首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sarcoplasmic reticulum Ca2+ ATPase (SERCA) is essential for muscle function by transporting Ca2+ from the cytosol into the sarcoplasmic reticulum through ATP hydrolysis. In this report, the effects of substitution mutations on the isolated SERCA-nucleotide binding domain (SERCA-N) were studied using NMR. 15N–1H HSQC spectra of substitution mutants at the nucleotide binding site, T441A, R560V, and C561A, showed chemical shift changes, primarily in residues adjacent to the mutation sites, indicating only local effects. Further, the patterns of chemical shift changes upon AMP–PNP binding to these mutants were similar to that of the wild type SERCA-N (WT). In contrast to these nucleotide binding site mutants, a mutant found in patients with Darier’s disease, E412G, showed small but significant chemical shift changes throughout the protein and rapid precipitation. However, the AMP–PNP dissociation constant (∼2.5 mM) was similar to that of WT (∼3.8 mM). These results indicate that the E412G mutant retains its catalytic activity but most likely reduces its stability. Our findings provide molecular insight into previous clinical, physiological, and biochemical observations.  相似文献   

2.
T-type Ca2+ channels have been implicated in tremorogenesis and motor coordination. The α1 subunit of the CaV3.1 T-type Ca2+ channel is highly expressed in motor pathways in the brain, but knockout of the CaV3.1 gene (α1G-/-) per se causes no motor defects in mice. Thus, the role of CaV3.1 channels in motor control remains obscure in vivo. Here, we investigated the effect of the CaV3.1 knockout in the null genetic background of α1 GABAA receptor (α1−/−) by generating the double mutants (α1−/−/α1G-/-). α1−/−/α1G-/- mice showed severer motor abnormalities than α1−/− mice as measured by potentiated tremor activities at 20 Hz and impaired motor learning. Propranolol, an anti-ET drug that is known to reduce the pathologic tremor in α1−/− mice, was not effective for suppressing the potentiated tremor in α1−/−/α1G-/- mice. In addition, α1−/−/α1G-/- mice showed an age-dependent loss of cerebellar Purkinje neurons. These results suggest that α1−/−/α1G-/- mice are a novel mouse model for a distinct subtype of ET in human and that CaV3.1 T-type Ca2+ channels play a role in motor coordination under pathological conditions.  相似文献   

3.
F N Briggs 《Cell calcium》1986,7(4):249-260
Techniques are described for using blocking agents to distinguish between enzymes which are functional monomers and oligomers. To achieve this distinction the blocking agent must react exclusively at the active site with a stoichiometry of one mole of site per mole enzyme. The effect of the blocking agent on enzymatic activity in oligomers of n = 2 and 4 are described and the optimal degree of blocking is considered for tests of enzyme activity at saturating and less than saturating substrate concentrations. For saturating concentrations and a dimer the distinction between dimer and monomer is best observed with 50 per cent of sites blocked. For a tetramer the distinction is best made at higher degrees of blockade. The use of saturating substrate concentrations is thus limited to small oligomers. If nonsaturating substrate concentrations are used and normalized double reciprocal plots of the dependence of enzyme activity on substrate concentrations are made then the distinction between monomer and oligomer can readily be made for dimers, tetramers, and higher n-mers. The principles developed to distinguished monomeric from oligomeric enzymes are applied to published data obtained with the Ca Mg-ATPase of sarcoplasmic reticulum. Fluorescein isothiocyanate is the blocking agent. Plots of the published data support both the monomeric and tetrameric models for allosteric regulation with the preponderance of the data supporting the monomeric model.  相似文献   

