首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of glucose-6-phosphatase activity in rat hepatocytes during a period of rapid endoplasmic reticulum differentiation (4 days before birth-1 day after birth) was studied by electron microscope cytochemistry. Techniques were devised to insure adequate morphological preservation, retain glucose-6-phosphatase activity, and control some other possible artifacts. At all stages examined the lead phosphate deposited by the cytochemical reaction is localized to the endoplasmic reticulum and the nuclear envelope. At 4 days before birth, when the enzyme specific activity is only a few per cent of the adult level, the lead deposit is present in only a few hepatocytes. In these cells a light deposit is seen throughout the entire rough-surfaced endoplasmic reticulum. At birth, when the specific activity of glucose-6-phosphatase is approximately equal to that of the adult, nearly all cells show a positive reaction for the enzyme and, again, the deposit is evenly distributed throughout the entire endoplasmic reticulum. By 24 hr postparturition all of the rough endoplasmic reticulum, and in addition the newly formed smooth endoplasmic reticulum, contains heavy lead deposits; enzyme activity at this stage is 250% of the adult level. These findings indicate that glucose-6-phosphatase develops simultaneously within all of the rough endoplasmic reticulum membranes of a given cell, although asynchronously in the hepatocyte population as a whole. In addition, the enzyme appears throughout the entire smooth endoplasmic reticulum as the membranes form during the first 24 hr after birth. The results suggest a lack of differentiation within the endoplasmic reticulum with respect to the distribution of glucose-6-phosphatase at the present level of resolution.  相似文献   

2.
To determine the cytochemical localization of glucose-6-phosphatase in the human hepatocyte, lead - based and cerium - based media were used. By studying the effects of systematic variation of the incubation medium components, the optimal experimental conditions were determined. The exclusive localization of the cytochemical reaction in the endoplasmic reticulum and nuclear envelope, together with the results of control experiments ensured that these findings could be correlated with the phosphohydrolase activity of the multicomponent glucose-6-phosphatase system.  相似文献   

3.
Diabetes-induced alterations in the activities of the components of the glucose-6-phosphatase system (i.e., the enzyme, the glucose-6-P translocase (T(1)), and the phosphate translocase (T(2)) were examined in smooth and rough subfractions of hepatic endoplasmic reticulum from streptozotocin-injected rats. A significant effect of diabetes on the maximal velocity of glucose-6-P hydrolysis by the enzyme was present in both endoplasmic reticulum subfractions (3.1-fold increase in rough endoplasmic reticulum; 3.8-fold increase in smooth endoplasmic reticulum). Based on latency values, diabetes did not result in a proportional increase in capacity of T(1) or T(2). In contrast to the control condition, the relationship between transport capacity and hydrolytic capacity was not significantly different in the two subfractions from diabetic animals. Elucidation of the effects of diabetes on the components of the glucose-6-phosphatase system associated with smooth and rough endoplasmic reticulum membranes enhances our understanding of the hepatic contribution to diabetic hyperglycemia.  相似文献   

4.
We have compared the characteristics of glucose-6-phosphatase (EC 3.1.3.9) in the envelope of purified nuclei and microsomes from rat liver. The latency of mannose-6-P hydrolysis, permeability to EDTA, and susceptibility of the enzyme to protease-mediated inactivation all indicated that the permeability barrier defined by the envelope in situ is significantly disrupted in isolated nuclei (i.e. in vitro). Latency of mannose-6-P hydrolysis was demonstrated to provide a quantitative measure of the degree of nuclear membrane disruption. Electron micrographs confirmed the existence of substantial regions of the envelope in vitro where the permeability barrier to EDTA was intact (i.e. an "intact component"). The kinetics of glucose-6-phosphatase catalyzed by the intact component was obtained by subtracting the contribution of enzyme in disrupted regions from the total enzymic activity of untreated nuclei. The characteristics of glucose-6-phosphatase in intact and fully disrupted membranes of nuclei were indistinguishable from microsomes with respect to (a) the kinetics of glucose-6-P hydrolysis, (b) the effects of incubations with mannose-6-P, N-ethylmaleimide, and protease from Bacillus amyloliquefaciens, (c) the extremely high latency of carbamyl phosphate:glucose phosphotransferase activity, and (d) both the patterns of response of activity and the change in latency of glucose-6-phosphatase induced by fasting, experimental diabetes, and cortisol injection. Our results show clearly that apparent differences in the glucose-6-phosphatase activity of untreated preparations of nuclei and microsomes are simply expressions of significant differences in the degree of intactness of their respective permeability barriers. Since flattened cisternae, characteristic of the rough endoplasmic reticulum in situ, are preserved in intact regions of the envelope of isolated nuclei, the present findings constitute the most direct and definitive evidence to date that the properties of glucose-6-phosphatase in the endoplasmic reticulum in situ are faithfully reproduced with intact microsomes.  相似文献   

