首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fourth-instar larvae of the eastern spruce bud-worm Choristoneura fumiferanaClem. (Lepidoptera: Tortricidae) were shown in two-choice feeding tests to respond differently to epicuticular waxes from different white spruce and balsam fir trees. Larvae also showed different preferences for various wax fractions obtained by separation on silicic acid.Deceased.  相似文献   

2.
Herbivorous insects exploit multiple plant cues to detect and orient toward suitable hosts and, accordingly, hosts have evolved complex constitutive and inducible defenses in response. In China, the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae), an invasive bark beetle from North America, attacks mainly Pinus tabuliformis Carrière (Pinaceae), which contains many monoterpenes. In this study, we explored how the monoterpene α‐pinene affects the feeding performance and pheromone production of D. valens. First, the composition and quantities of monoterpenes of both P. tabuliformis healthy trees and fresh stumps were determined and the infestation of D. valens in healthy trees and fresh stumps was investigated, linking the amount of monoterpenes and D. valens infestation. Gas chromatography–mass spectrometry (GC‐MS) analysis showed that P. tabuliformis mainly contained α‐pinene, with concentrations of 0.1 and 0.5 mg g?1 in healthy pine phloem and stump phloem, respectively. Second, the monoterpene's influence on feeding performance was tested using phloem media with α‐pinene concentrations ranging from 0 to 30 mg g?1. The results showed that the percentages of beetles boring and the gallery lengths of both adult females and larvae were negatively correlated with the α‐pinene concentration although body weight changes did not correlate with α‐pinene concentration. Finally, pheromone analysis showed that the production of all pheromones increased with increasing α‐pinene concentrations. This study showed the dual effects of α‐pinene on D. valens: α‐pinene inhibited the bark beetle's feeding activities and in turn the bark beetle made use of it to produce pheromones. Our study indicated the importance of promptly removing fresh stumps in the field for the management of the bark beetle.  相似文献   

3.
We show that induced synomones, emitted as a consequence of Murgantia histrionica activity on Brassica oleracea, are adsorbed by the epicuticular waxes of leaves and perceived by the egg parasitoid Trissolcus brochymenae. Leaves were exposed to M. histrionica females placed on the abaxial leaf surface. After 24 h, the leaves were treated mechanically using gum arabic, or chemically using chloroform, on the adaxial surface, and finally the adaxial surface was assayed with T. brochymenae by two‐choice tests in a closed arena. Wasp females responded to mechanically dewaxed cabbage leaf portions with feeding punctures and footprints (Ff) and with feeding punctures, oviposition and footprints (FOf), showing no effect of wax removal. In contrast, the removal of the epicuticular waxes from leaf portions close to FOf, and from leaves with oviposition and footprints (Of), determined the lack of responses by T. brochymenae. Solvent extracts of different treatments were bioassayed, but only FOf triggered parasitoid response. Thus the detection of oviposition‐induced synomones by the parasitoid depends on their adsorption by the epicuticular waxes. Mechanical wax removal from leaf portions contaminated with host footprints (f) also determined a lack of wasp responses, suggesting that the footprints might trigger the induction of a “footprint‐induced synomone” adsorbed onto the epicuticular waxes and exploited by the parasitoid. Leaf portions with the abaxial lamina previously dewaxed and then contaminated by footprints (D+f) of M. histrionica did not affect the parasitoid response, indicating that the abaxial epicuticular waxes are not directly involved in the chemicals induced by M. histrionica footprints.  相似文献   

