首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of the DNA regions upstream of the phosphoenolpyruvate carboxykinase gene (pckA) in Rhizobium meliloti and Rhizobium sp. strain NGR234 identified an open reading frame which was highly homologous to the Agrobacterium tumefaciens chromosomal virulence gene product ChvI. A second gene product, 500 bp downstream of the chvI-like gene in R. meliloti, was homologous to the A. tumefaciens ChvG protein. The homology between the R. meliloti and A. tumefaciens genes was confirmed, because the R. meliloti chvI and chvG genes complemented A. tumefaciens chvI and chvG mutants for growth on complex media. We were unable to construct chvI or chvG insertion mutants of R. meliloti, whereas mutants carrying insertions outside of these genes were readily obtained. A 108-bp repeat element characterized by two large palindromes was identified in the chvI and chvG intergenic regions of both Rhizobium species. This element was duplicated in Rhizobium sp. strain NGR234. Another structurally similar element with a size of 109 bp was present in R. meliloti but not in Rhizobium sp. strain NGR234. These elements were named rhizobium-specific intergenic mosaic elements (RIMEs), because their distribution seems to be limited to members of the family Rhizobiaceae. A homology search in GenBank detected six more copies of the first element (RIME1), all in Rhizobium species, and three extra copies of the second element (RIME2), only in R. meliloti. Southern blot analysis with a probe specific to RIME1 showed the presence of several copies of the element in the genome of R. meliloti, Rhizobium sp. strain NGR234, Rhizobium leguminosarum, and Agrobacterium rhizogenes, but none was present in A. tumefaciens and Bradyrhizobium japonicum.  相似文献   

2.
Nucleotide sequence of Rhizobium meliloti nodulation genes   总被引:43,自引:4,他引:39       下载免费PDF全文
A Rhizobium meliloti DNA region, determining nodulation functions common in different Rhizobium species, has been delimited by directed Tn5 mutagenesis and its nucleotide sequence has been determined. The sequence data indicates three large open reading frames with the same polarity coding for three proteins of 196, 217 and 402 (or 426) amino acid residues, respectively. We suggest the existence of three nod genes on this region, which were designated as nodA, B and C, respectively. Comparison of the R. meliloti nodA, B, C nucleotide and amino acid sequences with those from R. leguminosarum, as reported in the accompanying paper, shows 69-72% homology, clearly demonstrating the high degree of conservation of common nod genes in these Rhizobium species.  相似文献   

3.
Membrane protein and lipopolysaccharide profiles of Rhizobium leguminosarum (biovars viciae, trifolii, and phaseoli), R. meliloti, and Agrobacterium tumefaciens strains were analyzed and compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Differences in one or both profiles allowed us to distinguish all 18 R. leguminosarum strains tested in this study from each other.  相似文献   

4.
We determined the sequences for a 260-base segment amplified by the polymerase chain reaction (corresponding to positions 44 to 337 in the Escherichia coli 16S rRNA sequence) from seven strains of fast-growing soybean-nodulating rhizobia (including the type strains of Rhizobium fredii chemovar fredii, Rhizobium fredii chemovar siensis, Sinorhizobium fredii, and Sinorhizobium xinjiangensis) and broad-host-range Rhizobium sp. strain NGR 234. These sequences were compared with the corresponding previously published sequences of Rhizobium leguminosarum, Rhizobium meliloti, Agrobacterium tumefaciens, Azorhizobium caulinodans, and Bradyrhizobium japonicum. All of the sequences of the fast-growing soybean rhizobia, including strain NGR 234, were identical to the sequence of R. meliloti and similar to the sequence of R. leguminosarum. These results are discussed in relation to previous findings; we concluded that the fast-growing soybean-nodulating rhizobia belong in the genus Rhizobium and should be called Rhizobium fredii.  相似文献   

5.
The Rhizobium meliloti nod region IIb is involved in host-range determination: (i) the presence of region IIb is necessary for transfer of alfalfa root hair curling ability to Rhizobium leguminosarum biovar trifolii; (ii) a mutation in region IIb extends the R. meliloti infection host range to Vicia sativa nigra; (iii) dominance of R. meliloti nod genes over R. leguminosarum biovar viciae nod genes is abolished by mutations in region IIb. The nucleotide sequence of this region has been determined. Genes corresponding to the two open reading frames identified are designated nodP and nodQ. The predicted amino acid sequence of the NodQ protein shows homology with translation initiation and elongation factors. The consensus sequence involved in the GTP-binding domain is conserved.  相似文献   

