首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
木糖异构酶在酿酒酵母细胞表面的展示   总被引:2,自引:0,他引:2  
将来源于嗜热细菌Thermus thermophilus的木糖异构酶基因xylA,与酿酒酵母(Sac-charomyces cerevisiae)a-凝集素表面展示载体pYD1的Aga2p亚基C端序列融合。编码融合蛋白的基因序列前接上半乳糖诱导型启动子。用LiAc完整细胞法转化酿酒酵母EBY100。含重组质粒的菌株EBY100/pYD-xylA经半乳糖诱导表达外源融合蛋白,免疫荧光显微镜结果显示外源蛋白被锚定在细胞壁上,木糖异构酶活性测定结果表明,细胞壁上酶活测定值为1.52U,木糖异构酶在酿酒酵母细胞壁上得到活性表达。  相似文献   

2.
嗜热细菌木糖异构酶基因xylA在酿酒酵母中的高效表达   总被引:20,自引:2,他引:20  
采用PCR技术克隆得到嗜热细菌Clostridium thermohydrosulfuricum木糖异构酶(xylose isomerase XI)基因xylA,将该基因连接于酵母表达载体pMA91的磷酸甘油激酶(PGK)启动子下,得到重组质粒pBX1。通过LiAc完整细胞转化法将重组质粒转移至酿酒酵母(Saccharomyces cerevisiae)H158受体菌中,得到重组酵母转化子H612,酶活测定结果表明,成功地在酿酒酵母中得到木糖异构酶的活性表达。SDSPAGE电泳结果显示出明显的特异性表达产物带,单体分子量为43kD。由酿酒酵母重组子H612产生的木糖异构酶最高酶活条件与其在自然状态下的一致,均为85℃,pH70,在这一条件下酶的比活力为10U/mg蛋白,而在接近酵母最适生长温度的30℃和40℃时,其相对酶活分别下降37%和11%。研究结果显示在酿酒酵母中得到木糖异构酶的活性表达,为进一步在酿酒酵母菌中建立新的木糖代谢途径打下了基础。  相似文献   

3.
大肠杆菌D一木糖异构酶基因的分子克隆与表达   总被引:1,自引:0,他引:1  
经DNA体外重组,并以D-木糖异构酶缺陷型菌株互补加以检定,获得了大肠杆菌D-木糖操纵子克隆.通过次级克隆,分离得到了D-木糖异构酶基因克隆。为试图提高酶活力,将含有D-木糖操纵子和异构酶基因的克隆DNA片段,分别克隆若干个高拷贝质粒上,并且观察了不同宿主对基因表达的影响。实验结果表明,D-木糖操纵子和D-木糖异构酶基因在不同大肠杆菌菌株细胞中均能表达。  相似文献   

4.
【目的】以载体p406ADH1为构建骨架,构建一个酿酒酵母(Saccharomyces cerevisiae)工业菌株的整合表达载体。【方法】通过酶切连接的方式,将4个元件片段:作为筛选标记的G418抗性基因KanR,用于基因表达的ADH1终止子片段,酿酒酵母W5自身木酮糖激酶基因,18S rDNA介导的同源整合区,插入到骨架质粒p406ADH1中,得到多拷贝整合表达载体pCXS-RKTr。将该载体线性转化酿酒酵母后,对转化子中木酮糖激酶酶活进行测定,检测其表达情况。【结果】重组质粒在酿酒酵母体内实现了木酮糖激酶的高水平稳定表达,其酶活力是初始菌株的2.87倍。【结论】本实验构建了一个酿酒酵母工业菌株整合表达载体,并用此载体过表达了其自身的木酮糖激酶基因。该重组质粒载体的构建可以有效解决酿酒酵母中自身木酮糖激酶酶活较低的情况,这为利用木糖高产乙醇酿酒酵母基因工程菌株的构建和其它酵母重组质粒载体的构建奠定基础。  相似文献   