4.
Foliar oils, particularly monoterpenes, can influence the susceptibility of plants to herbivory. In plants, including eucalypts, monoterpenes are often associated with plant defence. A recent analysis revealed an increase in foliar oil content with increasing latitudinal endemism, and we tested this pattern using three eucalypt taxa comprising a latitudinal replacement cline. We also examined the relative concentrations of two monoterpenes (α‐pinene and 1,8‐cineole), for which meta‐analyses also showed latitudinal variation, using hybrids of these three taxa with Corymbia torelliana. These, and pure C. torelliana, were then assessed in common‐garden field plots for the abundance and distribution of herbivory by four distinct herbivore taxa. Differing feeding strategies among these herbivores allowed us to test hypotheses regarding heritability of susceptibility and relationships to α‐pinene and 1,8‐cineole. We found no support for an increase in foliar oil content with increasing latitude, nor did our analysis support predictions for consistent variation in α‐pinene and 1,8‐cineole contents with latitude. However, herbivore species showed differential responses to different taxa and monoterpene contents. For example, eriophyid mites, the most monophagous of our censused herbivores, avoided the pure species, but fed on hybrid taxa, supporting hypotheses on hybrid susceptibility. The most polyphagous herbivore (leaf blister sawfly Phylacteophaga froggatti) showed no evidence of response to plant secondary metabolites, while the distribution and abundance patterns of Paropsis atomaria showed some relationship to monoterpene yields.  相似文献   

5.
6.
  • 1 The effect of tannins and monoterpenes on the development, mortality and food utilization of spruce budworm Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) was investigated under laboratory conditions using an artificial diet. Tannins were extracted from balsam fir foliage of thinned and unthinned stands to reproduce stand thinning related variations in tannins. A mixture of synthetic monoterpenes was utilized to simulate the concentration found in young and old balsam fir trees.
  • 2 Longer development time and lower pupal weight were observed for insects fed on diets with a lower nitrogen concentration and a higher tannin concentration (unthinned treatment). Tannins induced higher insect mortality at a low nitrogen concentration compared with the diet with a higher nitrogen concentration.
  • 3 Approximate digestibility was higher for larvae fed on diets with high concentrations of nitrogen at both low and high concentrations of tannins. Efficiency of conversion of digested food (ECD) decreased with an increase in tannin concentration. Tannins reduced both the relative consumption and growth rate (RCR and RGR).
  • 4 Monoterpenes increased spruce budworm mortality and this mortality reached almost 50% under concentrations of monoterpene typical of the young trees compared with 20% under monoterpene concentrations found in old trees.
  • 5 A higher digestibility was observed for larvae fed on diet with a higher concentration of monoterpenes, whereas efficiency of conversion of ingested food (ECI), ECD, RCR, and RGR decreased with an increase in monoterpenes in the diet.
  • 6 The results obtained in the present study are consistent with the defensive role of secondary compounds such as tannins and monoterpenes in the spruce budworm–balsam fir system.
  相似文献   

7.
Studies were conducted to determine whether herbivore-induced synthesis of monoterpenes occurs in the needles of ponderosa pine (Pinus ponderosa Lawson), lodgepole pine (P. contorta Douglas var. latifolia Engelmann), white fir (Abies concolor Lindl. and Gordon) and Engelmann spruce [Picea engelmanii (Parry) Engelm.]. In the needles of all species except Engelmann spruce, simulated herbivory significantly induced the activity of monoterpene cyclases 4–8 days after wounding. In ponderosa pine, real herbivory by last-instar tiger moth larvae (Halisdota ingens Hy. Edwards: Lepidoptera) induced a significantly larger response (4.5-fold increase in monoterpene cyclase activity) than did simulated herbivory (2.5-fold increase). To our knowledge, this is the first report of herbivore-induced increases in monoterpene synthesis in needle tissue. Despite this increase in monoterpene synthesis, we observed no significant increase in total monoterpene pool size in wounded needles compared to controls. Large increases in the rate of monoterpene volatilization were observed in response to wounding. We conclude that the volatile losses caused by tissue damage compensate for herbivore-induced monoterpene synthesis, resulting in no change in pool size. Tiger moth larvae consume ponderosa pine needles in a pattern that begins at the tip and proceeds downward to midway along the needle, at which point they move to an undamaged needle. Constitutive monoterpene concentrations and monoterpene cyclase activities were highest in the lower half of ponderosa pine needles. The monoterpene profile also differed between the upper and lower needle halves, the lower half possessing an additional one to four monoterpene forms. We propose that the increasing gradient in monoterpene concentrations and number of monoterpenes along the needle from tip to base deters feeding beyond the midway point and provides time for the induction of increased cyclase activity and production of new monoterpenes. The induction of new monoterpene synthesis may have a role in replacing monoterpenes lost through damage-induced volatilization and preventing extreme compromise of the constitutive defense system. Received: 4 June 1997 / Accepted: 2 December 1997  相似文献   