4.
Coll KE  Johnson RG  McKenna E 《Biochemistry》1999,38(8):2444-2451
A strong connection with nucleotide activation of Ca2+ATPase and phospholamban inhibition has been found. Phospholamban decreases the number of activatable Ca2+ATPase without affecting substrate affinity or the ability of nucleotide to serve its dual modulatory roles, i.e., catalytic and regulatory. Low concentrations of certain nucleotide mimetics, quercetin, tannin, and ellagic acid, with structural similarity to adenine can unmask phospholamban's inhibitory effect while concurrently acting as competitive inhibitors of nucleotide binding. Micromolar concentrations of tannin (EC50 approximately 0.3 microM) and ellagic acid (EC50 approximately 3 microM) stimulated Ca2+ uptake and calcium-activated ATP hydrolysis at submicromolar Ca2+ in isolated cardiac sarcoplasmic reticulum (SR). Stimulation of Ca2+ATPase was followed by pronounced inhibiton at only slightly higher tannin concentrations (IC50 approximately 3 microM), whereas inhibitory effects by ellagic acid were observed at much greater concentrations (IC50 > 300 microM) than the EC50. A complex relationship between compound, SR protein, and MgATP concentration is a major determining factor in the observed effects. Stimulation was only observed under conditions of phospholamban regulation, while the inhibitory effects were observed in cardiac SR at micromolar Ca2+ and in skeletal muscle SR, which lacks phospholamban. Maximal stimulation of Ca2+ATPase was identical to that observed with the anti-phospholamban monoclonal antibody 1D11. Both compounds appear to relieve the Ca2+ATPase from phospholamban inhibition, thereby increasing the calcium sensitivity of the Ca2+ATPase like that observed with phosphorylation of phospholamban or treatment with monoclonal antibody 1D11. Tannin, even under stimulatory conditions, is a competitive inhibitor of MgATP with a linear Dixon plot. The subsequent inhibitory action of higher tannin concentrations results from competition of tannin with the nucleotide binding site of the Ca2+ATPase. In contrast, ellagic acid produced a curvilinear Dixon plot suggesting partial inhibition of nucleotide activation. The data suggest that nucleotide activation of Ca2+ATPase is functionally coupled to the phospholamban interaction site. These compounds through their interaction with the adenine binding domain of the nucleotide binding site prevent or dissociate phospholamban regulation. Clearly, this portion of Ca2+ATPase needs further study to elucidate its role in phospholamban inhibition.  相似文献   

5.
Amino acids in three highly conserved segments of the Ca2(+)-ATPase. Asp-Pro-Pro-Arg604, Thr-Gly-Asp627, Thr-Gly-Asp703 as well as Asp707, have been proposed to participate in formation of the nucleotide binding site. We have tested this hypothesis by investigating the properties of mutants with alterations to amino acids within these segments. Most of the mutants were found to be defective in Ca2+ transport function. The inactive mutants could be separated into two classes on the basis of the kinetics of phosphoenzyme intermediate formation and decomposition. One group, Asp601----Asn, Pro603----Leu, Asp627----Glu, and Asp703----Asn, formed phosphoenzyme intermediates with ATP in the presence of Ca2+ and with inorganic phosphate only in the absence of Ca2+, indicating that both the high affinity Ca2+ binding sites and the nucleotide binding sites were intact. In each of these mutants, however, the ADP-sensitive phosphoenzyme intermediate (E1P) decayed to the ADP-insensitive phosphoenzyme intermediate very slowly, relative to the wild-type enzyme. Thus the inability of these mutants to transport Ca2+ was accounted for by an apparent block of the transport reaction at the E1P to E2P conformational transition. Another group, Asp601----Glu, Pro603----Gly, Asp707----Glu, and Asp707----Asn, did not form detectable phosphoenzyme intermediates from either ATP or Pi. Although we have demonstrated an effect on Ca2+ transport of mutations in each of the highly conserved regions predicted to be involved in ATP binding, we cannot yet define their roles in ATP-dependent Ca2+ transport.  相似文献   

6.
When microsomes from feline ventricular muscle are centrifuged on continuous linear sucrose gradients, the major peak for the distribution pattern of the dihydropyridine binding sites corresponds in position and shape with the distribution of the Mr 300K polypeptide marker for junctional sarcoplasmic reticulum (SR). Plasma membrane vesicles are also present in those gradient fractions and appear to be joined to the junctional SR as native dyads. We now report that when such putative dyads are passed through the French press, both the dihydropyridine binding sites and the plasma membrane marker band together at a new isopycnic point distinct from the junctional SR. We conclude that as has been found in the skeletal muscle system the dihydropyridine binding sites are a marker for the junctional domain of the plasma membrane and that separation of the dyad components of the mammalian myocardium can be attained.  相似文献   

