首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray absorption spectroscopy has been used to investigate the local environment of the copper sites in bovine dopamine beta-hydroylase, the enzyme that catalyzes the conversion of dopamine to norepinephrine in the adrenal medulla and noradrenergic nerve cells. The marked similarity of the x-ray absorption edge features of the oxidized and ascorbate-reduced forms of the enzyme with those of the corresponding Cu(imidazole)4 complexes suggests that the ligation in both cases is very similar. Furthermore, this similarity is found for the extended x-ray absorption fine structure data, and analysis shows only nitrogen (or oxygen) ligation for both enzyme forms. Thus, four nitrogen atoms provide the best fit to the data at an average distance of 1.97 +/- 0.02 A for the oxidized enzyme and four nitrogen atoms at 2.05 +/- 0.02 A for the ascorbate-reduced form. The present data analysis also indicates that there is little change in the average copper ligand environment upon reduction of the enzyme-bound copper from Cu(II) to the Cu(I). The data for the oxidized form of the enzyme are in agreement with previous spin-echo EPR experiments that show three to four imidazole nitrogen ligands for each copper (McCracken, J., Desai, P. R., Papadopoulos, N. J., Villafranca, J. J., and Peisach, J. (1988) Biochemistry 27, 4133-4137). In addition, the data do not indicate the presence of any heavy atom (sulfur or chlorine) ligation to the ascorbate-reduced form of the enzyme as reported by Scott et al. (Scott, R. A., Sullivan, R. J., DeWolf, W. E., Jr., Dolle, R. E., and Kruse, L. I. (1988) Biochemistry 27, 5411-5417).  相似文献   

2.
The active site structure of Cu(II) in dopamine beta-hydroxylase, isolated from bovine adrenal medulla, was studied by pulsed electron paramagnetic resonance (EPR) spectroscopy. Fourier transformation of the stimulated electron spin-echo envelope revealed frequency components characteristic of Cu(II)-histidyl imidazole coordination. The three major lines in the spectrum at 0.7, 1.4, and 4.0 MHz are typical for Cu(II)-imidazole complexes where imidazole is protonated and equatorially coordinated. Quantitation of the number of imidazole ligands bound to Cu(II) in enzyme containing two, four, and eight Cu per protein tetramer, as well as characterization of the superhyperfine coupling parameters, was achieved by spectral simulation. In all cases, it was shown that there are three, or more likely four, imidazole ligands bound to Cu(II). Addition of deuteriated substrate analogues to the enzyme did not produce any observable deuterium modulation in the spin-echo envelopes, thus indicating that the distance between substrate deuterons and Cu(II) is greater than 5 A.  相似文献   

3.
Monoclinic crystals of native bovine superoxide dismutase and its monocyano derivative were studied by means of electron paramagnetic resonance spectroscopy. Through computer simulation of the spectra, the directions of the principal axes of the magnetic tensors (g and A) have been found with respect to the crystal principal axes and with respect to the positions of atoms bear the Cu(II) as previously determined by x-ray crystallography (Richardson, J. S., Thomas, K. A., and Richardson, D. C. (1975) Biochem. Biophys. Res. Commun. 63, 986-992; Tainer, J. A., Getzoff, E. D., Richardson, J. S., and Richardson, D. C. (1980) in 2SOD: Cu, Zn-Superoxide Dismutase Complete Atomic Coordinates (Richardson, D. C., and Richardson, J. S., eds) Brookhaven Protein Structure Data Bank). In the native protein, the direction of the gz axis of Cu(II) was found to lie perpendicular to the rough plane formed by the four imidazole nitrogen atoms coordinated to the Cu(II). The direction of gy is approximately along the His 44N-Cu-His 46N direction, and gx is in the direction of the Cu-His 61-Cu-N bond. The A is coaxial with g within 15 degrees C. A substantial shift occurs in the direction of gz when CN- binds to the Cu(II), suggesting a change in the coordination configuration of the metal.  相似文献   