8.
Numerous reports have indicated that glucosinolates are important stimulants for specialist herbivores feeding on Brassicaceae, and that these metabolites might be present on the plant surface and thereby detectable by an alighting insect. We investigated the outermost layer of leaves of two species of Brassicaceae, Brassica napus L. var. ‘Martina’ and Nasturtium officinale R. Br., using two highly selective extraction methods. When the epicuticular wax layer was mechanically removed with gum arabic, no glucosinolates were detectable in the lower and upper leaf surfaces. Extracting the leaf surfaces with a threefold short rinse with chloroform/methanol/water (2 : 1 : 1 vol/vol/vol) led to varying results, depending on the light conditions under which plants had been kept in the period prior to extraction. In plants kept under light, glucosinolates were detectable in a first extraction in minor concentrations, with increasing amounts in a second and third extraction. In plants kept in darkness, glucosinolates were almost absent in the first extraction. We postulate that the polar glucosinolates are washed from the inner leaf tissue through open stomata to the outside during solvent extraction, but are not naturally present in the outermost wax layer. The response of the crucifer specialist Phaedon cochleariae (F.) (Coleoptera: Chrysomelidae) to leaf surfaces of the host plants B. napus and N. officinale and to a glucosinolate was tested. Adults preferred both the adaxial and abaxial leaf surfaces of host plants that had been treated with gum arabic in order to remove the epicuticular waxes over intact surfaces. Waxes may therefore prevent direct contact with the stimulants. Sinigrin (allyl glucosinolate) and/or surface extracts of N. officinale leaves applied on Pisum sativum leaf discs did not evoke feeding, but feeding did occur when total leaf extracts of B. napus or N. officinale were applied on this non‐host. We conclude that glucosinolates might only act as feeding stimulants for P. cochleariae in concert with compounds other than surface waxes.  相似文献   

9.
Monoterpene emissions, monoterpene synthase activities, photosynthesis, fluorescence yield in the dark and drought stress indicators (stomatal conductance and mid‐day water potential) were concurrently measured under similar temperature and illumination in current‐year leaves of Quercus ilex L. of plants grown in open‐top chambers at ambient (350 ppm) and elevated (700 ppm) CO2. The study was undertaken to understand the effect of CO2 on monoterpene biosynthesis, and to predict and parameterize the biogenic emissions at growing CO2 concentrations. The results of the 1998 and 1999 studies show that at elevated CO2, and in the absence of persistent environmental stresses, photosynthesis was stimulated with respect to ambient CO2, but that the emission of the three most abundantly emitted monoterpenes (α‐pinene, sabinene and β‐pinene) was inhibited by approximately 68%. The enzyme activities of the monoterpene synthases catalysing the formation of the three monoterpenes were also inhibited at elevated CO2 and an excellent relationship was found between monoterpene emission and activity of the corresponding enzyme both at ambient and elevated CO2. Interestingly, however, limonene emission was enhanced in conditions of elevated CO2 as it was also the corresponding synthase. The ratio between enzyme activity and emission of the three main monoterpenes was high (above 20) at ambient CO2 but it was below 10 at elevated CO2 and, for limonene, on both treatments. Our results indicate that the overall emission of monoterpenes at elevated CO2 will be inhibited because of a concurrent, strong down‐regulation of monoterpene synthase activities. When the enzyme activity does not change, as for limonene, the high photosynthetic carbon availability at elevated CO2 conditions may even stimulate emission. The results of the 1997 study show that severe and persistent drought, as commonly occurs in the Mediterranean, may inhibit both photosynthesis and monoterpene (α‐pinene) emission, particularly at ambient CO2. Thus, emission is probably limited by photosynthetic carbon availability; the effect of elevated CO2per se is not apparent if drought, and perhaps other environmental stresses, are also present.  相似文献   

