate (IC50 700 micrograms/ml) and inhibit the lipid peroxide generated by Fe(2+)-ascorbate (IC50 2600 micrograms/ml) and Fe(3+)-ADP-ascorbate system (IC50 1200 micrograms/ml). BR was found to scavenge the hydroxyl radical generated by Fenton reaction (IC50 7400 micrograms/ml) and superoxide generated by photoreduction of riboflavin (IC50 180 micrograms/ml). BR was also found to inhibit the nitric oxide radical generated in vitro from sodium nitroprusside (IC50 5.5 micrograms/ml). Oral administration of BR (50 mg/dose/animal) was found to inhibit the PMA induced superoxide generation in mice peritoneal macrophages. Oral administration of BR; 10 and 50 mg/dose/animal was also found to inhibit the nitrite production in peritoneal macrophages and percentage inhibition was 25.2% and 37.8% respectively. These results indicate significant antioxidant activity of BR in vitro and in vivo.  相似文献   

8.
Erbstatin, a tyrosine kinase inhibitor, inhibited epidermal growth factor (EGF)-induced inositol phosphate production in cultured A431 cells. However, it did not inhibit ATP-induced inositol phosphate production. Cytosolic but not membrane-associated phospholipase C was activated by EGF, and erbstatin inhibited enhancement of the phospholipase C activity in EGF-treated cells. Thus, tyrosine kinase of A431 cells is suggested to be functionally involved in phospholipase C activation.  相似文献   

9.
Tea polyphenols are known to inhibit a wide variety of enzymatic activities associated with cell proliferation and tumor progression. The molecular mechanisms of antiproliferation are remained to be elucidated. In this study, we investigated the effects of the major tea polyphenol (−)-epigallocatechin gallate (EGCG) on the proliferation of human epidermoid carcinoma cell line, A431. Using a [3H]thymidine incorporation assay, EGCG could significantly inhibit the DNA synthesis of A431 cells. In vitro assay, EGCG strongly inhibited the protein tyrosine kinase (PTK) activities of EGF-R, PDGF-R, and FGF-R, and exhibited an IC50 value of 0.5–1 μg/ml. But EGCG scarcely inhibited the protein kinase activities of pp60v-src, PKC, and PKA (IC50 > 10 μg/ml). In an in vivo assay, EGCG could reduce the autophosphorylation level of EGF-R by EGF. Phosphoamino acid analysis of the EGF-R revealed that EGCG inhibited the EGF-stimulated increase in phosphotyrosine level in A431 cells. In addition, we showed that EGCG blocked EGF binding to its receptor. The results of further studies suggested that the inhibition of proliferation and suppression of the EGF signaling by EGCG might mainly mediate dose-dependent blocking of ligand binding to its receptor, and subsequently through inhibition of EGF-R kinase activity. J. Cell. Biochem. 67:55–65, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Genistein, an isoflavone putative tyrosine kinase inhibitor, was used to investigate the coupling of insulin receptor tyrosine kinase activation to four metabolic effects of insulin in the isolated rat adipocyte. Genistein inhibited insulin-stimulated glucose oxidation in a concentration-dependent manner with an ID50 of 25 micrograms/ml and complete inhibition at 100 micrograms/ml. Genistein also prevented insulin's (10(-9) M) inhibition of isoproterenol-stimulated lipolysis with an ID50 of 15 micrograms/ml and a complete effect at 50 micrograms/ml. The effect of genistein (25 micrograms/ml) was not reversed by supraphysiological (10(-7) M) insulin levels. In contrast, genistein up to 100 micrograms/ml had no effect on insulin's (10(-9) M) stimulation of either pyruvate dehydrogenase or glycogen synthase activity. We determined whether genistein influenced insulin receptor beta-subunit autophosphorylation or tyrosine kinase substrate phosphorylation either in vivo or in vitro by anti-phosphotyrosine immunoblotting. Genistein at 100 micrograms/ml did not inhibit insulin's (10(-7) M) stimulation of insulin receptor tyrosine autophosphorylation or tyrosine phosphorylation of the cellular substrates pp185 and pp60. Also, genistein did not prevent insulin-stimulated autophosphorylation of partially purified human insulin receptors from NIH 3T3/HIR 3.5 cells or the phosphorylation of histones by the activated receptor tyrosine kinase. In control experiments using either NIH 3T3 fibroblasts or partially purified membranes from these cells, genistein did inhibit platelet-derived growth factor's stimulation of its receptor autophosphorylation. These findings indicate the following: (a) Genistein can inhibit certain responses to insulin without blocking insulin's stimulation of its receptor tyrosine autophosphorylation or of the receptor kinase substrate tyrosine phosphorylation. (b) In adipocytes genistein must block the stimulation of glucose oxidation and the antilipolytic effects of insulin at site(s) downstream from the insulin receptor tyrosine kinase. (c) The inhibitory effects of genistein on hormonal signal transduction cannot necessarily be attributed to inhibition of tyrosine kinase activity, unless specifically demonstrated.  相似文献   

