首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial abundance and diversity of different life stages (fourth instar larvae, pupae and adults) of the diamondback moth, Plutella xylostella L., collected from field and reared in laboratory, were investigated using bacteria culture‐dependent method and PCR‐DGGE analysis based on the sequence of bacteria 16S rRNA V3 region gene. A large quantity of bacteria was found in all life stages of P. xylostella. Field population had higher quantity of bacteria than laboratory population, and larval gut had higher quantity than pupae and adults. Culturable bacteria differed in different life stages of P. xylostella. Twenty‐five different bacterial strains were identified in total, among them 20 strains were presented in larval gut, only 8 strains in pupae and 14 strains in adults were detected. Firmicutes bacteria, Bacillus sp., were the most dominant species in every life stage. 15 distinct bands were obtained from DGGE electrophoresis gel. The sequences blasted in GenBank database showed these bacteria belonged to six different genera. Phylogenetic analysis showed the sequences of the bacteria belonged to the Actinobacteri, Proteobacteria and Firmicutes. Serratia sp. in Proteobacteria was the most abundant species in larval gut. In pupae, unculturable bacteria were the most dominant species, and unculturable bacteria and Serratia sp. were the most dominant species in adults. Our study suggested that a combination of molecular and traditional culturing methods can be effectively used to analyze and to determine the diversity of gut microflora. These known bacteria may play important roles in development of P. xylostella.  相似文献   

2.
The undisturbed sediment of Lake Hovsgol (Mongolia) is scientifically important because it represents a record of the environmental changes that took place between the Holocene (the present age) and Pleistocene (the last ice age; 12,000 14C years before present day). Here, we investigated how the current microbial communities change as the depth increases by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA genes of the microbial communities. The microbial diversity, as estimated by the Shannon index, decreased as the depth increased. In particular, significant changes in archaeal diversity were observed in the middle depth (at 39-42 cm depth of total 60 cm depth) that marks the border between the Holocene and Pleistocene. Phylotype belonging to Beta-and Gamma-Proteobacteria were the predominant bacteria and most of these persisted throughout the depth examined. However, as the depth increased, some bacteria (some genera belonging to Beta-Proteobacteria, Nitrospira, and OP8-9) were not detectable while others (some genera belonging to Alpha-, Beta-, Gamma-Proteobacteria) newly detected by DGGE. Crenarchaea were the predominant archaea and only one phylotype belonging to Euryarchaea was found. Both the archaeal and bacterial profiles revealed by the DGGE band patterns could be grouped into four and three subsets, respectively, subsets that were largely divided by the border between the Holocene and Pleistocene. Thus, the diversity of the current microbial communities in Lake Hovsgol sediments decreases with increasing depth. These changes probably relate to the environmental conditions in the sediments, which were shaped by the paleoclimatic events taking place between the Holocene and Pleistocene.  相似文献   

3.
AIMS: To assess the bacterial diversity and safety of wastewater inoculants, which are commercially available products used to improve the aerobic digestion processes of the domestic waste compost in the septic tank. METHODS AND RESULTS: Eighteen wastewater inoculants were analysed on nonselective and selective media and the cultivable bacteria were identified. In all wastewater inoculants, the number of CFUs were between 10(4) and 10(7) g(-1) powder on nonselective media and Bacillus was the predominant cultivable genus. Culture-independent molecular methods such as sequencing of 16S rRNA clone libraries and denaturating gradient gel electrophoresis demonstrated the high prevalence of interfering chloroplast 16S rRNA from plant material and the presence of Bacillus spp. Only after selective enrichments and cultivation, the presence of one pathogenic strain (Klebsiella pneumoniae subsp. pneumoniae) and one opportunistic strain of (Enterobacter cloacae) bacteria were detected in six different products. CONCLUSION: The predominant cultivable species of the wastewater inoculants were Bacillus spp. and after enrichment six products were found to contain opportunistic or pathogenic strains. SIGNIFICANCE AND IMPACT OF THE STUDY: The presence of opportunistic pathogenic strains in the inoculants might represent a risk for immunocompromised, the elderly or children. A clear labelling should therefore be displayed on the product.  相似文献   