4.
Torreggiani A  Tamba M  Fini G 《Biopolymers》2000,57(3):149-159
A comparative Raman and FTIR study of carnosine, a dipeptide present in several mammalian tissues, and its complexes with copper(II) at different pH values was carried out. The neutral imidazole ring gives rise to some bands that appear at different wavenumbers, depending on whether the imidazole ring is in the tautomeric form II or I. At pH 7 and 9 the molecule exists in equilibrium between the two tautomeric forms; tautomer I is predominant. Metal coordination is a factor that affects the tautomeric equilibrium, and the copper(II) coordination site can be monitored by using some Raman marker bands such as the vC(4)=C(5) band. On the basis of the vibrational results, conclusions can be drawn on the functional groups involved in the Cu(II) chelation and on the species existing in the Cu(II)-carnosine system. At neutral and basic pH the most relevant species formed when the Cu(II)/carnosine molar ratio is not very different from unity is a dimer, [Cu(2)L(2)H(-2)](0). In this complex the ligand coordinates the metal via the N (amino), O (carboxylate), and N (amide) donor atoms while the N(tau) nitrogen atoms of the imidazole rings (tautomer II) bridge the copper(II) ions. At a slightly acidic pH the two monomeric complexes [CuLH](2+) and [CuL](+) were present. In the former the imidazole ring takes part in the Cu(II) coordination in the tautomeric I form whereas in the latter it is protonated and not bound to Cu(II).  相似文献   

5.
The EPR study of cytochrome c in which FE(III) ion is replaced with Cu(II) shows that there are two types of monomer (a: 4 less than pH less than 6, and b: 6 less than pH less than 11.5) and two types of dimer (A: pH less than 4 and B: pH less than 11.5) formed depending upon the pH value of the solution. Computer simulation of the EPR spectra of the dimers indicates that the structure of the dimer A has a larger lateral shift than in the dimer B. It is also shown that in monomer a, the imidazole nitrogen of 18-His is not bound to Cu(II), while it is bound in the monomer b. In the undeca- and octapeptide of Cu(II)-cytochrome c, polymers are formed in acidic solutions. As the pH is raised, depolymerization proceeds to yield the monomer and the dimer. The structure of the dimer in both peptides is found to be similar to that of the dimer B of Cu(II)-cytochrome c. In the monomer of the peptides, neither the imidazole of 18-His nor the imidazole added in excess is bound to Cu(II) in the entire pH range. It is also concluded that the dimerization in Cu(II)-porphyrins interferes with the apical coordination of basic ligand, or vice versa.  相似文献   

6.
Domains of fifteen recently found families of hypothetical glycoside hydrolases (GHL1-GHL15) have been used for iterative screening of the protein database. Evolutionary connections between representatives of these families were revealed. Also, their relationship with members of the following known families of protein domains were found: GH5, GH13, GH13_33, GH17, GH18, GH20, GH27, GH29, GH31, GH35, GH36A, GH36B, GH36C, GH36D, GH36E, GH36F, GH36G, GH36H, GH36J, GH36K, GH39, GH42, GH53, GH66, GH97, GH101, GH107, GH112, GH114, COG1082, COG1306, COG1649, COG2342, DUF3111, and PF00962. The unclassified homologues were grouped into 35 new families of hypothetical glycoside hydrolases: GHL16-GHL50. Position of GHL1-GHL15 families in the hierarchical classification of glycoside hydrolases and their homologues is discussed. Several new superfamilies of protein domains are suggested.  相似文献   

7.
The domains of 15 recently discovered families of the hypothetical glycoside hydrolases GHL1-GHL15 were used for iterative screening of the protein database. The evolutionary relationships between these families were revealed, as well as their relationship with the previously known families of protein domains: GH5, GH13, GH13-33, GH17, GH18, GH20, GH27, GH29, GH31, GH35, GH36A, GH36B, GH36C, GH36D, GH36E, GH36F, GH36G, GH36H, GH36J, GH36K, GH39, GH42, GH53, GH66, GH97, GH101, GH107, GH112, GH114, COG1082, COG1306, COG1649, COG2342, DUF3111, and PF00962. The unclassified homologues were grouped in 35 new families of the hypothetical glycoside hydrolases: GHL16-GHL50. The position of the families GHL1-GHL15 in the hierarchical classification of glycoside hydrolases and their homologues is discussed. Several new superfamilies of protein domains are proposed.  相似文献   