7.
M B Cable  J J Feher  F N Briggs 《Biochemistry》1985,24(20):5612-5619
Four mechanisms for the allosteric regulation of the calcium and magnesium ion activated adenosinetriphosphatase (Ca,Mg-ATPase) of sarcoplasmic reticulum were examined. Negative cooperativity in substrate binding was not supported by 3H-labeled 5'-adenylyl methylenediphosphate (AMPPCP) binding, which was best fit by a single class of sites. Although calcium had no effect on the absence of cooperativity, it did increase the affinity of the enzyme for AMPPCP. Allosteric regulation via an effector site for AMPPCP or ATP on the same ATPase chain was eliminated by the stoichiometry of ATP and AMPPCP binding, 1 mol of site per mole of enzyme. The possibility that AMPPCP acts at an effector site was eliminated by showing that it competitively inhibits the rate of phosphoenzyme formation. Allosteric regulation of kinetics via site-site interaction in an oligomer was eliminated by showing that the inhibition of ATPase activity by fluorescein isothiocyanate is linearly dependent upon its incorporation into the sarcoplasmic reticulum. The fourth mechanism considered was stimulation of ATPase activity by the binding of ATP or AMPPCP at the active site after departure of ADP but before the departure of inorganic phosphate. This hypothesis was supported by site stoichiometry and by the observation that AMPPCP or ATP stimulates v/EP, the rate of ATP hydrolysis for a given level of phosphoenzyme. Computer simulation of this branched monomeric model could duplicate all experimental observations made with AMPPCP and ATP as allosteric regulators. The condition that the affinity of ATP binding to the enzyme be reduced when it is phosphorylated, which is required by the computer model, was confirmed experimentally.  相似文献   

8.
Costa V  Carloni P 《Proteins》2003,50(1):104-113
Sarcoplasmic reticulum Ca(2+)- ATPase pumps Ca(2+) ions from muscle cells to the sarcoplasmic reticulum. Here we use molecular dynamics and electrostatic modeling to investigate structural and dynamical features of key intermediates in the Ca(2+) binding process of the protein. Structural models of the protein (containing either two, one, or no calcium ions in the transmembrane domain) are constructed based on the X-ray structure by Toyoshima et al. (Nature 2000;405:647-655). The protein is embedded in a water/octane bilayer, which mimics the water/membrane environment. Our calculations provide information on the hydration of the two Ca(2+) ions, not emerging from the X-ray structure. Furthermore, they indicate that uptake of the metal ions causes large structural rearrangements of the metal binding sites. In addition, they suggest that the two ions reach their binding sites via two specific pathways. Finally, they allow identification of residues in the outer mouth of the protein that might interact with the Ca(2+) ions during the binding process.  相似文献   

9.
The binding of ATP and Ca2+ by the Ca2+ pump protein of sarcoplasmic reticulum from rabbit skeletal muscle has been studied and correlated with the formation of a phoshorylated intermediate. The Ca2+ pump protein has been found to contain one specific ATP and two specific Ca2+ binding sites per phosphorylation site. ATP binding is dependent on Mg2+ and is severely decreased when a phosphorylated intermediate is formed by the addition of Ca2+. In the presence of Mg2+ and the absence of Ca2+, ATP and ADP bind completely to the membrane. Pre-incubation with N-ethylmaleimide results in inhibition of ATP binding and decrease of Ca2+ binding. In the absence of ATP, Ca2+ binding is noncooperative at pH 6–7 and negatively cooperative at pH 8. Mg2+, Sr2+ and La3+, in that order, decrease Ca2+ binding by the Ca2+ pump protein. The affinity of the Ca2+ pump protein for both ATP and Ca2+ increases when the pH is raised from 6 to 8. At the infection point (pH ≈ 7.3) the binding constants of the Ca2+ pump protein-MgATP2− and Ca2+ pump protein-calcium complexes are approx. 0.25 and 0.5 μM−1, respectively. The unphosphorylated Ca2+ pump protein does not contain a Mg2+ binding site with an affinity comparable to those of the ATP and Ca2+ binding sites.The affinity of the Ca2+ pump protein for Ca2+ is not appreciably changed by the addition of ATP. The ratio of phosphorylated intermediate formed to bound Ca2+ is close to 2 over a 5-fold range of phosphoenzyme concentration. The equilibrium constant for phosphoenzyme formation is less than one at saturating levels of Ca2+. The phosphoenzyme is thus a “high-energy” intermediate, whose energy may then be used for the translocation of the two Ca2+.A reaction scheme is discussed showing that phosphorylation of sarcoplasmic reticulum proceeds via an enzyme-Ca22+-MgATP2− complex. This complex is then converted to a phosphoenzyme intermediate which binds two Ca2+ and probably Mg2+.  相似文献   