4.
Flesh flies of the genus Sarcophaga (Diptera: Sarcophagidae) are carrion‐breeding, necrophagous insects important in medical and veterinary entomology as potential transmitters of pathogens to humans and animals. Our aim was to analyse the diversity of gut‐associated bacteria in wild‐caught larvae and adult flesh flies using culture‐dependent and culture‐independent methods. Analysis of 16S rRNA gene sequences from cultured isolates and clone libraries revealed bacteria affiliated to Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes in the guts of larval and adult flesh flies. Bacteria cultured from larval and adult flesh fly guts belonged to the genera Acinetobacter, Bacillus, Budvicia, Citrobacter, Dermacoccus, Enterococcus, Ignatzschineria, Lysinibacillus, Myroides, Pasteurella, Proteus, Providencia and Staphylococcus. Phylogenetic analysis showed clone sequences of the genera Aeromonas, Bacillus, Bradyrhizobium, Citrobacter, Clostridium, Corynebacterium, Ignatzschineria, Klebsiella, Pantoea, Propionibacterium, Proteus, Providencia, Serratia, Sporosarcina, Weissella and Wohlfahrtiimonas. Species of clinically significant genera such as Ignatzschineria and Wohlfahrtiimonas spp. were detected in both larvae and adult flesh flies. Sequence analysis of 16S rRNA gene libraries supported culture‐based results and revealed the presence of additional bacterial taxa. This study determined the diversity of gut microbiota in flesh flies, which will bolster the ability to assess microbiological risk associated with the presence of these flies. The present data thereby establish a platform for a much larger study.  相似文献   

5.
The Asian long-horned beetle, Anoplophora glabripennies (Motschulsky), is a destructive wood-boring pest that is capable of killing healthy trees. Gut bacteria in the larvae of the wood-boring pest is essential for the fitness of hosts. However, little is known about the structure of the intestinal microbiome of A. glabripennies during larval development. Here, we used Illumina MiSeq high-throughput sequencing technology to analyze the larval intestinal bacterial communities of A. glabripennies at the stages of newly hatched larvae, 1st instar larvae and 4th instar larvae. Significant differences were found in larval gut microbial community structure at different larvae developmental stages. Different dominant genus was detected during larval development. Acinetobacter were dominant in the newly hatched larvae, Enterobacter and Raoultella in the 1st instar larvae, and Enterococcus and Gibbsiella in the 4th instar larvae. The microbial richness in the newly hatched larvae was higher than those in the 1st and 4th instar larvae. Many important functions of the intestinal microbiome were predicted, for example, fermentation and chemoheterotrophy functions that may play an important role in insect growth and development was detected in the bacteria at all tested stages. However, some specific functions are found to be associated with different development stages. Our study provides a theoretical basis for investigating the function of the intestinal symbiosis bacteria of A. glabripennies.  相似文献   

6.
This study characterizes the colonization and composition of bacterial flora in dwarf Asian honeybee (Apis florea) larvae and compares bacterial diversity and distribution among different sampling locations. A. florea larvae were collected from 3 locations in Chiang Mai province, Thailand. Bacterial DNA was extracted from each larva using the phenol–chloroform method. Denaturing gradient gel electrophoresis was performed, and the dominant bands were excised from the gels, cloned, and sequenced for bacterial species identification. The result revealed similarities of bacterial community profiles in each individual colony, but differences between colonies from the same and different locations. A. florea larvae harbor bacteria belonging to 2 phyla (Firmicutes and Proteobacteria), 5 classes (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bacilli, and Clostridia), 6 genera (Clostridium, Gilliamella, Melissococcus, Lactobacillus, Saccharibacter, and Snodgrassella), and an unknown genus from uncultured bacterial species. The classes with the highest abundance of bacteria were Alphaproteobacteria (34%), Bacilli (25%), Betaproteobacteria (11%), Gammaproteobacteria (10%), and Clostridia (8%), respectively. Similarly, uncultured bacterial species were identified (12%). Environmental bacterial species, such as Saccharibacter floricola, were also found. This is the first study in which sequences closely related to Melissococcus plutonius, the causal pathogen responsible for European foulbrood, have been identified in Thai A. florea larvae.  相似文献   