5.
采用PCR技术以大肠杆菌JM109基因组DNA为模板扩增得到木糖异构酶基因xylA,连接到载体pET-22b( ),得到重组质粒pET-22b( )-xylA。将此重组质粒转化到大肠杆菌菌株BL21(DE3)中,重组菌株经IPTG诱导后,通过半胱氨酸-咔唑法测得木糖异构酶活力。每mL发酵液中重组菌株显示出酶活力约为0.84 U。SDS-PAGE电泳结果显示出明显的5×104(相对分子质量)特异性蛋白质条带。  相似文献   

6.
木酮糖激酶表达水平对酿酒酵母木糖代谢产物流向的影响   总被引:4,自引:0,他引:4  
在酿酒酵母中分别引入真菌和细菌的木糖代谢关键酶,木糖还原酶基因XYL1、木糖醇脱氢酶基因XYL2和木糖异构酶基因xylA. 并在此基础上以共转化策略超表达下游关键酶木酮糖激酶基因XKS1. 与亲本菌株相比,用pMA91和YEp24质粒表达XKS1的重组菌株,木酮糖激酶(xylulokinase,XK)活性分别提高了14和6.7倍. 在限氧条件下,重组菌株对木糖和葡萄糖的共发酵结果显示,表达XYL1,XYL2以及XKS1的重组菌株HSXY-251木糖消耗为12.4 g/L,提高了120.9%,乙醇产量达到9.4 g/L,提高了36%,副产物木糖醇产量为0.7 g/L,下降了84.9%.  相似文献   

7.
摘要:【目的】研究ERG6基因编码的甾醇C-24甲基转移酶和ERG2基因编码的甾醇C-8异构酶在酿酒酵母麦角甾醇生物合成代谢中的调控作用。【方法】通过PCR扩增克隆到酿酒酵母甾醇C-8异构酶的编码序列及其终止子序列,以大肠杆菌-酿酒酵母穿梭质粒YEp352为载体,以磷酸甘油酸激酶基因PGK1启动子为上游调控元件构建了酵母菌表达质粒pPERG2;同时,在本实验室已构建的ERG6表达质粒pPERG6的基础上,构建了ERG2和ERG6共表达的重组质粒pPERG6-2。将表达质粒转化酿酒酵母单倍体菌株YS58,依据营养缺陷互补筛选到重组菌株YS58(pPERG2)和YS58(pPERG6-2)。通过紫外分光光度法和气相色谱法分析重组菌株甾醇组分和含量。【结果】在ERG6高表达的重组酵母菌中,甾醇中间体和终产物麦角甾醇的含量均比对照菌高;而在ERG2高表达的酵母菌株中,无论甾醇中间体,还是麦角甾醇的含量均明显降低。ERG6和ERG2共表达重组菌株YS58(pPERG6-2)的麦角甾醇含量是对照菌株YS58(YEp352)的1.41倍,是ERG2单独高表达菌株YS58(pPERG2)的1.92倍,是ERG6单独高表达菌株YS58(pPERG6)的1.12倍。【结论】本研究首次证明甾醇C-24甲基转移酶催化的反应是酿酒酵母麦角甾醇合成代谢途径中的一个重要的限速步骤,该酶活性提高不但补偿了ERG2高表达对甾醇合成的负效应,而且使麦角甾醇含量进一步提高,为构建麦角甾醇高产酵母工程菌株提供了实验依据。  相似文献   

8.
采用双载体系统,将携带有瑞氏木霉木糖醇脱氢酶基因的表达质粒pAJ401-Xdh1转化已带有树干毕赤氏酵母木糖还原酶基因的重组酿酒酵母H475,构建了同时带有毕赤氏酵母木糖还原酶基因和瑞氏木霉木糖醇脱氢酶基因的重组酿酒酵母HX1。研究了重组酿酒酵母HX1对木糖的转化利用情况。  相似文献   

