首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Loss and fragmentation of natural ecosystems are widely recognized as the most important threats to biodiversity conservation, with Neotropical dry forests among the most endangered ecosystems. Area and edge effects are major factors in fragmented landscapes. Here, we examine area and edge effects and their interaction, on ensembles of arthropods associated to native vegetation in a fragmented Chaco Serrano forest. We analyzed family richness and community composition of herbivores, predators, and parasitoids on three native plant species in 12 fragments of varying size and at edge/interior positions. We also looked for indicator families by using Indicator Species Analysis. Loss of family richness with the reduction of forest fragment area was observed for the three functional groups, with similar magnitude. Herbivores were richer at the edges without interaction between edge and area effects, whereas predators were not affected by edge/interior position and parasitoid richness showed an interaction between area and position, with a steeper area slope at the edges. Family composition of herbivore, predator, and parasitoid assemblages was also affected by forest area and/or edge/interior situation. We found three indicator families for large remnants and five for edges. Our results support the key role of forest area for conservation of arthropods taxonomic and functional diversity in a highly threatened region, and emphasize the need to understand the interactions between area and edge effects on such diversity.  相似文献   

2.
South American subtropical dry forests are highly threatened by fragmentation. Despite considerable research efforts aimed at predicting ecosystem alterations due to this driver of global change, we still need to deal with general principles to improve our ability to predict the impact of fragmentation. Our work is one of the few studies that analyse the relationship between forest fragmentation and decomposition. In 12 remnants of Chaco Serrano forest in Central Argentina we tested if decomposition rates of a common leaf-litter substrate varied with fragment size and between the forest edge and interior. Decomposition declined with fragment size, with no significant effects of location (edge/interior) or interaction between the two components of fragmentation. Our results suggest that in situ conditions for decomposition may change as a consequence of forest fragmentation, specifically as a result fragment size. This may lead to impaired nutrient recycling in smaller forest remnants.  相似文献   

3.
The process of habitat fragmentation results in the breaking apart of originally continuous habitats, causing multiple changes in biotic and abiotic interactions. Alterations in resource availability and in mutualistic and antagonistic plant–animal interactions may impact plant offspring quantity and quality. Currently, several old fragmented systems evidence a process of flora homogenization, where shade‐tolerant species are replaced by pioneer light‐demanding species. Notably, the relationship between quantity and quality parameters of plant offspring production and the successful recruitment of pioneer species in fragmented forests has been poorly explored. Here, we assess population size, sapling recruitment and offspring performance of one of the most widespread tree species of subtropical South America, the native pioneer Acacia caven (Fabaceae). Population size of adults and saplings increased from small to continuous forests, whereas the sapling recruitment per adult tree (sapling/adult ratio) showed no significant differences among forests of different size. Seedling performance was negatively related to forest area and population size, implying potential superior competitive ability of seedlings produced in smaller populations compared to larger ones. Our results show that A. caven is resilient to habitat fragmentation effects, which may be ascribed to a set of advantageous ecological traits such as outcrossing, massive flowering, generalist pollination, drought resistance, rapid growth and re‐sprouting. Thus, this pioneer tree benefits from the availability of vacant sites and resources released by declining plant populations of other species, eventually becoming the dominant species in fragmented habitats. Pioneer native plant species with ecological traits such as A. caven may represent the silent successful survivors and new colonizers of fragmented habitats, the ubiquitous landscapes of the future.  相似文献   

4.
Amphibians and reptiles are sensitive to changes in the thermal environment, which varies considerably in human-modified landscapes. Although it is known that thermal traits of species influence their distribution in modified landscapes, how herpetofauna respond specifically to shifts in ambient temperature along forest edges remains unclear. This may be because most studies focus on local-scale metrics of edge exposure, which only account for a single edge or habitat patch. We predicted that accounting for the combined effect of multiple habitat edges in a landscape would best explain herpetofaunal response to thermally mediated edge effects. We (1) surveyed herpetofauna at two lowland, fragmented forest sites in central Colombia, (2) measured the critical thermal maximum (CTmax) of the species sampled, (3) measured their edge exposure at both local and landscape scales, and (4) created a thermal profile of the landscape itself. We found that species with low CTmax occurred both further from forest edges and in areas of denser vegetation, but were unaffected by the landscape-scale configuration of habitat edges. Variation in the thermal landscape was driven primarily by changes in vegetation density. Our results suggest that amphibians and reptiles with low CTmax are limited by both canopy gaps and proximity to edge, making them especially vulnerable to human modification of tropical forest. Abstract in Spanish is available with online material.  相似文献   