7.
徐阳  南小宁  魏琮  贺虹 《昆虫学报》2016,(6):632-640
[目的]在长期的进化过程中,蚂蚁和微生物之间建立了复杂的联系,尤其肠道微生物对蚂蚁的食性进化和物种分化产生了巨大的影响.弓背蚁属Camponotus蚂蚁消化道内普遍存在内共生菌Blochmannia及其他肠道细菌,这些细菌在寄主蚂蚁营养补充方面发挥了重要的作用,此外肠道微生物对食物类型的变化十分敏感,这些信息可能有助于调查寄主蚂蚁在不同季节的取食习性.本研究旨在揭示弓背蚁属蚂蚁肠道微生物是否存在季节特征.[方法]采用16S rRNA-RFLP方法分析比较了了2个日本弓背蚁蚁巢(巢1和2)的工蚁在4个月份时间点(2012年6月12日,8月15日和10月10日,2013年4月15日)的肠道茵群组成.[结果]在8个样品中共发现了17个属的细菌和1种未知细菌,弓背蚁属蚂蚁特有的内共生茵Blochmannia是优势细菌,出现在所有样品中,占67.1%~98.8%;假单胞菌属Pseudomonas和肠杆菌属Enterobacter在大多数的样本中都检测到,其他属的细菌则零星分布在个别样品中,只占较低的比例.两个蚁巢工蚁肠道茵群在4个月份没有呈现一致的变化趋势,都具有低的细菌多样性.在巢1中,4月和10月的肠道细菌多样性相对较高,在6月和8月较低;而在巢2中,8月的肠道细菌多样性明显高于4,6和10月.两个蚁巢6月和10月的肠道茵群组成相似,但是8月和4月差异较大.[结论]日本弓背蚁两个蚁巢的工蚁肠道菌群组成和多样性都随季节产生变化,但是没有呈现一致的变化趋势,没有表现出明显的季节特征.  相似文献   

8.
Ubiquitous microbial communities in river sediments actively govern organic matter decomposition, nutrient recycling, and remediation of toxic compounds. In this study, prokaryotic diversity in two major rivers in central Thailand, the Chao Phraya (CP) and the Tha Chin (TC) distributary was investigated. Significant differences in sediment physicochemical properties, particularly silt content, were noted between the two rivers. Tagged 16S rRNA sequencing on a 454 platform showed that the sediment microbiomes were dominated by Gammaproteobacteria and sulfur/sulfate reducing Deltaproteobacteria, represented by orders Desulfobacteriales and Desulfluromonadales together with organic degraders Betaproteobacteria (orders Burkholderiales and Rhodocyclales) together with the co-existence of Bacteroidetes predominated by Sphingobacteriales. Enrichment of specific bacterial orders was found in the clayey CP and silt-rich TC sediments, including various genera with known metabolic capability on decomposition of organic matter and xenobiotic compounds. The data represent one of the pioneered works revealing heterogeneity of bacteria in river sediments in the tropics.  相似文献   

9.
美洲大蠊(Periplaneta americana)肠道微生物多样性分析   总被引:1,自引:0,他引:1  
【目的】分析美洲大蠊(Periplaneta americana)肠道微生物群落的组成。【方法】以美洲大蠊肠道微生物基因组为模板,Bact-27F和Univ-1492R为引物,PCR扩增16S rRNA基因,连接pGEM-T载体,构建肠道微生物16S rRNA基因文库,并对肠道微生物的组成及多样性进行分析。【结果】美洲大蠊肠道微生物主要包括变形杆菌门(Proteobacteria,66.4%),拟杆菌门(Bacteroidetes,17.8%),厚壁菌门(Firmicutes,14.5%),梭杆菌门(Fusobacteria,0.6%),以及未分类微生物(unclassified bacteria,0.6%)。系统发育分析显示,15%的美洲大蠊肠道微生物16S rRNA基因序列与亲缘关系较近的杂食蟑螂肠道微生物的16S rRNA基因序列聚于一支;59%的美洲大蠊肠道微生物16S rRNA基因序列与不同食性动物肠道微生物的16S rRNA基因序列聚于一支。另一方面,18%的美洲大蠊肠道微生物16S rRNA基因序列与潜在的微生物致病菌一致性高于99%,说明美洲大蠊是一类潜在的致病菌携带者。【结论】美洲大蠊肠道微生物群落组成多样,宿主系统进化以及杂食性生活方式对其肠道微生物的组成有较大影响。  相似文献   