5.
Summary Glucose-6-phosphatase (G6Pase) was used as a marker enzyme for the endoplasmic reticulum in mouse megakaryocytes and platelets. G6Pase activity was localized in the dense tubular system of the platelets. Enzyme activity was also observed in the nuclear envelope, and in the rough endoplasmic reticulum of the megakaryocytes. However, the Golgi apparatus of the megakaryocyte was never involved. The present study has added new cytochemical evidence for the hypothesis that the dense tubular system of the platelet originates from the endoplasmic reticulum of the megakaryocyte.  相似文献   

6.
Approximately the same levels of six of the seven enzymes catalyzing reactions of the pentose phosphate pathway are in the cisternae of washed microsomes from rat heart, spleen, lung, and brain. Renal and hepatic microsomes also have detectable levels of these enzymes except ribulose-5-phosphate epimerase and ribose-5-phosphate isomerase. Their location in the cisternae is indicated by their latencies, i.e. requirement for disruption of the membrane for activity. In addition, transketolase, transaldolase, and glucose-6-phosphatase, a known cisternal enzyme, are inactivated by chymotrypsin and subtilisin only in disrupted hepatic microsomes under conditions in which NADPH-cytochrome c reductase, an enzyme on the external surface, is inactivated equally in intact and disrupted microsomes. The failure to detect the epimerase and isomerase in hepatic microsomes is due to inhibition of their assays by ketopentose-5-phosphatase. Xylulose 5-phosphate is hydrolyzed faster than ribulose 5-phosphate. A mild heat treatment destroys hepatic xylulose-5-phosphatase and glucose-6-phosphatase without affecting acid phosphatase. These results plus the established wide distribution of glucose dehydrogenase, the microsomal glucose-6-phosphate dehydrogenase, and its localization to the lumen of the endoplasmic reticulum suggest that most mammalian cells have two sets of enzymes of the pentose phosphate pathway: one is cytoplasmic and the other is in the endoplasmic reticulum. The activity of the microsomal pentose phosphate pathway is estimated to be about 1.5% that of the cytoplasmic pathway.  相似文献   

7.
To establish on a quantitative basis the subcellular distribution of the enzymes that glycosylate dolichyl phosphate in rat liver, preliminary kinetic studies on the transfer of mannose, glucose, and N-acetylglucosamine-1-phosphate from the respective (14)C- labeled nucleotide sugars to exogenous dolichyl phosphate were conducted in liver microsomes. Mannosyltransferase, glucosyltransferase, and, to a lesser extent, N- acetylglucosamine-phosphotransferase were found to be very unstable at 37 degrees C in the presence of Triton X-100, which was nevertheless required to disperse the membranes and the lipid acceptor in the aqueous reaction medium. The enzymes became fairly stable in the range of 10-17 degrees C and the reactions then proceeded at a constant velocity for at least 15 min. Conditions under which the reaction products are formed in amount proportional to that of microsomes added are described. For N- acetylglucosaminephosphotransferase it was necessary to supplement the incubation medium with microsomal lipids. Subsequently, liver homogenates were fractionated by differential centrifugation, and the microsome fraction, which contained the bulk of the enzymes glycosylating dolichyl phosphate, was analyzed by isopycnic centrifugation in a sucrose gradient without any previous treatment, or after addition of digitonin. The centrifugation behavior of these enzymes was compared to that of a number of reference enzymes for the endoplasmic reticulum, the golgi complex, the plasma membranes, and mitochondria. It was very simily to that of enzymes of the endoplasmic reticulum, especially glucose-6-phosphatase. Subcellular preparations enriched in golgi complex elements, plasma membranes, outer membranes of mitochondira, or mitoplasts showed for the transferases acting on dolichyl phosphate relative activities similar to that of glucose- 6-phosphatase. It is concluded that glycosylations of dolichyl phosphate into mannose, glucose, and N-acetylglucosamine-1-phosphate derivatives is restricted to the endoplasmic reticulum in liver cells, and that the enzymes involved are similarly active in the smooth and in the rough elements.  相似文献   