6.
Primary structure of the DNA-binding protein HRm from Rhizobium meliloti   总被引:5,自引:0,他引:5  
The amino acid sequence of protein HRm, a DNA-binding HU-type protein of 90 residues (Mr 9303), isolated from Rhizobium meliloti, has been established from automated sequence analysis of the protein and from structural data provided by peptides derived from cleavage of the protein at arginine and aspartic acid residues. The comparison of the primary structure of protein HRm with that of other HU-type proteins shows that two short sequences, of 7 and 6 residues respectively, located in the median part of the molecule, appear highly conserved and may be important in the function of the protein.  相似文献   

7.
Hybridization experiments were carried out between high molecular weight, denatured, agar-embedded deoxyribonucleic acid (DNA) and homologous, nonembedded, sheared, denatured (14)C-labeled DNA from a strain of Agrobacterium tumefaciens and Rhizobium leguminosarum (the reference strains) in the presence of sheared, nonembedded, nonlabeled DNA (competing DNA) from the same or different nomen-species of Agrobacterium, Rhizobium, Chromobacterium, and several other organisms. Percentage of DNA homology was calculated from the results. The findings are discussed in relation to previous taximetric studies, present classification schemes, and guanine-cytosine content of the DNA. Strains of A. tumefaciens, A. radiobacter, A. rubi, A. rhizogenes, R. leguminosarum, and R. meliloti exhibited a mean percentage of DNA homology greater than 50 with the two reference strains. A. tumefaciens, A. radiobacter, and A. rubi were indistinguishable on the basis of DNA homology, with strain variations for this group involving up to 30% of their base sequences. The remainder of the organisms studied fall into at least six distinct genetic groups: (i) R. (Agrobacterium) rhizogenes, which is more homologous to R. leguminosarum than to the A. tumefaciens-A. radiobacter group; (ii) R. leguminosarum; (iii) R. meliloti; (iv) R. japonicum, which has a mean DNA homology of some 38 to 45% with the reference strains; (v) Chromobacterium, which is as genetically remote from the reference strains as, for example, Pseudomonas; and (vi) A. pseudotsugae strain 180, which has a DNA homology with A. tumefaciens and R. leguminosarum of only about 10%. Since this latter homology value is similar to what was found after hybridizations between the reference strains and organisms such as Escherichia coli and Bacillus subtilis, A. pseudotsugae should definitely be removed from the genus.  相似文献   

8.
X Ma  Q Sun  R Wang  G Singh  E L Jonietz    W Margolin 《Journal of bacteriology》1997,179(21):6788-6797
FtsZ and FtsA are essential for cell division in Escherichia coli and colocalize to the septal ring. One approach to determine what regions of FtsA and FtsZ are important for their interaction is to identify in vivo interactions between FtsA and FtsZ from different species. As a first step, the ftsA genes of Rhizobium meliloti and Agrobacterium tumefaciens were isolated and characterized. In addition, an FtsZ homolog that shared the unusual C-terminal extension of R. meliloti FtsZ1 was found in A. tumefaciens. In order to visualize their localization in cells, we tagged these proteins with green fluorescent protein (GFP). When R. meliloti FtsZ1-GFP or A. tumefaciens FtsZ-GFP was expressed at low levels in E. coli, they specifically localized only to the E. coli FtsZ ring, possibly by coassembly. When A. tumefaciens FtsA-GFP or R. meliloti FtsA-GFP was expressed in E. coli, they failed to localize detectably to the E. coli FtsZ ring. However, when R. meliloti FtsZ1 was coexpressed with them, fluorescence localized to a band at the midcell division site, strongly suggesting that FtsA from either A. tumefaciens or R. meliloti can bind directly to its cognate FtsZ. As expected, GFP-tagged FtsZ1 and FtsA from either R. meliloti or A. tumefaciens localized to the division site in A. tumefaciens cells. Therefore, the 61 amino acid changes between A. tumefaciens FtsA and R. meliloti FtsA do not prevent their direct interaction with FtsZ1 from either species, suggesting that those residues are not essential for protein-protein contacts. Moreover, the failure of the two non-E. coli FtsA derivatives to interact strongly with E. coli FtsZ in this in vivo system unless their cognate FtsZ was also present suggests that FtsA-FtsZ interactions have coevolved and that the residues which differ between the E. coli proteins and those of the two other species may be important for specific interactions.  相似文献   