10.
Bacterial community composition and succession were examined over the course of the summer season in the Great South Bay, Long Island, NY, USA, using a 16S rDNA clone library approach. There was a progression of changes in dominant species in the libraries during the summer of 1997. The July library had several groups dominant, the SAR407 relatives of the alpha-Proteobacteria (24%) and the SAR86 (18%), sulfur-oxidizing symbiont relatives (8%) of the gamma-Proteobacteria, and unidentified Cytophaga-Flexibacter representatives (22%). In August, the Cytophaga-Flexibacter (Gelidibacter sp. and unidentified Cytophaga-Flexibacter representative) and Cyanobacteria (Synechococcus sp.) increased to 28% and 14%, respectively. High GC Gram-positives appeared at 18%, and beta-Proteobacteria (Ralstonia sp.) at 10%. By September these groups had either declined or were absent, while the SAR86 cluster, Pseudoalteromonas and Alteromonas of the gamma-Proteobacteria were dominant in the community (61%). The dominance of open ocean bacteria along with the presence of Aureococcus anophagefferens (Pelagophyceae) in July suggests possible open ocean coupling to bloom events. Many clones in this study were related to previously described clones from a wide distribution of marine environments, substantiating the cosmopolitan nature of pelagic bacteria. Only one isolated bacterium was closely related to 16S rDNA found in the August library.  相似文献   

11.
High-fidelity PCR of 16S rRNA sequences was used to identify bacteria associated with worker adults of the honeybee subspecies Apis mellifera capensis and Apis mellifera scutellata. An expected approximately 1.5-kb DNA band, representing almost the entire length of the 16S rRNA gene, was amplified from both subspecies and cloned. Ten unique sequences were obtained: one sequence each clustered with Bifidobacterium (Gram-positive eubacteria), Lactobacillus (Gram-positive eubacteria), and Gluconacetobacter (Gram-negative alpha-proteobacteria); two sequences each clustered with Simonsiella (beta-proteobacteria) and Serratia (gamma-proteobacteria); and three sequences each clustered with Bartonella (alpha-proteobacteria). Although the sequences relating to these six bacterial genera initially were obtained from either A. m. capensis or A. m. scutellata or both, newly designed honeybee-specific 16S rRNA primers subsequently amplified all sequences from all individual workers of both subspecies. Attempts to amplify these sequences from eggs have failed. However, the wsp primers designed to amplify Wolbachia DNA from arthropods, including these bees, consistently produced a 0.6-kb DNA band from individual eggs, indicating that amplifiable bacterial DNA was present. Hence, the 10 bacteria could have been acquired orally from workers or from other substrates. This screening of 16S rRNA sequences from A. m. capensis and A. m. scutellata found sequences related to Lactobacillus and Bifidobacterium which previously had been identified from other honeybee subspecies, as well as sequences related to Bartonella, Gluconacetobacter, Simonsiella/Neisseria, and Serratia, which have not been identified previously from honeybees.  相似文献   

12.
The giant honeybee Apis dorsata often forms dense colony aggregations which can include up to 200 often closely related nests in the same location, setting the stage for inbred matings. Yet, like in all other Apis species, A. dorsata queens mate in mid‐air on lek like drone congregation areas (DCAs) where large numbers of males gather in flight. We here report how the drone composition of A. dorsata DCAs facilitates outbreeding, taking into the account both spatial (three DCAs) and temporal (subsequent sampling days) dynamics. We compared the drones’ genotypes at ten microsatellite DNA markers with those of the queen genotypes of six drone‐producing colonies located close to the DCAs (Tenom, Sabah, Malaysia). None of 430 sampled drones originated from any of these nearby colonies. Moreover, we estimated that 141 unidentified colonies were contributing to the three DCAs. Most of these colonies were participating multiple times in the different locations and/or during the consecutive days of sampling. The drones sampled in the DCAs could be attributed to six subpopulations. These were all admixed in all DCA samples, increasing the effective population size an order of magnitude and preventing matings between potentially related queens and drones.  相似文献   