8.
The distribution of glucose-6-phosphatase (G6Pase) activity in the epithelium of the small intestine in mouse embryos (the last 4 days of gestation) was studied by electron microscope cytochemistry and by enzymatic assays. At 16 days, the lead phosphate deposited by the cytochemical reaction is localized on the rough endoplasmic reticulum (RER) and nuclear envelope of very few cells in the duodenum and jejunum. Positive cells are more frequently seen in the upper part of the developing villi. At 17 days of gestation, a tremendous burst in RER differentiation is noticed in all parts of the small intestine and concomitantly glycogen disappears. At 18 days of gestation all the principal cells of the intestinal mucosa show a well differentiated positive RER and the enzyme is also present in the smooth endoplasmic reticulum. Biochemically, G6Pase activity is detected in the proximal 2 thirds of the small intestine at 17 days of gestation and appears at 18 days in the last third. Afterwards the activity increases up until birth. These results suggest (1) that the endoplasmic reticulum differentiates very late in the intestinal mucosa of mouse embryos (2) that the differentiation with respect to G6Pase is asynchronous between the enterocytes, (3) that for a given cell all the cisternae of RER are involved in G6Pase synthesis at the same moment and (4) that the enterocytes of the duodenum differentiate sooner and faster that those of the jejunum and ileum.  相似文献   

9.
Close lateral membrane associations of peroxisomes with endoplasmic reticulum are a common feature in bovine kidney cortex epithelial cells. Isolated highly purified peroxisome preparations from this tissue showed a remarkable and persistent copurification of peroxisomal marker enzymes with small amounts (5%) of the microsomal reference enzymes esterase and glucose-6-phosphatase. Contamination with mitochondrial and lysosomal markers was negligible. Ultrastructural examination of such preparations revealed a peculiar association of vesicles or short tubular segments with the peroxisomal membrane. Short electron dense crossbridges seemed to maintain their structural association. The cytochemical localization of glucose-6-phosphatase in peroxisome-associated membrane structures confirmed their derivation from endoplasmic reticulum. The metabolic significance of such structural peroxisome-endoplasmic reticulum associations is discussed.  相似文献   

10.
The origin of the limiting membranes of autophagic vacuoles (AV) in mouse hepatocytes was studied by cytochemical techniques. Autophagocytosis was induced by an intraperitoneal injection of vinblastine (50 mg/kg). The marker enzymes used were adenosine triphosphatase for the plasma membrane, glucose-6-phosphatase for the endoplasmic reticulum and thiamine pyrophosphatase for the Golgi apparatus and the endoplasmic reticulum. All the three enzymes showed a characteristic localization in both control and vinblastine-treated hepatocytes. The space between the limiting membranes of a few apparently newly formed AV's showed weak glucose-6-phosphatase activity. Neither adenosine triphosphatase nor thiamine pyrophosphatase activities were observed on or between the AV membranes. It was suggested that endoplasmic reticulum membranes may be used as a source of AV membranes in hepatocytes. The lack of glucose-6-phosphatase activity in the limiting membranes even of most of the newly formed AV's suggests a transformation process of the membranes destined to form AV, during which the enzyme activity characteristic for endoplasmic reticulum may disappear from them.  相似文献   

11.
Summary The origin of the limiting membranes of autophagic vacuoles (AV) in mouse hepatocytes was studied by cytochemical techniques. Autophagocytosis was induced by an intraperitoneal injection of vinblastine (50 mg/kg). The marker enzymes used were adenosine triphosphatase for the plasma membrane, glucose-6-phosphatase for the endoplasmic reticulum and thiamine pyrophosphatase for the Golgi apparatus and the endoplasmic reticulum. All the three enzymes showed a characteristic localization in both control and vinblastine-treated hepatocytes. The space between the limiting membranes of a few apparently newly formed AV's showed weak glucose-6-phosphatase activity. Neither adenosine triphosphatase nor thiamine pyrophosphatase activities were observed on or between the AV membranes. It was suggested that endoplasmic reticulum membranes may be used as a source of AV membranes in hepatocytes. The lack of glucose-6-phosphatase activity in the limiting membranes even of most of the newly formed AV's suggests a transformation process of the membranes destined to form AV, during which the enzyme activity characteristic for endoplasmic reticulum may disappear from them.  相似文献   