11.
New efforts in cancer therapy are being focused at various levels of signaling pathways. With phosphoinositide 3-kinase (PI3-K) potentially being necessary for a range of cancer-related functions, we have investigated the influence of selected inositol tris- to hexakisphosphates on cell growth and tumorigenicity. We show that micromolar concentrations of inositol 1,3,4,5,6-pentakisphosphate and inositol 1,4,5,6-tetrakisphosphate [Ins(1,4,5,6)P(4)] inhibit IGF-1-induced [(3)H]-thymidine incorporation in human breast cancer (MCF-7) cells and the ability to grow in liquid medium and form colonies in agarose semisolid medium by small cell lung cancer (SCLC) cells, a human cancer cell line containing a constitutively active PI3-K. In an ovarian cancer cell line that also contains a constitutively active PI3-K (SKOV-3 cells), Ins(1,4,5,6)P(4) again inhibited liquid medium growth. Furthermore, when applied extracellularly, inositol 1,3,4,5-tetrakisphosphate was shown indeed to enter SCLC cells. These effects appeared specifically related to PH domains known to bind to phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P(2)] and phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)], indicating involvement of the PI3-K downstream target protein kinase B (PKB/Akt). This was further supported by inhibition of PKB/Akt PH domain membrane targeting in COS-7 cells by Ins(1,4,5,6)P(4). Thus, we propose that specific inositol polyphosphates inhibit PI3-K by competing with PtdIns(3,4, 5)P(3)-binding PH domains and that this occurs mainly at the level of the downstream PI3-K target, PKB/Akt.  相似文献   

12.
Stimulation of mouse peritoneal macrophages with zymosan or bacteria results in activation of 85-kDa cytosolic phospholipase A(2) (cPLA(2)) and release of arachidonate. We have investigated the role of phosphatidylinositol 3-kinase (PtdIns 3-kinase) in the signalling leading to activation of cPLA(2) and release of arachidonate in response to zymosan and the bacterium Prevotella intermedia. The specific PtdIns 3-kinase inhibitor wortmannin completely inhibited zymosan- and bacteria-induced release of arachidonate with an IC(50) value of 10-20 nM. Wortmannin also completely inhibited the zymosan-induced activation of cPLA(2), while the cPLA(2) activation by bacteria was partially inhibited by about 50%. Further experiments showed that zymosan-induced activation of extracellular signal-regulated kinase was inhibited, and bacteria-induced activation of the kinase strongly reduced, in the presence of wortmannin. Also zymosan-induced activation of p38 mitogen-activated protein kinase was inhibited by wortmannin, while p38 activation induced by bacteria was not. The zymosan- and bacteria-induced activation of phospholipase C, as determined by the generation of inositol phosphates, was also inhibited by wortmannin. Moreover, zymosan caused activation of PtdIns 3-kinase, which was totally inhibited by wortmannin. In contrast to zymosan and bacteria, arachidonate release induced by calcium ionophore alone, or further amplified by phorbol ester, was not sensitive to wortmannin. These results suggest that PtdIns 3-kinase constitutes a critical component in the zymosan- and bacteria-induced signalling leading to release of arachidonate and that PtdIns 3-kinase is positioned upstream of phospholipase C in this pathway.  相似文献   

13.
Inhibition of the beta-adrenergic receptor kinase by polyanions   总被引:3,自引:0,他引:3  
The beta-adrenergic receptor kinase, which specifically phosphorylates the agonist-occupied beta-adrenergic receptor, is strongly inhibited by polyanions. Heparin and dextran sulfate inhibit the enzyme with an IC50 of approximately 0.15 microM. De-N-sulfated heparin is approximately 8-fold less potent. Other acid mucopolysaccharides such as heparan sulfate and chondroitin sulfates B and C are also less effective. Polyaspartic and polyglutamic acid also inhibit with IC50 values of 1.3-2 microM. Inositol hexasulfate, with an IC50 of 13 microM is approximately 270-fold more potent than inositol hexaphosphate implicating the sulfate group as a major determinant of the inhibition. The inhibition by heparin is competitive with substrate and of mixed type with respect to ATP. Polycations also inhibit receptor phosphorylation by beta-adrenergic receptor kinase. Polylysine is more effective with an IC50 of 69 microM, while spermine (990 microM) and spermidine (2570 microM) are less potent. Polylysine, spermine, and spermidine are also able to block effectively the inhibition by heparin. The identification of compounds which specifically inhibit beta-adrenergic receptor kinase should prove useful in further defining the biological role of this enzyme.  相似文献   