5.
6.
Rivers represent natural edges in forests, serving as transition zones between landscapes. Natural edge effects are important to study to understand how intrinsic habitat variations affect wildlife as well as the impact of human-induced forest fragmentation. We examined the influence of riparian and anthropogenic edge on mantled howler, white-faced capuchin, Central American spider monkeys, and vegetation structure at La Suerte Biological Research Station (abbreviated as LSBRS), Costa Rica. We predicted lower monkey encounter rate, tree species richness, and median dbh at both edge types compared to interior and that monkeys would show species-specific responses to edge based on size and diet. We expected large, folivorous–frugivorous howler monkeys and small, generalist capuchins would be found at increased density in forest edge, while large, frugivorous spider monkeys would be found at decreased density in forest edge. We conducted population and vegetation surveys along interior, riparian, and anthropogenic edge transects at LSBRS and used GLMM to compare vegetation and monkey encounter rate. Tree species richness and median dbh were higher in forest interior than anthropogenic edge zones. Although spider monkey encounter rate did not vary between forest edges and interior, howler monkeys were encountered at highest density in riparian edge, while capuchins were encountered at highest density in anthropogenic edge. Our results indicate that diverse forest edges have varying effects on biota. Vegetation was negatively affected by forest edges, while monkey species showed species-specific edge preferences. Our findings suggest that riparian zones should be prioritized for conservation in Neotropical forests.  相似文献   

7.
To determine the influence of the proximity of a forest edge on seed bank composition and diversity, we performed a seed bank sampling at ancient deciduous forests bordering intensive arable fields. Also vegetation patterns were taken into account. We hypothised that forest edges may facilitate the entrance of diaspores of invasive species into the forest and the successive incorporation of these species in the forest seed bank. We noticed a substantial influence of the proximity of an edge on seed bank composition at as well the forested side of the edge as the field side. The forest edge zone was limited to 3 m into the forest and the field edge zone extended 3m into the field. The seed bank samples of field and forest edge are characterised by a higher species diversity and seed density and a higher similarity between seed bank and vegetation, compared to field or forest samples. The forest edges contains fewer pioneer species in comparison with the forest interior and more competitive species and species of edges and clearings compared with field and forest samples. The seed longevity index increases towards the forest interior. We can conclude from our data that the forest and edge seed bank are composed by both seeds from recent dispersal processes and local seed set and by seeds originating from past vegetation on the site. Near the edge, actual seed input seems of primal importance. Further towards the forest interior seed input decreases and long-living seeds of past vegetation become more important. Ancient forest edges thus act as a barrier for seeds of species of the surrounding arable field.  相似文献   

8.
山西霍山落叶阔叶林边缘效应的研究   总被引:7,自引:1,他引:6  
通过对山西霍山暖温带森林植被片断化后不同地带不同群落边缘的边缘植被的调查,运用Shannon-Wiener物种多样性指数(D),Simpson生态优势度指数(C),边缘效应强度指数(Z)和各层次各物种的重要值(IV),对霍山暖温带落叶阔叶林的边缘效应进行了初步的研究。研究表明:(1)在群落的各种边缘区,边缘具有增大物种多样性的作用.(2)距林道边缘10m左右,物种多样性指数呈一峰值,10m以后指数逐渐降低并趋于平缓,在距自然空地5~10m处是物种多样性指数最高的地段,随后,随进入林内而逐渐减少并趋于平缓,在人工林的交错区内是物种多样性指数的高峰段,随后进入林内逐渐减少。距灌木丛交错区10m以后物种多样性指数出现高峰,随后逐渐减少并趋于平缓.(3)连翘、羊胡子草等植物是群落的优势种,且大多呈连续分布。  相似文献   

9.
Forest edges are dynamic zones characterized by the penetration (to varying depths and intensities) of conditions from the surrounding environment (matrix) into the forest interior. Although edge effects influence many tropical organisms, they have not been studied directly in primates. Edge effects are particularly relevant to lemurs because of the highly fragmented forest landscapes found in Madagascar. In this study, data are presented regarding how the densities of six lemur species (Avahi laniger, Cheirogaleus major, Eulemur rubriventer, Hapalemur griseus griseus, Microcebus rufus, and Propithecus diadema edwardsi) varied between six 500-m interior transects and six 500-m edge transects in the Vohibola III Classified Forest in SE Madagascar. Diurnal (n = 433) and nocturnal (n = 128) lemur surveys were conducted during June-October 2003 and May-November 2004. A. laniger, E. rubriventer, and H. g. griseus exhibited a neutral edge response (no differences in densities between habitats). M. rufus and P. d. edwardsi had a positive edge response (higher densities in edge habitats), which may be related to edge-related variations in food abundance and quality. Positive edge responses by M. rufus and P. d. edwardsi may ultimately be detrimental due to edge-related anthropogenic factors (e.g., hunting by local people). The negative edge response exhibited by C. major (lower densities in edge habitats) may result from heightened ambient temperatures that inhibit torpor in edge habitats.  相似文献   