12.
A subfraction of rough endoplasmic reticulum (RER) characterized by its close association with mitochondria (MITO) was isolated from low speed pellets of normal rat liver homogenate under defined ionic conditions. This fraction enriched in MITO-RER complexes contained 20% of cellular RNA, 20% of glucose-6-phosphatase and 47% of cytochrome c oxidase activities. Morphologically, the isolated MITO-RER complexes closely resembled physiological associations between the two organelles commonly seen in intact liver. Partial dissociation of RER from mitochondria of the MITO-RER fraction was achieved by either EDTA (0.5 mM) or by hypotonic/hypertonic treatment of MITO-RER complexes. With the latter procedure approx. 70% of RER (RERmito) with 50% of ribosomes still attached could be separated from the inner compartments of mitochondria. This RERmoto exhibited a higher glucose-6-phosphatase activity than RER isolated as rough microsomes from the postmitochondrial supernatant. Isopycnic centrifugation on linear metrizamide gradients revealed that the mitochondria-associated part of RER corresponds to the high density, ribosome-rich subfraction of rough microsomes isolated in cation-free sucrose solution. The combined data demonstrate that a morphologically and biochemically distinct portion of RER is associated with mitochondria and support the concept of considerable intracellular heterogeneities in distribution of enzymes and enzyme systems along the lateral plane of the endoplasmic reticulum membrane system.  相似文献   

13.
Radiation inactivation analysis was utilized to estimate the sizes of the units catalyzing the various activities of hepatic microsomal glucose-6-phosphatase. This technique revealed that the target molecular weights for mannose-6-P phosphohydrolase, glucose-6-P phosphohydrolase, and carbamyl-P:glucose phosphotransferase activities were all about Mr 75,000. These results are consistent with the widely held view that all of these activities are catalyzed by the same protein or proteins. Certain observations indicate that the molecular organization of microsomal glucose-6-phosphatase is better described by the conformational hypothesis which envisions the enzyme as a single covalent structure rather than by the substrate transport model which requires the participation of several physically separate polypeptides. These include the findings: 1) that the target sizes for glucose-6-P phosphohydrolase and carbamyl-P:glucose phosphotransferase activities were not larger than that for mannose-6-P phosphohydrolase in intact microsomes and 2) that the target size for glucose-6-P phosphohydrolase in disrupted microsomes was not less than that observed in intact microsomes. These findings are most consistent with a model for glucose-6-phosphatase of a single polypeptide or a disulfide-linked dimer which spans the endoplasmic reticulum with the various activities of this multifunctional enzyme residing in distinct protein domains.  相似文献   

14.
The theoretical advantages of electron microscopic cytochemistry were utilized to look for evidence of possible connections between peroxisomes and the endoplasmic reticulum in rat liver. Established cytochemical procedures for catalase (peroxisomes) and glucose-6-phosphatase (endoplasmic reticulum) were carried out, and evidence was sought of diffusion of reaction products between the organelles. No such diffusion was observed: lead phosphate was found in the endoplasmic reticulum and in the nuclear envelope but not in peroxisomes; oxidized diaminobenzidine (DAB) was seen only in peroxisomes. In addition, both types of cytochemistry were carried out on the same tissue. The two kinds of reaction product could be distinguished by virtue of their different electron opacities. No mixing of the two reaction products was observed. These results do not support the hypothesis that peroxisomes and endoplasmic reticulum may be connected; rather, they support the idea that the two organelles exist as separate cellular compartments.  相似文献   

15.
The enzyme glucose-6-phosphatase (G-6-Pase) catalyzes the hydrolysis of glucose-6-phosphate (G-6-P) to glucose. This is one of the key steps in gluconeogenesis and is critically important in maintaining stable blood glucose levels in most mammals. G-6-Pase is primarily found in the endoplasmic reticulum (ER) of hepatocytes and can easily be studied using isolated microsomes prepared from liver ER. A three-part undergraduate laboratory exercise uses rat liver microsomes to focus on the enzymatic analysis of G-6-Pase. The assessment of G-6-Pase activity is conducted using a stopped assay protocol combined with a colorimetric determination of inorganic phosphate (Pi) levels. The laboratory exercise was designed to carry out an independent inhibition investigation using orthovanadate, a competitive inhibitor of G-6-Pase with potential clinical importance. The format of the three-part investigation provides a useful mechanism for demonstrating enzyme kinetics and competitive inhibition using an enzyme that is important for carbohydrate metabolism and glycogen storage disease.  相似文献   

16.
本实验用电镜细胞化学方法观察了大鼠骨髓粒细胞发育过程中内质网的髓过氧化物酶(MPO)反应和葡萄糖-6-磷酸酶(G-6-P)反??应。结果表明:MPO除定位于内质网、核膜,还出现在高尔基体和颗粒,它是粒细胞内质网的合成产物。G-6-P只在内质网、核膜中出现,它是内质网膜的结构成分。MPO反应的超微结构定位随粒细胞发育而变,利用这种变化作标志可以划分不同发育阶段的粒细胞;G-6-P反应定位不随发育而变,但反应强度与内质网的多寡、功能状态相对应。实验还表明核膜与内质网在结构、功能上的一致性;尤其在成熟粒细胞内质网很少的情况下,核膜可能代替了内质网的功能。  相似文献   