10.
Reactive disulfide compounds (RDSs) with a pyridyl ring adjacent to a disulfide bond, 2,2'dithiodipyridine (2,2' DTDP) and 4,4' dithiodipyridine (4,4' DTDP), induce Ca2+ release from isolated canine cardiac sarcoplasmic reticulum (SR) vesicles. RDSs are absolutely specific to free sulfhydryl (SH) groups and oxidize SH sites of low pKa via a thiol-disulfide exchange reaction, with the stoichiometric production of thiopyridone in the medium. As in skeletal SR, this reaction caused large increases in the Ca2+ permeability of cardiac SR and the number of SH sites oxidized by RDSs was kinetically and quantitatively measured through the absorption of thiopyridone. RDS-induced Ca2+ release from cardiac SR was characterized and compared to the action of RDSs on skeletal SR and to Ca2(+)-induced Ca2+ release. (i) RDS-induced Ca2+ release from cardiac SR was dependent on ionized Mg2+, with maximum rates of release occurring at 0.5 and 1 mM Mg2+free for 2,2' DTDP and 4,4' DTDP, respectively. (ii) In the presence of adenine nucleotides (0.1-1 mM), the oxidation of SH sites in cardiac SR by exogenously added RDS was inhibited, which, in turn, inhibited Ca2+ release induced by RDSs. (iii) Conversely, when the oxidation reaction between RDSs and cardiac SR was completed and Ca2+ release pathways were opened, subsequent additions of adenine nucleotides stimulated Ca2+ efflux induced by RDSs. (iv) Sulfhydryl reducing agents (e.g., dithiothreitol, DTT, 1-5 mM) inhibited RDS-induced Ca2+ efflux in a concentration-dependent manner. (v) RDSs elicited Ca2+ efflux from passively loaded cardiac SR vesicles (i.e., with nonfunctional Ca2+ pumps in the absence of Mg-ATP) and stimulated Ca2(+)-dependent ATPase activity, which indicated that RDS uncoupled Ca2+ uptake and did not act at the Ca2+, Mg2(+)-ATPase. These results indicate that RDSs selectively oxidize critical sulfhydryl site(s) on or adjacent to a Ca2+ release channel protein channel and thereby trigger Ca2+ release. Conversely, reduction of these sites reverses the effects of RDSs by closing Ca2+ release channels, which results in active Ca2+ reuptake by Ca2+, Mg2(+)-ATPase. These compounds can thus provide a method to covalently label and identify the protein involved in Ca2+ release from cardiac SR.  相似文献   

11.
Most of the calcium that activates contraction in the heart comes from the sarcoplasmic reticulum (SR) and it is therefore essential to control the SR Ca content. SR Ca content reflects the balance between uptake (via the SR Ca-ATPase, SERCA) and release, largely via the ryanodine receptor (RyR). Unwanted changes of SR Ca are prevented because, for example, an increase of SR Ca content increases the amplitude of the systolic Ca transient and this, in turn, results in increased loss of Ca from and decreased Ca entry into the cell thereby restoring cell and SR Ca towards control levels. We discuss the parameters that affect the steady level of SR Ca and how these may change in heart failure. Finally, we discuss disordered Ca regulation with particular emphasis on the condition of alternans where successive heartbeats alternate in amplitude. This behaviour can be explained by excessive feedback gain in the processes controlling SR Ca.  相似文献   

12.
In this article the morphology of sarcoplasmic reticulum, classification of Ca(2+)-ATPase (SERCA) isoenzymes presented in this membrane system, as well as their topology will be reviewed. The focus is on the structure and interactions of Ca(2+)-ATPase determined by electron and X-ray crystallography, lamellar X-ray and neutron diffraction analysis of the profile structure of Ca(2+)-ATPase in sarcoplasmic reticulum multilayers. In addition, targeting of the Ca(2+)-ATPase to the sarcoplasmic reticulum is discussed.  相似文献   