10.
During community assembly, plant functional traits are under selective pressure from processes operating at multiple spatial scales. However, in fragmented landscapes, there is little understanding of the relative importance of local-, patch- and landscape-scale processes in shaping trait distributions. Here, we investigate cross-scale influences of landscape change on traits that dictate plant life history strategies in re-assembling plant communities in a fragmented landscape in eastern China. Using forest dynamics plots (FDPs) on 29 land-bridge islands in which all woody plants have been georeferenced and identified to species, we characterized and derived two composite measures of trait variation, representing variation across the leaf economics spectrum and plant size. We then tested for trait shifts in response to local-, patch- and landscape-scale factors, and their potential cross-scale interactions. We found substantial community-wide trait changes along local-scale gradients (i.e. forest edge to interior): more acquisitive leaf economic traits and larger sized species occurred at edges, with a significant increase in trait means and trait range. Moreover, there were significant cross-scale interaction effects of patch and landscape variables on local-scale edge effects. Altered spatial arrangement of habitat in the surrounding landscape (i.e. declining habitat amount and increasing patch density), as well as decreasing area at the patch level, exacerbated edge effects on traits distributions. We suggest that synergistic interactions of landscape- and patch-scale processes, such as dispersal limitation, on local-scale environmental filtering at edges, together shape the spatial distributions of plant life history strategies in fragmented plant communities.  相似文献   

11.
1. Our understanding of the structure and spatial organisation of biological assemblages in human‐modified tropical landscapes has critical importance to improve conservation actions. Investigations on this topic have focused on local (α) diversity patterns, overlooking the changes in species turnover (β diversity) between sites, and its consequences on total (γ) diversity. 2. This study assessed the differences in α, β and γ diversities of galling insects and their host plants (saplings) in a fragmented Atlantic forest landscape in northeast Brazil. Both assemblages were recorded in 30 plots (total of 0.1 ha for each forest type) located in the interior and on the edges of a large fragment and small forest fragments (10 plots per forest type). 3. α diversity of host plants and galling insect assemblages was significantly higher in interior (reference) plots than in edge and fragment plots. Yet, both assemblages showed higher β diversity in fragment and edge plots than in reference plots – a finding potentially associated with the hyperdynamism of fragmented forests and consistent with the landscape divergence hypothesis. 4. However, biotic differentiation of host plant and galling insects was not great enough to compensate the loss of α diversity, and thus γ diversity, because most host plant and galling insect species in forest fragments were also registered in reference plots. Our findings indicate that, despite each small forest fragment being very dissimilar from each other, they have low importance for the conservation of plant assemblages and their specialized herbivores at landscape scale.  相似文献   

12.
13.
Because species respond differently to habitat boundaries and spatial overlap affects encounter rates, edge responses should be strong determinants of spatial patterns of species interactions. In the Caribbean, mongooses (Herpestes javanicus) prey on hawksbill sea turtle (Eretmochelys imbricata) eggs. Turtles nest in both open sand and vegetation patches, with a peak in nest abundance near the boundary between the two microhabitats; mongooses rarely leave vegetation. Using both artificial nests and hawksbill nesting data, we examined how the edge responses of these species predict the spatial patterns of nest mortality. Predation risk was strongly related to mongoose abundance but was not affected by nest density or habitat type. The product of predator and prey edge response functions accurately described the observed pattern of total prey mortality. Hawksbill preference for vegetation edge becomes an ecological trap in the presence of mongooses. This is the first study to predict patterns of predation directly from continuous edge response functions of interacting species, establishing a link between models of edge response and species interactions.  相似文献   

14.
Aims In the context of global change, the impacts of forest structure alteration on climbing plants in extra-tropical ecosystems are poorly understood. It also remains little explored, the functional strategies among climbing plant species and its relationship with the local-scale distribution of climbing plant communities. Here, we aimed at three goals: (i) we studied how climbing plant community composition responds to the modification of the original forest structure in a subtropical dry forest; (ii) we characterized climbing plant species according to functional traits related to the acquisition and use of resources; and (iii) we examined whether functional strategies at the community level are also responding to vegetation structure change, a much less addressed topic in the ecology of climbing plants.  相似文献   