9.
从甘肃玉门油田地表土中分离到一株嗜热木糖利用菌,地芽孢杆菌Y565-5。利用PCR方法从该菌株中克隆得到一个木糖异构酶基因,xylA。该基因开放阅读框长1182 bp,编码394个氨基酸,XylA氨基酸序列与Geobacillus sp.Y412MC52相似性达到99%。将xylA基因克隆到原核表达载体pET-28a(+)上,得到重组质粒pET-28a(+)-xylA,然后将此重组质粒转化至BL21(DE3)中,经IPTG诱导后,通过SDS-PAGE电泳检测出明显的45 kD(相对分子质量)特异性蛋白质条带,并且通过半胱氨酸咔唑法检测出表达产物具有木糖异构酶的活性。对其酶学性质的研究发现,XylA最适温度为90°C,最适pH值为8.0。  相似文献   

10.
酿酒酵母工业菌株中XI木糖代谢途径的建立   总被引:9,自引:0,他引:9  
根据代谢工程原理,采取多拷贝整合策略,利用整合载体pYMIKP,将来自嗜热细菌Thermusthermophilus的木糖异构酶(XI)基因xylA和酿酒酵母(Saccharomycescerevisiae)自身的木酮糖激酶(XK)基因XKS1,插入酿酒酵母工业菌株NAN-27的染色体中,得到工程菌株NAN-114。酶活测定结果显示,NAN-114中XI和XK的活性均高于出发菌株NAN-27,表明外源蛋白在酿酒酵母工业菌株中得到活性表达。对木糖、葡萄糖共发酵摇瓶实验结果表明,工程菌NAN-114消耗木糖4.6g/L,产生乙醇6.9g/L,较出发菌株分别提高了43.8%和9.5%。首次在酿酒酵母工业菌株中建立了XI路径的木糖代谢途径。  相似文献   

11.
Ethanol production using hemicelluloses has recently become a focus of many researchers. In order to promote D: -xylose fermentation, we cloned the bacterial xylA gene encoding for xylose isomerase with 434 amino acid residues from Agrobacterium tumefaciens, and successfully expressed it in Saccharomyces cerevisiae, a non-xylose assimilating yeast. The recombinant strain S. cerevisiae W303-1A/pAGROXI successfully colonized a minimal medium containing D: -xylose as a sole carbon source and was capable of growth in minimal medium containing 2% xylose via aerobic shake cultivation. Although the recombinant strain assimilates D: -xylose, its ethanol productivity is quite low during fermentation with D: -xylose alone. In order to ascertain the key enzyme in ethanol production from D: -xylose, we checked the expression levels of the gene clusters involved in the xylose assimilating pathway. Among the genes classified into four groups by their expression patterns, the mRNA level of pyruvate decarboxylase (PDC1) was reduced dramatically in xylose media. This reduced expression of PDC1, an enzyme which converts pyruvate to acetaldehyde, may cause low ethanol productivity in xylose medium. Thus, the enhancement of PDC1 gene expression may provide us with a useful tool for the fermentation of ethanol from hemicellulose.  相似文献   

12.
Saccharomyces cerevisiae TMB3001 has previously been engineered to utilize xylose by integrating the genes coding for xylose reductase (XR) and xylitol dehydrogenase (XDH) and overexpressing the native xylulokinase (XK) gene. The resulting strain is able to metabolize xylose, but its xylose utilization rate is low compared to that of natural xylose utilizing yeasts, like Pichia stipitis or Candida shehatae. One difference between S. cerevisiae and the latter species is that these possess specific xylose transporters, while S. cerevisiae takes up xylose via the high-affinity hexose transporters. For this reason, in part, it has been suggested that xylose transport in S. cerevisiae may limit the xylose utilization.We investigated the control exercised by the transport over the specific xylose utilization rate in two recombinant S. cerevisiae strains, one with low XR activity, TMB3001, and one with high XR activity, TMB3260. The strains were grown in aerobic sugar-limited chemostat and the specific xylose uptake rate was modulated by changing the xylose concentration in the feed, which allowed determination of the flux response coefficients. Separate measurements of xylose transport kinetics allowed determination of the elasticity coefficients of transport with respect to extracellular xylose concentration. The flux control coefficient, C(J) (transp), for the xylose transport was calculated from the response and elasticity coefficients. The value of C(J) (transp) for both strains was found to be < 0.1 at extracellular xylose concentrations > 7.5 g L(-1). However, for strain TMB3260 the flux control coefficient was higher than 0.5 at xylose concentrations < 0.6 g L(-1), while C(J) (transp) stayed below 0.2 for strain TMB3001 irrespective of xylose concentration.  相似文献   