13.
14.
Symbiotic bacteria often help their hosts acquire nutrients from their diet, showing trends of co-evolution and independent acquisition by hosts from the same trophic levels. While these trends hint at important roles for biotic factors, the effects of the abiotic environment on symbiotic community composition remain comparably understudied. In this investigation, we examined the influence of abiotic and biotic factors on the gut bacterial communities of fish from different taxa, trophic levels and habitats. Phylogenetic and statistical analyses of 25 16S rRNA libraries revealed that salinity, trophic level and possibly host phylogeny shape the composition of fish gut bacteria. When analysed alongside bacterial communities from other environments, fish gut communities typically clustered with gut communities from mammals and insects. Similar consideration of individual phylotypes (vs. communities) revealed evolutionary ties between fish gut microbes and symbionts of animals, as many of the bacteria from the guts of herbivorous fish were closely related to those from mammals. Our results indicate that fish harbour more specialized gut communities than previously recognized. They also highlight a trend of convergent acquisition of similar bacterial communities by fish and mammals, raising the possibility that fish were the first to evolve symbioses resembling those found among extant gut fermenting mammals.  相似文献   

15.
植物叶际固氮菌研究进展   总被引:1,自引:0,他引:1  
固氮菌广泛存在于植物叶际,能固定空气中的氮气,满足自身或植物的部分氮素需求。基于纯种分离和培养的传统生物学方法已经研究了部分叶际固氮菌的特性,但对叶际固氮菌的物种组成、群落结构及生态功能等方面的认识还非常有限。随着分子生物学技术的发展、微生物分子生态学研究方法的逐步成熟,人们对叶际微生物的多样性和生态功能的研究越来越深入。叶际固氮菌具有丰富的多样性,温度、湿度、光照等环境因素及植物种类和微生物互作均会影响叶际固氮菌的组成。不同于根际固氮菌,叶际固氮菌具有非专一性,且不易受化肥的影响,其在农业生产上已经表现出潜在的应用价值。为此,本文综述了农作物、森林、海域生态系统中叶际固氮菌的群落结构组成及生态功能,以及外界因素对叶际固氮系统的影响。  相似文献   

16.
Bacterial populations in fermented grains during fermentation may play important roles in Chinese liquor flavor. PCR-based denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene library analysis were performed to analyze the bacterial community structure of two styles of liquor. The results of DGGE profiles showed that bacterial diversity decreased with the fermentation process and Lactobacillus acetotolerans became the predominant species at the end of the fermentation. But the obvious differences of bacterial community appeared in the middle stage of two styles of liquor fermentation, in which the different upstream production techniques were used. Moreover, 16S rRNA gene libraries of two styles were constructed. A total of 125 and 107 clones, chosen from two libraries, were grouped into 46 and 49 operational taxonomic units (OTUs) by amplified ribosomal DNA restriction analysis. According to sequencing results of clones, the predominant bacteria in strong aroma style fermented grains were those from the class Bacilli, Bacteroidetes, and Clostridia, whereas the predominant bacteria in fermented grains of roasted sesame aroma style belonged to Bacilli, Flavobacteria, and Gammaproteobacteria. Molecular analysis of the bacterial diversity of the liquor fermentation will benefit the analysis of important microorganisms playing key roles in the formation of liquor flavor components.  相似文献   

17.
Halibut, the largest of all flatfishes is a valuable species with a great potential for aquaculture. Bacteria play an important role in regulating the health of the early life stages. The present article is the first broad-range molecular analysis of bacterial communities in larvae of the Atlantic halibut (Hippoglossus hippoglossus). DNA was extracted from larvae, water and silo biofilm from hatcheries in Norway, Scotland, Iceland and Canada. Eubacterial 16S rRNA gene fragments were amplified by polymerase chain reaction (PCR) with broad-range primers. Sequences spanning the hyper variable V3 region representing individual bacterial species were separated into community profiles by denaturing gradient gel electrophoresis (DGGE). The profiles revealed simple communities after hatching and bacterial succession following growth. Sequencing and phylogenetic analysis of excised DGGE bands suggested aerobic heterotrophs related to groups of Pseudomonas, Janthinobacterium and possibly Marinomonas to be the primary colonisers of the larvae. After onset of feeding, fermentative species (Vibrio) were detected as well. Comparative analysis of bacterial communities from different geographical regions indicated that larvae of the Atlantic halibut possess a distinct and specific normal flora.  相似文献   