8.
The formation constants for complexes of copper(II) with GHL have been determined by means of pH titrations and ESR spectroscopy in aqueous solutions. GHL has an extremely high affinity for copper(II) and forms very stable 1:1 complexes and a comparatively weak 1:2 complex. The ? amino group of GHL seems not to be involved in complex formation as can be deducted from both equilibrium constants and ESR spectroscopy. The ternary system copper(II)-GHL-HSA was investigated by ESR spectroscopy and optical absorption spectroscopy in aqueous solution at physiological pH (7.4). At equimolar concentrations, copper(II), HSA and GHL form a ternary complex.  相似文献   

9.
M L Brader  D Borchardt  M F Dunn 《Biochemistry》1992,31(19):4691-4696
The R-state conformation of the Cu(II)-substituted insulin hexamer has been identified, and a number of its derivatives have been studied via 1H NMR, ESR, and UV-visible spectroscopy. This work establishes that the Cu(II)-substituted insulin hexamer undergoes an analogous T to R conformational transition in solution that has been identified previously for Zn(II)- and Co(II)-insulin hexamers [Roy, M., Brader, M.L., Lee, R. W.-K., Kaarsholm, N.C., Hansen, J., & Dunn, M.F. (1989) J. Biol. Chem. 264, 19081-19085]. The data indicate that each Cu(II) center of the R-state Cu(II)-insulin hexamer possesses a coordination site that is accessible to anions from solution. Both phenol and anionic ligands that coordinate to the Cu(II) ions are required to generate the necessary heterotropic interactions that stabilize the R-state structure. With phenylmethylthiolate (PMT), a Cu(II)-R6 adduct that displays the spectral features of blue (type 1) copper proteins is obtained. This complex is proposed to embody a pseudotetrahedral CuIIN3S(PMT) chromophore, in which N is HisB10 (imidazolyl). The remaining ligands examined gave rise to Cu(II)-R6 adducts that possessed the spectral characteristics of normal (type 2) Cu(II) proteins. Under reducing conditions, Cu(I)-T6 and Cu(I)-R6 hexamers have been identified.  相似文献   

10.
A comparative Raman and FTIR study of histamine (Hm), a small hormone present in a wide selection of living organisms, and its complexes with copper(II) at different pH values was carried out. Both the Raman and IR spectra present some marker bands useful for the identification of the structure of the species predominating in the Cu(II) aqueous and alcoholic systems. In particular, Raman spectroscopy appears to be a useful tool for analyzing the tautomeric equilibrium of the imidazole ring of Hm, because some bands (i.e., nuC(4)dbond;C(5)) appear at different wavenumbers, depending on whether the imidazole moiety is in the N(tau)-H (tautomer I) or N(pi)-H (tautomer II) protonated form. In aqueous solutions the manner in which Hm binds to Cu(II) depends on the pH. At basic pH the most relevant species formed are a dimer, [Cu(2)L(2)H(-2)](2+), and a monomeric complex, [CuL](2-) or [CuL(2)](+). On the contrary, by decreasing the pH, Hm acts as a mono- or bidentate ligand, giving rise to two types of monomeric complexes, [CuLH](2-) and [CuL](2-) or [CuL(2)](+). With respect to the Cu(II)-Hm alcoholic system, both the aminic group and the imidazole ring (tautomer I) take part in the Cu(II) coordination, leading to the formation of the [CuL](2-) or [CuL(2)](+) monomeric complex.  相似文献   

11.
The formation constants for complexes of Cu(II) with GHL and a series of related dipeptides were determined by means of potentiometric titration and ESR spectroscopy in aqueous solution. The complex formation of the related peptides AH, LH, HL, GL and VL is compared to that of GHL. The somewhat higher affinity of GHL to Cu(II) as compared to AH and LH seems to be a poor explanation for the biological functions of GHL. A dimeric Cu(II)HL complex is detected, which displays an ESR spectrum at room temperature. The ESR spectra of the different complexes and the influences of structures on the spectra are discussed.  相似文献   