14.
TRH stimulation of rat pituitary (GH3) cells causes biphasic changes in cytoplasmic free Ca2+ concentration [( Ca2+]i) and PRL secretion. It has been proposed, based primarily on indirect evidence, that the first phase effects are mediated by inositol 1,4,5-trisphosphate, which releases Ca2+ from cellular stores, and the sustained effects are mediated by 1,2-diacylglycerol, which activates protein kinase C. To determine more directly if inositol lipid hydrolysis leading to protein kinase C activation is involved in the sustained effects of TRH, GH3 cells were depleted of phosphatidylinositol (PtdIns) by prestimulation and incubation in myo-inositol-free, Li(+)-containing medium. Cells depleted of PtdIns (to 53 +/- 3.2% of control) had unchanged PtdIns 4,5-bisphosphate content, and responded to TRH with a rapid elevation of inositol trisphosphate, and a first phase (or burst) elevation of [Ca2+]i and PRL secretion that was not different from that found in control cells. In contrast, in PtdIns-depleted cells, the prolonged generation of inositol phosphates, which are produced in equimolar amounts with 1,2-diacylglycerol, caused by TRH was virtually abolished, and the second phase (or sustained) elevation of [Ca2+]i and PRL secretion were inhibited by 50% and 40%, respectively. The inhibition of both sustained effects was reversed by adding 100 mM myo-inositol to the medium, which allowed for synthesis of PtdIns. Last, in cells in which protein kinase C was down-regulated by pretreatment with a phorbol ester, the sustained effects of TRH were inhibited also.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Head and neck squamous cell carcinoma is the sixth most common type of neoplasm worldwide, but its prognosis has not improved significantly in recent years. Therefore, efforts need to be intensified to gain a better understanding of this disease and develop novel treatment strategies. Inhibition of cytidine 5′‐diphosphate 1,2‐diacyl‐sn‐glycerol: inositol transferase by inostamycin, an antibiotic isolated from Streptomyces sp. MH816‐AF15, induces G1 cell cycle arrest accompanied by a decrease in cyclin D1 and phosphorylated RB protein levels, along with suppression of in vitro invasive ability through reduced production of matrix metalloproteinases (MMP‐2 and MMP‐9) and cell motility in head and neck cancer cell lines. Furthermore, inostamycin abrogated the stimulatory effect of VEGF (vascular endothelial growth factor) on growth and migration activities of endothelial cells by targeting extracellular signal‐regulated kinase‐cyclin D1 and p38 pathways, respectively. Because inostamycin has both antiproliferative and anti‐invasive abilities, inhibition of phosphatidylinositol synthesis could be a potent therapeutic strategy for head and neck cancer as the ‘cancer dormant therapy’, i.e. a therapeutic concept to prolong ‘time to treatment failure’ or ‘time to progression’.  相似文献   

16.
Hypericin and pseudohypericin which have been isolated from plants of the Hypericum family are aromatic polycyclic diones. Daniel Meruelo et. al. have reported that hypericin and pseudohypericin showed potent antiretroviral activity including anti-human immunodeficiency virus (1,2). However, the mechanism of these antiretroviral activities has not been clarified. In the course of screening specific inhibitors of protein kinase C we have found that both compounds specifically inhibit protein kinase C with IC50 values 1.7 micrograms/ml and 15 micrograms/ml, respectively, and show antiproliferative activity against mammalian cells. These data suggest that antiretroviral activity of hypericin and pseudohypericin could be attributable to the inhibition of some phosphorylation involved by protein kinase C during viral infection of cells.  相似文献   

17.
A scintillation proximity assay (SPA) for transforming growth factor alpha (TGF alpha) using SPA beads coated with A431 membranes has been studied. Binding of TGF alpha to the beads was characteristic of a receptor interaction. A class of high-affinity receptors for [125I]-TGF alpha (Kd = 0.10-0.26 nM) was detected by competition studies between [125I]TGF alpha and cold TGF alpha and by analysis of association and dissociation rate constants. An antibody to the epidermal growth factor receptor (clone 528) inhibited binding of [125I]TGF alpha (IC50 = 0.20 micrograms/ml), but an anti-TGF alpha antibody (clone 134A-2B3) (less than 25 micrograms/ml) did not block binding. Suramin inhibited [125I]-TGF alpha binding (IC50 = 0.20 mM). The ether lipids 1-O-hexadecyl-2-O-methyl-sn-glycero-3-phosphocholine, 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine, and rac-lyso-platelet activating factor inhibited TGF alpha binding (IC50 values of 49, 69, and 57 microM, respectively). SPA is a convenient method for identifying agents that may act by interfering with TGF alpha binding.  相似文献   