13.
This study investigated the interaction between L-type Ca2+ current (ICaL) and Ca2+ release from the sarcoplasmic reticulum (SRCR) in whole cell voltage-clamped guinea pig ventricular myocytes. Quasiphysiological cation solutions (Nao+:KI+) were used for most experiments. In control conditions, there was no obvious interaction between ICaL and SRCR. In isoproterenol, activation of ICaL from voltages between -70 and -50 mV reduced the amplitude and accelerated the decay of the current. Short (50 ms), small-amplitude voltage steps applied 60 or 510 ms before stimulating ICaL inhibited and facilitated the current, respectively. These changes were blocked by ryanodine. Low-voltage activated currents such as T-type Ca2+ current, TTX-sensitive ICa (ICaTTX), or slip mode Ca2+ conductance via INa+ were not responsible for low-voltage SRCR. However, L-type Ca2+ currents could be distinguished at voltages as negative as -45 mV. It is concluded that in the presence of isoproterenol, Ca2+ release from the SR at negative potentials is due to activation of L-type Ca2+ channels. heart; calcium current; low-voltage activation  相似文献   

14.
15.
Phosphatidate releases calcium from cardiac sarcoplasmic reticulum   总被引:3,自引:0,他引:3  
Phosphatidate (PA) inhibits calcium accumulation by cardiac sarcoplasmic reticulum (SR) and enhances its Ca++ ATPase activity. These effects seem to be related to a phosphatidate-induced increase in the calcium permeability of the SR membrane with resultant calcium release. The amount of calcium released by phosphatidate is dependent both on the calcium concentration outside the SR vesicles and the internal calcium concentration. The ionophoric effects of phosphatidate on the sarcoplasmic membrane provide a novel pathway for controlling Ca++ transport in the cardiac cell.  相似文献   

16.
Rabbit skeletal muscle sarcoplasmic reticulum was fractionated into a "Ca2+-release" and "control" fraction by differential and sucrose gradient centrifugation. External Ca2+ (2-20 microM) caused the release of 40 nmol of 45Ca2+/mg of protein/s from Ca2+-release vesicles passively loaded at pH 6.8 with an internal half-saturation Ca2+ concentration of 10-20 mM. Ca2+-induced Ca2+ release had an approximate pK value of 6.6 and was half-maximally inhibited at an external Ca2+ concentration of 2 X 10(-4) M and Mg2+ concentration of 7 X 10(-5) M. 45Ca2+ efflux from control vesicles was slightly inhibited at external Ca2+ concentrations that stimulated the rapid release of Ca2+ from Ca2+-release vesicles. Adenine, adenosine, and derived nucleotides caused stimulation of Ca2+-induced Ca2+ release in media containing a "physiological" free Mg2+ concentration of 0.6 mM. At a concentration of 1 mM, the order of effectiveness was AMP-PCP greater than cAMP approximately AMP approximately ADP greater than adenine greater than adenosine. Other nucleoside triphosphates and caffeine were minimally effective in increasing 45Ca2+ efflux from passively loaded Ca2+-release vesicles. La3+, ruthenium red, and procaine inhibited Ca2+-induced Ca2+ release. Ca2+ flux studies with actively loaded vesicles also indicated that a subpopulation of sarcoplasmic reticulum vesicles contains a Ca2+ permeation system that is activated by adenine nucleotides.  相似文献   

17.
The effects of anisodamine on the Ca(2+)-ATPsae of sarcoplasmic reticulum (SR) were investigated by using differential scanning calorimetry to measure the ability of anisodamine to denature the transmembrane domain and the cytoplasmic domain. Anisodamine significantly altered the thermotropic phase behaviors of the transmembrane domain of purified Ca(2+)-ATPase. Specifically, the melting temperature of the transmembrane domain moved toward lower temperatures with the concentrations of anisodamine increasing and the thermotropic phase peak was abolished at 10 mM, indicating that the stabilized structure of the transmembrane domain in the presence of Ca2+ could be destabilized by anisodamine. Decreases of the intrinsic fluorescence and increases of the extrinsic fluorescence of ANS, a fluorescent probe, showed the exposure of tryptophan and hydrophobic region, respectively, suggesting again that anisodamine caused a less compact conformation in the transmembrane domain. A marked inhibition of the Ca2+ uptake activity of SR Ca(2+)-ATPase was observed when the addition of anisodamine. The drug did not affect the cytoplasmic domain of the enzyme and only slightly decreased the ATPase activity of the enzyme at concentrations up to 10 mM. This was likely due to the destabilized protein transmembrane domain. To sum up, our results revealed that anisodamine interacted specifically with the transmembrane domain of SR Ca(2+)-ATPase and inhibited the Ca2+ uptake activity of the enzyme.  相似文献   