12.
F Jiang  J Peisach  L J Ming  L Que  V J Chen 《Biochemistry》1991,30(48):11437-11445
Electron spin echo envelope modulation spectroscopy (ESEEM) was used to study the active site structure of isopenicillin N synthase (IPNS) from Cephalosporium acremonium with Cu(II) as a spectroscopic probe. Fourier transform of the stimulated electron spin-echo envelope for the Cu(II)-substituted enzyme, Cu(II)IPNS, revealed two nearly magnetically equivalent, equatorially coordinated His imidazoles. The superhyperfine coupling constant, Aiso, for the remote 14N of each imidazole was 1.65 MHz. The binding of substrate to the enzyme altered the magnetic coupling so that Aiso is 1.30 MHz for one nitrogen and 2.16 MHz for the other. From a comparison of the ESEEM of Cu(II)IPNS in D2O and H2O, it is suggested that water is a ligand of Cu(II) and this is displaced upon the addition of substrate.  相似文献   

13.
The protonation equilibria of alanylglycylhistamine (Ala-Gly-Ha) and the complexation of this ligand with Cu(II) and Ni(II) have been studied by pH-potentiometry, 1H and 14N NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), UV-Vis spectrophotometry and electron paramagnetic resonance (EPR). From pH approximately 2-12, the following complexes: MLH, MLH(-1), MLH(-2) and MLH(-3) are successively formed in aqueous solutions, the ligand under its neutral form being noted L. At physiological pH, the MLH(-2) complex is predominant. The coordination in this complex is assumed by one amino, two deprotonated peptide and one imidazole nitrogen atoms. The ESI-MS study confirmed the formation of the MLH(-1), MLH(-2) and MLH(-3) complexes. The structure of MLH(-2) was determined by single crystal X-ray analysis. CD and UV-Vis techniques allowed us to propose that the imidazole-N3 nitrogen acts as the anchor group for the coordination to the metal(II) ions rather than the amino group. At high pH values, the further deprotonation of the N-H imidazole group, leading to the formation of MLH(-3), occurs, as revealed by 1H NMR spectroscopy.  相似文献   

14.
Endo-α-1,4-polygalactosaminidase is a rare enzyme. Its catalytic domain belongs to the GH114 family of glycoside hydrolases. It is shown by phylogenetic analysis that the evolution of the corresponding genes involved duplications, elimination, and horizontal transfer. The domain and secondary structures of endo-α-1,4-polygalactosaminidases are discussed. A hypothesis is put forward as to the structure of the active center of the enzyme. Iterative screening of a protein database reveals evolutionary relationships of the GH114 family with the GH13, GH18, GH20, GH27, GH29, GH31, GH35, GH36, and GH66 families of glycoside hydrolases and with the COG1306, COG1649, COG2342, GHL3, and GHL4 families of proteins with unknown enzymatic functions. Unclassified homologs are grouped into 13 new families of hypothetical glycoside hydrolases: GHL5-GHL15, GH36J, and GH36K.  相似文献   

15.
Miura T  Suzuki K  Kohata N  Takeuchi H 《Biochemistry》2000,39(23):7024-7031
Aggregation of the amyloid beta-peptide (Abeta) into insoluble fibrils is a key pathological event in Alzheimer's disease. Zn(II) induces the Abeta aggregation at acidic-to-neutral pH, while Cu(II) is an effective inducer only at mildly acidic pH. We have examined Zn(II) and Cu(II) binding modes of Abeta and their pH dependence by Raman spectroscopy. The Raman spectra clearly demonstrate that three histidine residues in the N-terminal hydrophilic region provide primary metal binding sites and the solubility of the metal-Abeta complex is correlated with the metal binding mode. Zn(II) binds to the N(tau) atom of the histidine imidazole ring and the peptide aggregates through intermolecular His(N(tau))-Zn(II)-His(N(tau)) bridges. The N(tau)-metal ligation also occurs in Cu(II)-induced Abeta aggregation at mildly acidic pH. At neutral pH, however, Cu(II) binds to N(pi), the other nitrogen of the histidine imidazole ring, and to deprotonated amide nitrogens of the peptide main chain. The chelation of Cu(II) by histidine and main-chain amide groups results in soluble Cu(II)-Abeta complexes. Under normal physiological conditions, Cu(II) is expected to protect Abeta against Zn(II)-induced aggregation by competing with Zn(II) for histidine residues of Abeta.  相似文献   