13.
Efficient conversion of xylose to ethanol is an essential factor for commercialization of lignocellulosic ethanol. To minimize production of xylitol, a major by-product in xylose metabolism and concomitantly improve ethanol production, Saccharomyces cerevisiae D452-2 was engineered to overexpress NADH-preferable xylose reductase mutant (XR(MUT)) and NAD?-dependent xylitol dehydrogenase (XDH) from Pichia stipitis and endogenous xylulokinase (XK). In vitro enzyme assay confirmed the functional expression of XR(MUT), XDH and XK in recombinant S. cerevisiae strains. The change of wild type XR to XR(MUT) along with XK overexpression led to reduction of xylitol accumulation in microaerobic culture. More modulation of the xylose metabolism including overexpression of XR(MUT) and transaldolase, and disruption of the chromosomal ALD6 gene encoding aldehyde dehydrogenase (SX6(MUT)) improved the performance of ethanol production from xylose remarkably. Finally, oxygen-limited fermentation of S. cerevisiae SX6(MUT) resulted in 0.64 g l?1 h?1 xylose consumption rate, 0.25 g l?1 h?1 ethanol productivity and 39% ethanol yield based on the xylose consumed, which were 1.8, 4.2 and 2.2 times higher than the corresponding values of recombinant S. cerevisiae expressing XR(MUT), XDH and XK only.  相似文献   

14.

Background

Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose.

Results

The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase/xylitol dehydrogenase strain and the xylose isomerase strain, respectively.

Conclusion

The combination of the xylose reductase/xylitol dehydrogenase pathway and the bacterial arabinose isomerase pathway resulted in both higher pentose sugar uptake and higher overall ethanol production than the combination of the xylose isomerase pathway and the bacterial arabinose isomerase pathway. Moreover, the flux through the bacterial arabinose pathway did not increase when combined with the xylose isomerase pathway. This suggests that the low activity of the bacterial arabinose pathway cannot be ascribed to arabitol formation via the xylose reductase enzyme.  相似文献   

15.
Summary The xylose isomerase genes (xylA) from Thermoanaerobacterium thermosulfurogenes and Streptomyces rubiginosus were introduced and expressed in three plant species (potato, tobacco and tomato) and transgenic plants were selected on xylose-containing medium. The xylose isomerase genes were transferred to explants of the target plant by Agrobacterium-mediated transformation. The xylose isomerase genes were expressed under the control of the enhanced cauliflower mosaic virus 35S promoter and the Ω′ translation enhancer sequence from tobacco mosaic virus. In potato and tomato, xylose isomerase selection was more efficient than the established kanamycin selection. The level of enzyme activity in the regenerated transgenic plants selected on xylose was 5–25-fold higher than the enzyme activity in control plants selected on kanamycin. The xylose isomerase system enables transgenic cells to utilize xylose as a carbohydrate source. In contrast to antibiotic or herbicide resistance-based system where transgenic cells survive on a selective medium but nontransgenic cells are killed, the xylose system is an example of a positive selection system where transgenic cells proliferate while non-transgenic cells are starved but still survive. The results show that a new selection method, is established. The xylose system is devoid of the disadvantages of antibiotic or herbicide selection, and depends on an enzyme which is already being widely utilized in specific food processes and that is generally recognized as safe for use in the starch industry.  相似文献   