10.
1 Host tree terpenes can influence attraction of conifer‐infesting bark beetles to their aggregation pheromones, and both synergistic and inhibitory effects have been reported. 2 We tested a gradient of ratios of (–)‐α‐pinene, the predominant monoterpene in Norway spruce, to the pheromone of Ips typographus, a major pest of Norway spruce. 3 Attraction of I. typographus increased as the release rate of (–)‐α‐pinene increased. The two highest (–)‐α‐pinene : pheromone ratios (526 : 1 and 2595 : 1) attracted twice as many I. typographus as pheromone alone, whereas low to intermediate ratios (56 : 1, 274 : 1) did not differ from pheromone alone. 4 Our results are in agreement with a proposed model, which suggests that bark beetles display unique response profiles to host terpenes depending on the physiological condition of the host trees that they typically colonize. Ips typographus, which is an aggressive species capable of colonizing and killing healthy trees, showed an increased attraction to monoterpene : pheromone ratios, and this may be high enough to inhibit attraction of less aggressive beetle species typically colonizing dead, dying or stressed trees. 5 Attraction of associates of I. typographus was also modified by (–)‐α‐pinene. Ips duplicatus, a competitor of I. typographus, showed increased attraction to the pheromone of I. typographus across all concentrations of (–)‐α‐pinene.  相似文献   

11.
This study represents an investigation of surface-related plant–insect interactions. Surface micro-morphology of leaflets in pea (Pisum sativum) with wild-type crystalline surface waxes (waxy) and with reduced crystalline surface waxes (glossy) caused by a mutation (wel) were studied using various microscopy techniques. The free surface energy of these plant surfaces was estimated using contact angles of droplets of three different liquids. The morphological study of the attachment system in the ladybird beetle Cryptolaemus montrouzieri was combined with measurements of attachment (traction) forces, generated by beetles on these plant substrates. Differences were found in wax crystal shape, dimensions, and density between the adaxial and abaxial surfaces of waxy and glossy plants. The crystalline wax was not completely eliminated in the glossy plant: it was only slightly reduced on the adaxial side and underwent greater changes on the abaxial side. The free surface energy for both surfaces of both pea types was rather low with strongly predominating dispersion component. Insects generated low traction forces on all intact plant surfaces studied, except the abaxial surface of the glossy plant, on which the force was greater. After being treated with chloroform, all the surfaces allowed much higher traction forces. It is demonstrated that the difference in the crystal length and density of the epicuticular wax coverage within the observed range did not influence wettability of surfaces, but affected insect attachment. The reduction in insect attachment force on plant surfaces, covered with the crystalline wax, is explained by the decrease of the real contact area between setal tips of beetles and the substrate. Handling editor: Lars Chittka.  相似文献   

12.
Fertilized stands of Pseudotsuga menziesii were found to have glaucous needles. We investigated the morphological and quantitative characteristics of the epicuticular waxes of needles of fertilized and control trees. Glaucousness was caused by ornate tubular epicuticular wax. Dipping needles in chloroform, which dissolves waxes, eliminated the glaucous appearance. Based on cryostage scanning electron microscopic observations, the epicuticular waxes in the nonstomatal region were much more ornate on the needles of the fertilized trees (experimental needles) than in unfertilized trees (control needles). The stomatal region in both experimental and control needles showed similarly ornate waxes. Quantities of waxes were similar in experimental and control needles. The glaucousness was not the result of greater quantities of wax; rather, fertilization altered wax morphology in the nonstomatal regions.  相似文献   

13.
The ability of a herbivore to tolerate plant defensive chemicals may vary with the herbivore’s energetic state. We investigated the effect of body condition on the survivorship of individual mountain pine beetles, Dendroctonus ponderosae, exposed to host monoterpenes at concentrations comparable to constitutive and induced levels of defence using fumigant exposure. Body condition index was calculated as the residual mass after fitting the relationship between fresh weight and body size. Differences in survivorship among the four monoterpenes tested (α-pinene, myrcene, terpinolene and limonene) were small. Beetles with a higher body condition index survived high monoterpene concentrations better than those in poorer condition. There was no direct effect of sex, but positive effects of body size and fat content on survivorship favoured females, the sex that pioneers attacks on live trees. Higher body condition index corresponded to both higher fat content and fat-free body mass; the same conclusions about monoterpene identity and size-dependent or energy-dependent tolerance of high monoterpene concentrations held if fat or fat-free body mass were used in place of body condition index. This study highlights the need to consider insect body condition in understanding insect–plant interactions.  相似文献   