16.
Electron spin resonance spectra of the first Cu(II) complexes of human serum albumin, dog serum albumin, l-aspartyl-l-histidine N-methylamide and glycyl-glycyl-l-histidine N-methylamide have been studied using isotopically pure 65Cu in its chloride form. At 77° K, the esr spectra of Cu(II) complex of human serum albumin exhibited only one form of esr signal between pH 6.5 and 11. No intermediate forms were detected. The presence of an equally spaced nine-line superhyperfine structure with spacing ~15 G indicated considerable covalent bonding between Cu(II) and four nitrogen atoms derived from the protein. The esr spectrum form of Cu(II) bound to human serum albumin detected at neutral pH would be consistent with the participation of four nitrogens from the α-NH2 group, two peptide groups, and the imidazole group of a histidine residue. In contrast, the esr spectra of Cu(II)-dog serum albumin complex showed a transition from a low pH form to a high pH form as the pH was increased to 9.5. These spectral changes were found to be reversible upon lowering the pH. Ligand superhyperfine splittings in the low pH form of the esr signal of Cu(II)-dog albumin were not resolved. The distinct pH dependence of the esr signals observed in human and dog serum albumin complexes could be correlated to their respective optical spectra changes as a function of pH. At room temperature and in the pH range between 6 and 11, the esr spectra of Cu(II) complexes of l-aspartyl-l-alanyl-l-histidine N-methylamide and glycyl-glycyl-l-histidine N-methylamide exhibited a well-resolved nine-line superhyperfine structure indicating metal coordination with four equivalent nitrogen atoms of peptide.  相似文献   

17.
1. A large number of potentially bidentate and tridentate amides, X-Y-CONH-Z, were used as model ligands to investigate the complex formation of Cu(II) with the deprotonated peptide nitrogen in biological molecules. A combination of potentiometric titration, spectrophotometry and electron paramagnetic resonance was applied to analyse the structure of the Cu(II) chelates formed at neurtal and basic pH. 2. By systematic variation of the primary binding function X, the ring size of the chelate, and the spatial properties of the C-terminal and N-terminal substituents, three classes of amide ligands could be established with reference to their capacity for Cu(II)-induced deprotonation of NHCO and metal binding. 3. Under physiological conditions of pH, peptide (class A) chelates are only formed by those bidentate amide ligands with X being an imidazole (sp2) nitrogen or a terminal (sp3) amino nitrogen. Mercaptide sulfur must also be considered to belong in this group of strong copper(II)-binding sites, but in our low-molecular-weight model ligands the redox equilibrium 2 Cu(II) + 2 RSH in equilibrium or formed from 2 CU(II) + RSSR + 2 H+ interferes, yielding insoluble Cu(I)-S polymers above pH 4. In addition to the unidentate binding strength of X, entropy effects play an important role. Depending on whether X is an imidazole or amino nitrogen, only five-membered or six-membered monocyclic chelate structures respectively cause coordination of the deprotonated peptide function. 4. Biuret (class B) Cu(II) chelates are only formed under non-physiological conditions at pH > 11.5 producing the well known violet chromophores CuIIN4(-). In general these complexes, which also include the Cu(II) biguanides, show a clearly resolved electron paramagnetic resonance spectrum with nitrogen superhyperfine structure. 5. A third class of peptide model ligands (class C) consists of those amides where the CuII-X bond does not provide enough thermodynamic stability. The binding site of these class C amides includes functional groups such as carboxylate (COO-), methionine sulfur (RSR'), aliphatic or aromatic hydroxyl (OH) and amide nitrogen (NHCO) itself. When X is a pyridine (sp2) nitrogen or an amino (sp3) nitrogen, NHCO deprotonation is only promoted in five-membered but not six-membered ring chelates. On the other hand, a combination of COO- and NH2, as in asparagine, will allow deprotonation of NHCO in the presence of Cu(II). And third, despite a pronounced unidentate affinity of the imidazole nitrogen for Cu(II), N-acetylhistamine acts as a class C amine, in contrast to imidazolylacetamide, which forms a stable Cu(II) peptide chelate. This difference in Cu binding is explained on the basis of space-filling models. These clearly demonstrate that in the case of the 2:1 complex of Cu(II) with N-acetylhistamine, the planarity of the ionised peptide function can not be retained in a square planar arrangement of the two amide ligands around the copper center.  相似文献   