15.
In agricultural landscapes in central Europe, species richness of the herbaceous plant community may be compromised by processes associated with forest fragmentation, habitat loss, and management practices. We examined variability in species richness and composition of the herbaceous layer in 229 plots located in 23 forest fragments (0.1 to 255 ha), in a representative upland agricultural landscape in central Bohemia, in relation to the most important site environmental factors, edge effects, and site history. The influence of environmental factors on the composition of vegetation in the herb layer was evaluated using generalized additive models, which enabled us to analyze highly non-linear and non-monotonic relationships. Total species richness and number of red-listed and ancient forest species were significantly influenced by type of forest vegetation, light quality, soil pH, slope aspect, and distance from the forest edge. Implications of the significant explanatory variables corresponded well to previous findings, with the exception of distance from the forest edge, for which we found a positive relationship with species richness for distances up to 200 m toward the forest interior. Plant species with low colonization ability occupied plots with increasing frequency from edge to forest interior, while fast-colonizing species showed the opposite trend. Apart from the edge effect, forest continuity should be considered for its important contribution to the richness of ancient forest and red-listed species, whereas the effect of forest fragment size appeared to be generally weak. These results do not negate the importance of large forest fragments for the maintenance of herb layer species richness, but specifically emphasize the essential contribution of the core habitats of these forests. In summary, we showed that the negative effects of habitat fragmentation on the richness of ancient forest and red-listed species and on herb layer species in total can be largely attributed to either the edge effect itself or to aggregate effects of forest edge and forest continuity.  相似文献   

16.
边缘效应及其对森林生态系统影响的研究进展   总被引:7,自引:1,他引:7  
Tian C  Yang XB  Liu Y 《应用生态学报》2011,22(8):2184-2192
边缘效应是生态学和生物保护的重要概念之一,它在研究生态系统尺度和景观生态系统尺度的能量流和物质流等生态过程中具有重要作用.本文对边缘效应的内涵、特征、定量评价(包括定量分析基础、强度、影响区、模型等)、应用研究等方面进行阐述,分析了边缘效应研究中存在的不足,总结了边缘效应对森林生态系统的影响及其研究方向,以期为森林经营、保护区管理等生产实践提供借鉴.  相似文献   

17.
ABSTRACT.   Forest fragmentation can create negative edge effects that reduce the reproductive success of birds nesting near the forest/nonforest interface, and threaten bird populations deeper in remnant forest habitats. Negative edge effects may be more pronounced in landscapes that are moderately fragmented, particularly where agriculture is the primary land-use fragmenting forests. Information about the extent and strength of edge effects at a site can help guide conservation actions, and determine their effectiveness. We examined edge effects for birds breeding in a nearly contiguous forest fragmented by relatively narrow agricultural corridors in Illinois (USA). We measured rates of nest predation and brood parasitism for Acadian Flycatchers ( Empidonax virescens ) over a continuum of distances from the edge of an agricultural inholding. Nest predation and brood parasitism were highest near the edge and decreased with increasing distance from the edge. Given the cumulative effects of nest predation and brood parasitism on reproductive success, we determined that forest within 600 m of the inholding was sink habitat. We found, however, that deeper forest interior areas currently serve as source habitat, and that conversion of the entire 205 ha agricultural corridor to forest would add 1350 ha of source habitat for Acadian Flycatchers. Such results provide support for a local conservation strategy of forest consolidation and establish baseline measures necessary to determine the relative effectiveness of any subsequent reforestation efforts.  相似文献   

18.
19.
20.
季节性雪被对高山森林凋落物分解的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
季节性雪被可能对高山森林凋落物分解产生重要影响, 但一直没有深入的研究。该文采用凋落物分解袋法, 于2010-2012年雪被覆盖下几个关键时期(冻结初期、深冻期和融化期)以及生长季节, 研究了川西高山森林代表性树种岷江冷杉(Abies faxoniana)、红桦(Betula albosinensis)、四川红杉(Larix mastersiana)和方枝柏(Sabina saltuaria)凋落叶在不同厚度冬季雪被下的分解动态。经过两年的分解, 不同雪被覆盖下岷江冷杉凋落物分解率为33.98%-39.55%, 红桦为46.49%-48.22%, 四川红杉为42.30%-44.93%, 方枝柏为40.34%-43.84%。相对于无雪被覆盖环境, 厚型雪被覆盖均小幅提高了4种凋落物两年的失重率(1.57%-5.57%)。3个针叶树种(岷江冷杉、四川红杉和方枝柏) Olson凋落物分解系数k均以厚型雪被覆盖最大, 薄型雪被覆盖最小, 而阔叶树种红桦分解系数k则表现为无雪被>薄型雪被>较厚型雪被>厚型雪被>中型雪被。尽管在第二年生长季中雪被对红桦凋落物分解的促进作用不明显, 但雪被覆盖明显促进了两年各个关键时期岷江冷杉、四川红杉和方枝柏凋落物的分解。第一年雪被期凋落物分解对当年分解总量的贡献达42.5%-65.5%, 季节性雪被变化明显改变了凋落物冬季分解格局, 对深冻期凋落物分解过程影响尤为显著。综上所述, 当前气候变化情景下冬季雪被的减少可能减缓该区森林凋落物分解过程, 但相对于易分解的阔叶凋落物, 针叶凋落物的响应特征可能更为强烈。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号