14.
Abstract An important question in the host‐finding behaviour of a polyphagous insect is whether the insect recognizes a suite or template of chemicals that are common to many plants? To answer this question, headspace volatiles of a subset of commonly used host plants (pigeon pea, tobacco, cotton and bean) and nonhost plants (lantana and oleander) of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) are screened by gas chromatography (GC) linked to a mated female H. armigera electroantennograph (EAG). In the present study, pigeon pea is postulated to be a primary host plant of the insect, for comparison of the EAG responses across the test plants. EAG responses for pigeon pea volatiles are also compared between females of different physiological status (virgin and mated females) and the sexes. Eight electrophysiologically active compounds in pigeon pea headspace are identified in relatively high concentrations using GC linked to mass spectrometry (GC‐MS). These comprised three green leaf volatiles [(2E)‐hexenal, (3Z)‐hexenylacetate and (3Z)‐hexenyl‐2‐methylbutyrate] and five monoterpenes (α‐pinene, β‐myrcene, limonene, E‐β‐ocimene and linalool). Other tested host plants have a smaller subset of these electrophysiologically active compounds and even the nonhost plants contain some of these compounds, all at relatively lower concentrations than pigeon pea. The physiological status or sex of the moths has no effect on the responses for these identified compounds. The present study demonstrates how some host plants can be primary targets for moths that are searching for hosts whereas the other host plants are incidental or secondary targets.  相似文献   

15.
16.
Conifers respond to herbivore attack with defensive chemicals, which are toxic to both insects and their associated microorganisms. Microorganisms associated with insects have been widely reported to metabolize toxic chemicals, which may help both microorganisms and host insects overcome host conifer defense. Dendroctonus valens LeConte, an introduced exotic pest from North America to China, has killed millions of healthy pines. Alpha‐pinene is the most abundant defensive monoterpene in Chinese Pinus tabuliformis. Although microorganisms associated with D. valens have already been investigated, little is known about their bioactivities when encountering host defensive monoterpenes. In this study, we evaluated the influences of different concentrations of α‐pinene to D. valens and the three most frequently isolated yeasts and bacteria of D. valens, and further assayed microorganisms’ capabilities to degrade α‐pinene. Results showed that the gallery lengths and body weight changes of bark beetles were significantly affected by 6 mg/mL and 12 mg/mL of α‐pinene applied in media compared to controls. The tolerance of experimental microorganisms to α‐pinene varied depending on the microbial species. Two out of three yeast strains and all three bacterial strains degraded 20%–50% of α‐pinene compared to controls in 24 h in vitro. The microorganisms capable of α‐pinene degradation in vitro and their tolerance to high levels of α‐pinene suggested that D. valens‐associated microorganisms may help both microorganisms and the bark beetle overcome host α‐pinene defense.  相似文献   

17.
Analyses of volatiles in hindguts of Ips typgraphus males from different spruce trees and attack phases are reviewed. The composition of monoterpenes, and the chirality of α-pinene, have been determined in phloem samples. Relationships between compounds emanating from spruce trees and bark beetles, respectively, have been studied. Male beetles depend on their host tree for the production of pinene alcohols. The ratio between the pinene alcohols is almost constant in males boring in the same tree but can vary widely between males from different spruce trees. Very good correlations were found between some host tree monoterpene hydrocarbons and bark beetle produced pinene alcohols. The production of the essential pheromone component 2-methyl-3-buten-2-ol, was not correlated with the monoterpene content in the host trees, while the production of the other essential pheromone component, cis-verbenol, depends on the amount of the precursor, (−)-α-pinene in the phloem. Male beetles boring in a resistant spruce tree will continue to produce the pinene alcohols, including cis -verbenol, as long as the tree defends itself with resin.  相似文献   