16.
Recombinant Saccharomyces cerevisiae TMB3001, harboring the Pichia stipitis genes XYL1 and XYL2 (xylose reductase and xylitol dehydrogenase, respectively) and the endogenous XKS1(xylulokinase), can convert xylose to ethanol. About 30% of the consumed xylose, however, is excreted as xylitol. Enhanced ethanol yield has previously been achieved by disrupting the ZWF1 gene, encoding glucose-6-phosphate dehydrogenase, but at the expense of the xylose consumption. This is probably the result of reduced NADPH-mediated xylose reduction. In the present study, we increased the xylose reductase (XR) activity 4-19 times in both TMB3001 and the ZWF1-disrupted strain TMB3255. The xylose consumption rate increased by 70% in TMB3001 under oxygen-limited conditions. In the ZWF1-disrupted background, the increase in XR activity fully restored the xylose consumption rate. Maximal specific growth rates on glucose were lower in the ZWF1-disrupted strains, and the increased XR activity also negatively affected the growth rate in these strains. Addition of methionine resulted in 70% and 50% enhanced maximal specific growth rates for TMB3255 (zwfl Delta) and TMB3261 (PGK1-XYL1, zwf1 Delta), respectively. Enhanced XR activity did not have any negative effect on the maximal specific growth rate in the control strain. Enhanced glycerol yields were observed in the high-XR-activity strains. These are suggested to result from the observed reductase activity of the purified XR for dihydroxyacetone phosphate.  相似文献   

17.

Xylose is the second most abundant sugar derived from lignocellulose; it is considered less desirable than glucose for fermentation, and strategies that specifically increase xylose utilization in wild type or engineered cells are goals for biofuel production. Issues arise with xylose utilization because of carbohydrate catabolite repression, which is the preferential utilization of glucose relative to xylose in fermentations with both pure and mixed cultures. Taken together the low substrate utilization rates and solvent yields with xylose compared to glucose, many industrial fermentations ignore the xylolytic portion of the reaction in lieu of methods to maintain high glucose. This is shortsighted given the massive potential for xylose generation from a number of sustainable biomass feedstocks, based on utilization of the hemicellulose fraction(s) that enter pretreatment. A number of strategies have been developed in recent years to address xylose utilization and solvent production from xylose in systems with just xylose, or in systems with mixtures of glucose plus xylose, which are more typical of pretreated lignocellulose. The approaches vary in terms of complexity, stability, and ease of introduction to existing fermentation infrastructure (i.e., so-called drop-in fermentation strategies). Some approaches can be considered traditional engineering approaches (e.g., change the reaction conditions), while others are more subtle cellular approaches to eliminate the impacts of catabolite repression. Finally, genetic engineering has been used to increase xylose utilization, although this can be considered a relatively nascent approach compared to manipulations completed to date for glucose utilization.

  相似文献   

18.
19.
The co-production of xylitol and ethanol from agricultural straw has more economic advantages than the production of ethanol only. Saccharomyces cerevisiae, the most widely used ethanol-producing yeast, can be genetically engineered to ferment xylose to xylitol. In the present study, the effects of xylose-specificity, cofactor preference, and the gene copy number of xylose reductase (XR; encoding by XYL1 gene) on xylitol production of S. cerevisiae were investigated. The results showed that overexpression of XYL1 gene with a lower xylose-specificity and a higher NADPH preference favored the xylitol production. The copy number of XYL1 had a positive correlation with the XR activity but did not show a good correlation with the xylitol productivity. The overexpression of XYL1 from Candida tropicalis (CtXYL1) achieved a xylitol productivity of 0.83 g/L/h and a yield of 0.99 g/g-consumed xylose during batch fermentation with 43.5 g/L xylose and 17.0 g/L glucose. During simultaneous saccharification and fermentation (SSF) of pretreated corn stover, the strain overexpressing CtXYL1 produced 45.41 g/L xylitol and 50.19 g/L ethanol, suggesting its application potential for xylitol and ethanol co-production from straw feedstocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号