18.
The 5-lipoxygenase (5-LO) inhibitors BI-L-239 and A-64077 were compared with the 5-LO translocation inhibitor MK-886 for the ability to inhibit leukotriene B4 (LTB4) biosynthesis by chopped (1 mm3) guinea pig lung. LTB4 synthesis by ovalbumin-sensitized chopped lung tissue was determined after stimulation with either calcium ionophore (A23187) or antigen. With A23187 stimulation, MK-886 was more potent (IC50 = 0.39 +/- 0.23 microM, mean +/- SEM, p < 0.01) than BI-L-239 (IC50 = 2.48 +/- 0.46 microM) or A-64077 (IC50 = 4.68 +/- 0.70 microM) and BI-L-239 was more potent than A64077 (p < 0.02). Thus, the order of potency was MK-886 > BI-L-239 > A-64077 for inhibition of calcium ionophore-induced LTB4 generation. There was no significant differences in potency of the compounds in chopped lung stimulated with antigen: IC50 for LTB4 synthesis by A-64077 = 3.31 +/- 1.70 microM, for BI-L-239 = 9.06 +/- 4.94 microM, and for MK-886 = 13.33 +/- 7.91 microM. The ability of these compounds to inhibit contraction of tracheal tissue from actively sensitized guinea pigs in response to antigen was also determined in the presence of indomethacin (15 micrograms/ml), mepyramine, and atropine (5 micrograms each/ml). Both 5-LO inhibitors inhibited antigen-induced contraction, with IC50 values for BI-L-239 and A-64077 of 1.58 and 4.35 microM respectively. MK-886 was ineffective at inhibiting antigen-induced tracheal contraction in vitro at concentrations up to 30 microM. In summary, these compounds inhibit antigen-induced and A23187-induced leukotriene biosynthesis in guinea pig tissue. These 5-LO inhibitors were similarly effective at inhibiting antigen-induced tracheal contraction where MK-886 was ineffective.  相似文献   

19.
A series of 9-beta-D-ribofuranosyl-6-alkylthiopurines (6-alkyl TI) were found to inhibit in vitro replication of infectious hematopoietic necrosis virus (IHNV), human influenza virus (IFV) and respiratory syncytial virus (RSV) with IC50 values of about 0.06 microgram/ml, 0.7-1.5 micrograms/ml and 1-3 micrograms/ml, respectively. Viral RNA synthesis in infected cells in the presence of actinomycin D was inhibited by treatment with the compounds dose-dependently. It was also found that the decrease of rNTP pool size in infected cells was remarkably dose-dependent. From these findings, the mode of antiviral action of these compounds may be explained by rNTP imbalance in the treated group.  相似文献   

20.
Recently, we demonstrated that aggregation of the high affinity IgE receptor in rat basophilic leukemia (RBL-2H3) cells results in rapid tyrosine phosphorylation of a 72-kDa protein (pp72). Here we investigated the relationship of pp72 phosphorylation to guanine nucleotide-binding protein (G protein) activation and phosphatidylinositol hydrolysis. The activation of G proteins by NaF in intact cells or by guanosine 5'-O-(3-thiotriphosphate) in streptolysin O-permeabilized cells induced both phosphatidylinositol hydrolysis and histamine release without tyrosine phosphorylation of pp72. Similarly, in RBL-2H3 cells expressing the G protein-coupled muscarinic acetylcholine receptor, carbachol activated phospholipase C and induced secretion without concomitant pp72 phosphorylation. Therefore, pp72 phosphorylation was not induced by G protein activation or as a consequence of phosphatidylinositol hydrolysis. To investigate whether pp72 tyrosine phosphorylation precedes the activation of phospholipase C, we studied the effect of the tyrosine kinase inhibitor genistein. Preincubation of cells with genistein decreased, in parallel, antigen-induced tyrosine phosphorylation of pp72 (IC50 = 34 micrograms/ml) and histamine release (IC50 = 31 micrograms/ml). However, genistein at concentrations of up to 60 micrograms/ml did not inhibit phosphatidylinositol hydrolysis nor did it change the amount of the secondary messenger inositol (1,4,5)-triphosphate. Previous observations showed that there was no pp72 tyrosine phosphorylation after activation of protein kinase C or after an increase in intracellular calcium. Taken together, these results suggest that pp72 tyrosine phosphorylation represents a distinct, independent signaling pathway induced specifically by aggregation of the Fc epsilon RI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号