18.
Females of the ectoparasitoid Habrobracon hebetor attack and envenomate numerous host individuals during oviposition. The vectoring of the entomopathogenic fungus Beauveria bassiana during the adhesion stage by ectoparasitoid females among the wax moth larvae Galleria mellonella was explored under laboratory conditions. Vectoring occurred both from infected parasitoids to wax moth larvae and from infected to healthy wax moth larvae by parasitoids. The efficacy of vectoring in both cases was dose dependent. Parasitoid females were unable to recognize infected larvae in a labyrinth test. In addition, the presence of H. hebetor females significantly (1.5–13 fold) increased the mycoses level in clusters of G. mellonella, with 40% of the larvae infected with fungal conidia. Envenomation by H. hebetor increased conidia germination on the cuticles of the wax moth larvae by 4.4 fold. An enhanced germination rate (2 fold) was registered in the n‐hexane epicuticular extract of envenomated larvae compared to that of healthy larvae. Both envenomation and mycoses enhanced the phenoloxidase (PO) activity in the integument of G. mellonella and, in contrast, decreased the encapsulation rate in hemolymphs. We hypothesize that changes in the integument property and inhibition of cellular immunity provide the highest infection efficacy of entomopathogenic fungi with H. hebetor.  相似文献   

19.
The pattern of feeding of Eastern spruce budworm Choristoneura fumiferana (Clem.) (Lepidoptera, Tortricidae) is compared on foliage from white spruce Picea glauca (Moench) Voss. (Pinaceae) trees previously determined to be susceptible and resistant to defoliation by budworm. No differences are observed in electrophysiological responses from taste sensilla to aqueous extracts of the two foliage types, nor is there a preference for either extract type in a choice test. Acetone extracts from the two foliage types are both preferred to a control sucrose solution, although neither elicits a preference relative to the other. These results suggest that there is no difference in phagostimulatory power of internal leaf contents of the two foliage types. Longer‐term observation of feeding behaviour in a no‐choice situation shows no difference in meal duration, confirming the lack of difference in phagostimulatory power. However, on average, intermeal intervals are twice as long on the resistant foliage, leading to an overall lower food consumption during the assay. This result suggests an anti‐digestive or toxic effect of the resistant foliage that slows behaviour and limits food intake. Previous research has shown that waxes of the resistant foliage deter initiation of feeding by the spruce budworm and that this foliage contains higher levels of tannins and monoterpenes. The data suggest that the resistant foliage contains a post‐ingestive second line of defence against the spruce budworm.  相似文献   

20.
In order to elucidate the self assembly process of plant epicuticular waxes, and the molecular arrangement within the crystals, re-crystallisation of wax platelets was studied on biological and non-biological surfaces. Wax platelets were extracted from the leaf blades of wheat (Triticum aestivum L., c.v. ‘Naturastar’, Poaceae). Waxes were analysed by gas chromatography (GC) and mass spectrometry (MS). Octacosan-1-ol was found to be the most abundant chemical component of the wax mixture (66 m%) and also the determining compound for the shape of the wax platelets. The electron diffraction pattern showed that both the wax mixture and pure octacosan-1-ol are crystalline. The re-crystallisation of the natural wax mixture and the pure octacosan-1-ol were studied by scanning tunnelling microscopy (STM), atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Crystallisation of wheat waxes and pure octacosano-1-ol on the non polar highly ordered pyrolytic graphite (HOPG) led to the formation of platelet structures similar to those found on the plant surface. In contrast, irregular wax morphologies and flat lying plates were formed on glass, silicon, salt crystals (NaCl) and mica surfaces. Movement of wheat wax through isolated Convallaria majalis cuticles led to typical wax platelets of wheat, arranged in the complex patterns typical for C. majalis. STM of pure octacosan-1-ol monolayers on HOPG showed that the arrangement of the molecules strictly followed the hexagonal structure of the substrate crystal. Re-crystallisation of wheat waxes on non-polar crystalline HOPG substrate showed that technical surfaces could be used to generate microstructured, biomimetic surfaces. AFM and SEM studies proved that a template effect of the substrate determined the orientation of the re-grown crystals. These effects of the structure and polarity of the substrate on the morphology of the epicuticular waxes are relevant for understanding interactions between biological as well as technical surfaces and waxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号