17.
18.
Molecular pathology of glucose-6-phosphatase   总被引:3,自引:0,他引:3  
A Burchell 《FASEB journal》1990,4(12):2978-2988
It was known in the 1950s that hepatic microsomal glucose-6-phosphatase plays an important role in the regulation of blood glucose levels. All attempts since then to purify a single polypeptide with glucose-6-phosphatase activity have failed. Until recently, virtually nothing was known about the molecular basis of glucose-6-phosphatase or its regulation. Recent studies of the type 1 glycogen storage diseases, which are human genetic deficiencies that result in impaired glucose-6-phosphatase activity, have greatly increased our understanding of glucose-6-phosphatase. Glucose-6-phosphatase has been shown to comprise at least five different polypeptides, the catalytic subunit of glucose-6-phosphatase with its active site situated in the lumen of the endoplasmic reticulum; a regulatory Ca2+ binding protein; and three transport proteins, T1, T2, and T3, which respectively allow glucose-6-phosphate, phosphate, and glucose to cross the endoplasmic reticulum membrane. Purified glucose-6-phosphatase proteins, immunospecific antibodies, and improved assay techniques have led to the diagnosis of a variety of new type 1 glycogen storage diseases. Recent studies of the type 1 glycogen storage diseases have led to a much greater understanding of the role and regulation of each of the glucose-6-phosphatase proteins.  相似文献   

19.
The phosphohydrolase component of the microsomal glucose-6-phosphatase system has been identified as a 36.5-kDa polypeptide by 32P-labeling of the phosphoryl-enzyme intermediate formed during steady-state hydrolysis. A 36.5-kDa polypeptide was labeled when disrupted rat hepatic microsomes were incubated with three different 32P-labeled substrates for the enzyme (glucose-6-P, mannose-6-P, and PPi) and the reaction terminated with trichloroacetic acid. Labeling of the phosphoryl-enzyme intermediate with [32P]glucose-6-P was blocked by several well-characterized competitive inhibitors of glucose-6-phosphatase activity (e.g. Al(F)-4 and Pi) and by thermal inactivation, and labeling was not seen following incubations with 32Pi and [U-14C]glucose-6-P. In agreement with steady-state dictates, the amount of [32P]phosphoryl intermediate was directly and quantitatively proportional to the steady-state glucose-6-phosphatase activity measured under a variety of conditions in both intact and disrupted hepatic microsomes. The labeled 36.5-kDa polypeptide was specifically immunostained by antiserum raised in sheep against the partially purified rat hepatic enzyme, and the antiserum quantitatively immunoprecipitated glucose-6-phosphatase activity from cholate-solubilized rat hepatic microsomes. [32P]Glucose-6-P also labeled a similar-sized polypeptide in hepatic microsomes from sheep, rabbit, guinea pig, and mouse and rat renal microsomes. The glucose-6-phosphatase enzyme appears to be a minor protein of the hepatic endoplasmic reticulum, comprising about 0.1% of the total microsomal membrane proteins. The centrifugation of sodium dodecyl sulfate-solubilized membrane proteins was found to be a crucial step in the resolution of radiolabeled microsomal proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

20.
Earlier studies have evidenced a particular kind of biochemical hetero-geneity within the endoplasmic reticulum of liver cells. Enzymes upon which quantitative data are available are present in the same membranes, in both the rough and smooth portions. However, there are two different distribution patterns: NADPH cytochrome c reductase is more concentrated in the smooth membranes; glucose-6-phosphatase is more uniformly distributed through the rough and smooth portions; the other enzyme distributions conform to one of these patterns designated b and c, respectively. We consider a plausible explanation about this heterogeneity, postulating that enzymes in solution in the cisternal medium and integral membrane proteins of the lumenal aspect are randomly distributed through the whole endoplasmic reticulum (type c enzymes), whereas membrane proteins which expose a large segment at the cytoplasmic aspect are heterogeneously distributed. This latter aspect would consist of two distinct, homogeneous domains; one corresponding to the membrane surfaces in close association with ribosomes; the other containing the enzymes of type b. These domains extensively interpenetrate, accounting for the presence of a significant fraction of the enzymes of type b in the rough microsomes. Experimental data concerning the transmembrane asymmetry of enzymes categorized in groups b and c are briefly reviewed. Relationships between the distributions of NADPH cytochrome c reductase, glucose-6-phosphatase and ribosomes in density gradient analysis are deduced from the assumptions made and confronted with actual density distributions obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号