18.
The tetradecapeptide containing the 10 aminoacid repeated sequence on the C-terminus of the Ni(II)-induced Cap43 protein, was analyzed for Ni(II) and Cu(II) binding. A combined pH-metric and spectroscopic UV-VIS, EPR, CD and NMR study of Ni(II) and Cu(II) binding to the blocked CH3CO-Thr-Arg-Ser-Arg-Ser-His-Thr-Ser-Glu-Gly-Thr-Arg-Ser-Arg-NH2 (Ac-TRSRSHTSEGTRSR-Am) peptide, modeling a part of the C-terminal sequence of the Cap43 protein, revealed the formation of octahedral complexes involving imidazole nitrogen of histidine, at pH 5.5 and pH 7 for Cu(II) and Ni(II), respectively; a major square planar 4N-Ni(II) complex (about 100% at pH 9, log K* = -28.16) involving imidazole nitrogen of histidine and three deprotonated amide nitrogens of the backbone of the peptide was revealed; a 3N-Cu(II) complex (maximum about 70% at pH 7, log K*=-13.91) and a series of 4N-Cu(II) complexes starting at pH 5.5 (maximum about 90% at pH 8.7, log K* = -21.39 for CuH(-3)L), were revealed. This work supports the existence of a metal binding site at the COOH-terminal part of the Cap43 peptide.  相似文献   

19.
The systematic investigation of the copper(II) complexes of tripeptides Xaa-Xaa-His, Xaa-His-Xaa and His-Xaa-Xaa, where Xaa=Gly or Ala was performed by combined pH-metry, spectrophotometry, CD and in part EPR spectroscopy. The matrix rank analysis of the spectral data revealed the number of the coloured and optically active species as a basis for the solution speciation. A critical evaluation on the speciation and solution structure of the complexes formed is presented on the basis of their d-d band optical activity. The replacement of a Gly residue with the chiral Ala amino acid allowed us to gain decisive information on the solution structure of the complexes by CD spectroscopy. It was shown that the tripeptides with histidine in the third position formed CuH(-2)L species with (NH(2), 2N(-), ImN - where Im stands for imidazole) coordination sphere as a major species, and only the macrochelated CuL complexes as minor species around pH 5.0. In copper(II)-Xaa-His-Xaa tripeptide systems the CuH(-1)L (NH(2), N(-), ImN) is the most stable species at physiological pH, but the vacant fourth site around copper(II)ions is offered for further deprotonation, most probably resulting in mixed hydroxo species at low (<5 x 10(-4)M) metal ion concentrations, while a tetrameric complex is dominant when the copper concentration exceeds 3 x 10(-3)M. The histamine type coordination mode in CuL and CuL(2) complexes of His-Xaa-Xaa ligands predominates at low pH. The structural consequences drawn from the CD spectra for the mono and bis parent complexes were supported by theoretical calculations. CD spectra strongly suggest the participation of the imidazole nitrogen both in the Cu(2)H(-2)L(2) and CuH(-2)L complexes.  相似文献   

20.
Results are reported from potentiometric and spectroscopic (UV-Vis, CD, and ESR) studies of the protonation constants and Cu2+ complex stability constants of pituitary adenylate cyclase activating polypeptide fragments (HSDGI-NH2, TDSYS-NH2, RKQMAVKKYLAAVL-NH2). With HSDGI-NH2, the formation of a dimeric complex Cu2H-2L2 was found in the pH range 5-8, in which the coordination of copper(II) is glycylglycine-like, while the fourth coordination site is occupied by the imidazole N3 nitrogen atom, forming a bridge between two copper(II) ions. The formation of dimeric species does not prevent the deprotonation and coordination of the amide nitrogen, and in pH above 8 the CuH-2L complex is formed. Aspartic acid in the third position of peptide sequence stabilizes the CuH-2L species and prevents the coordination of a fourth nitrogen donor. Aspartic acid residue in the second position of TDSYS-NH2 stabilizes the CuL (2N) complex but does not prevent deprotonation and binding of the second and third peptide nitrogens to give 3N and 4N complexes at higher pH. The tetradecapeptide amide forms with copper(II) ions unusually stable 3N and 4N complexes compared to pentaalanine amide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号