18.
19.
T Wang 《Biochemistry》1987,26(25):8360-8365
A five-syringe quench-flow apparatus was used in the transient-state kinetic study of intermediary phosphoenzyme (EP) decomposition in a Triton X-100 purified dog cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase at 20 degrees C. Phosphorylation of the enzyme by ATP in the presence of 100 mM K+ for 116 ms gave 32% ADP-sensitive E1P, 52% ADP- and K+-reactive E2P, and 16% unreactive residual EPr. The EP underwent a monomeric, sequential E1P 17 s-1----E2P 10.5 s-1----E2 + Pi transformation and decomposition in the ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid quenched Ca2+-devoid medium. The calculated rate constant for the total EP (i.e., E1P + E2P) dephosphorylation was 7.8 s-1. The E1P had an affinity for ADP with an apparent Kd congruent to 100 microM. When the EP was formed in the absence of K+ for 116 ms, no appreciable amount of the ADP-sensitive E1P was detected. The EP comprised about 80% ADP- and K+-reactive E2P and 20% residual EPr, suggesting a rapid E1P----E2P transformation. Both the E2P's formed in the presence and absence of K+ decomposed with a rate constant of about 19.5 s-1 in the presence of 80 mM K+ and 2 mM ADP, showing an ADP enhancement of the E2P decomposition. The results demonstrate mechanistic differences in monomeric EP transformation and decomposition between the Triton X-100 purified cardiac SR Ca2+-ATPase and deoxycholate-purified skeletal enzyme [Wang, T. (1986) J. Biol. Chem. 261, 6307-6319].  相似文献   

20.
Transverse tubule (TT) membranes isolated from chicken skeletal muscle possess a very active magnesium-stimulated ATPase (Mg-ATPase) activity. The Mg-ATPase has been tentatively identified as a 102-kD concanavalin A (Con A)-binding glycoprotein comprising 80% of the integral membrane protein (Okamoto, V.R., 1985, Arch. Biochem. Biophys., 237:43-54). To firmly identify the Mg-ATPase as the 102-kD TT component and to characterize the structural relationship between this protein and the closely related sarcoplasmic reticulum (SR) Ca-ATPase, polyclonal antibodies were raised against the purified SR Ca-ATPase and the TT 102-kD glycoprotein, and the immunological relationship between the two ATPases was studied by means of Western immunoblots and enzyme-linked immunosorbent assays (ELISA). Anti-chicken and anti-rabbit SR Ca-ATPase antibodies were not able to distinguish between the TT 102-kD glycoprotein and the SR Ca-ATPase. The SR Ca-ATPase and the putative 102-kD TT Mg-ATPase also possess common structural elements, as indicated by amino acid compositional and peptide mapping analyses. The two 102-kD proteins exhibit similar amino acid compositions, especially with regard to the population of charged amino acid residues. Furthermore, one-dimensional peptide maps of the two proteins, and immunoblots thereof, show striking similarities indicating that the two proteins share many common epitopes and peptide domains. Polyclonal antibodies raised against the purified TT 102-kD glycoprotein were localized by indirect immunofluorescence exclusively in the TT-rich I bands of the muscle cell. The antibodies substantially inhibit the Mg-ATPase activity of isolated TT vesicles, and Con A pretreatment could prevent antibody inhibition of TT Mg-ATPase activity. Further, the binding of antibodies to intact TT vesicles could be reduced by prior treatment with Con A. We conclude that the TT 102-kD glycoprotein is the TT Mg-ATPase and that a high degree of structural homology exists between this protein and the SR Ca-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号