18.
5株北极微藻藻际环境的细菌多样性   总被引:1,自引:0,他引:1  
苗祯  杜宗军  李会荣  楼妍颖  罗玮 《生态学报》2015,35(5):1587-1600
对5株北极微藻,如脆杆藻(Fragilariopsis sp.)、微单胞藻(Micromonas sp.)、四棘藻(Attheya septentrionalis)、海链藻(Thalassiosira sp.)和小球藻(Chlorella sp.)的不同生长时期的粘附细菌和游离细菌的16S rRNA基因进行PCR-DGGE分析,研究藻际环境的细菌多样性。结果表明,5株微藻具有不同的藻际微生物群落结构组成,其中微单胞藻、脆杆藻、四棘藻和海链藻的藻际细菌主要由Cyanobacteria(藻蓝细菌)、α-Proteobacteria(α-变形菌纲)和γ-Proteobacteria(γ-变形菌纲)组成,仅微单胞藻和脆杆藻检测出CFB(Cytophaga-Flexibacter-Bacteroides,噬纤维菌-屈挠杆菌-拟杆菌)。小球藻由Cyanobacteria、CFB、α-Proteobacteria和β-Proteobacteria(β-变形菌纲)组成。微单胞藻的藻际菌群结构稳定,不同生长时期的游离细菌和粘附细菌组成差异不明显。3株硅藻-脆杆藻、四棘藻和海链藻的游离细菌主要由γ-Proteobacteria组成,小球藻的游离细菌主要为β-Proteobacteria,而5株微藻的粘附细菌主要由Cyanobacteria组成。从DGGE图谱来看,在脆杆藻生长的延滞期、指数期和稳定期,其藻际游离细菌和粘附细菌的16S rRNA基因扩增条带数量和位置均有明显差异,但优势扩增条带较稳定;其他4株藻粘附细菌和游离细菌的扩增条带比较稳定,说明藻际关联菌群结构较稳定。藻菌种间特异性关系为不同微藻藻株提供了重要的线索,同时也带来更多的隐藏在藻际环境中的信息。  相似文献   

19.
Caves are windows to the extreme habitats of deep subsurface, and provide answers of unknowns about the underground life. Furthermore, sulfidic caves are important analogues for the early Earth environments, since some environmental conditions are common, such as high sulfur concentration, high temperature and oxygen-poor conditions. Kaklik Cave (Denizli, Turkey) with its travertine formation, carbonate- and sulfur-rich thermal springs, exhibits a unique ecosystem as a sulfidic cave. This study represents the first molecular survey of the microbial community in the Kaklik Cave, Turkey using high-throughput 16S rRNA gene amplicon sequencing analysis. An average of 859–2,416 operational taxonomic units per sample were observed including 25 bacterial phyla and 3 archaeal phyla. The bacterial diversity profiles were generally dominated by Epsilonproteobacteria and Gammaproteobacteria. At the carbonate-rich hot spring, that formed travertine structure, 9.7% of sequence reads affiliated with Thiofaba spp. In contrast, 38.74% of the total sequence reads at the sulfidic hot spring samples associated with the genus Sulfurimonas and Sulfurovum. In the archaeal community composition, Thermoplasmata was the most abundant group in all sampling areas. The 454-pyrotag results provide leads about ammonia-, nitrite- and sulfur-oxidation as well as sulfur-reduction, carbon dioxide fixation, and nitrogen fixation.  相似文献   

20.
Permafrost environments in the Arctic are characterized by extreme environmental conditions that demand a specific resistance from microorganisms to enable them to survive. In order to understand the carbon dynamics in the climate-sensitive Arctic permafrost environments, the activity and diversity of methanogenic communities were studied in three different permafrost soils of the Siberian Laptev Sea coast. The effect of temperature and the availability of methanogenic substrates on CH4 production was analysed. In addition, the diversity of methanogens was analysed by PCR with specific methanogenic primers and by denaturing gradient gel electrophoresis (DGGE) followed by sequencing of DGGE bands reamplified from the gel. Our results demonstrated methanogenesis with a distinct vertical profile in each investigated permafrost soil. The soils on Samoylov Island showed at least two optima of CH4 production activity, which indicated a shift in the methanogenic community from mesophilic to psychrotolerant methanogens with increasing soil depth. Furthermore, it was shown that CH4 production in permafrost soils is substrate-limited, although these soils are characterized by the accumulation of organic matter. Sequence analyses revealed a distinct diversity of methanogenic archaea affiliated to Methanomicrobiaceae, Methanosarcinaceae and Methanosaetaceae. However, a relationship between the activity and diversity of methanogens in permafrost soils could not be shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号