9.
The DNA-binding HU-type proteins have been isolated from two very different strains of Rhizobiaceae: Agrobacterium tumefaciens and Rhizobium japonicum. These proteins have been called HAt and HRj respectively. Their electrophoretic mobility on polyacrylamide gel, amino acid composition and crossed immunoreactivity have been compared to that of the homologous protein isolated from Rhizobium meliloti: the protein HRm. The proteins HAt and HRm show close similarities whereas the protein HRj differs markedly from the two others. The physico-chemical characteristics of the HU-type proteins from these Rhizobiaceae are in good agreement with the respective position of these bacteria in the taxonomy.  相似文献   

10.
The acyl carrier protein NodF is required for the synthesis of unusual polyunsaturated fatty acids that confer specificity to lipochitin oligosaccharide nodulation (Nod) factors of Rhizobium leguminosarum. In this study, homogeneous NodF protein was used as a ligand to identify proteins of R. leguminosarum that specifically interact with NodF and presumably are involved in the biosynthesis or transfer of the unusual fatty acids. The N-terminal amino acid sequence of a 29-kDa protein that interacts strongly with NodF revealed high similarity to NodG of Rhizobium sp. N33 and to NodG of Sinorhizobium meliloti We cloned and sequenced the gene coding for the NodG-like protein of R. leguminosarum and found it to be the product of the constitutively expressed gene fabG. FabG is the 3-oxoacyl-acyl carrier protein reductase that catalyzes the first reduction step in each cycle of fatty acid elongation. FabG of R. leguminosarum and NodG of Rhizobium sp. N33 were expressed in Escherichia coli. In both cases, the purified protein showed 3-oxoacyl-acyl carrier protein reductase activity in vitro. Therefore, NodG has the same biochemical function as FabG, and the high degree of similarity at the protein and DNA level suggest that nodG is a duplication of the housekeeping genefabG.  相似文献   

11.
Plasmid RP4 was used to mobilize the agrocin 84-encoding plasmid, pAg396, from Agrobacterium tumefaciens strain 396 to A. tumefaciens C58 and C58CI as well as Rhizobium meliloti. It was transferred to, but not stably maintained in, R. leguminosarum. It could not be transferred to R. lupini, R. japonicum or R. trifolii. Plasmid pAg396 did not segregate in R. meliloti and produced levels of agrocin comparable to the parental strain A. tumefaciens 396. The potential of agrocin producing R. meliloti in biological control of crown gall is being investigated.  相似文献   

12.
An unusual feature of lipid A from plant endosymbionts of the Rhizobiaceae family is the presence of a 27-hydroxyoctacosanoic acid (C28) moiety. An enzyme that incorporates this acyl chain is present in extracts of Rhizobium leguminosarum, Rhizobium etli, and Sinorhizobium meliloti but not Escherichia coli. The enzyme transfers 27-hydroxyoctacosanate from a specialized acyl carrier protein (AcpXL) to the precursor Kdo2 ((3-deoxy-d-manno-octulosonic acid)2)-lipid IV(A). We now report the identification of five hybrid cosmids that direct the overexpression of this activity by screening approximately 4000 lysates of individual colonies of an R. leguminosarum 3841 genomic DNA library in the host strain S. meliloti 1021. In these heterologous constructs, both the C28 acyltransferase and C28-AcpXL are overproduced. Sequencing of a 9-kb insert from cosmid pSSB-1, which is also present in the other cosmids, shows that acpXL and the lipid A acyltransferase gene (lpxXL) are close to each other but not contiguous. Nine other open reading frames around lpxXL were also sequenced. Four of them encode orthologues of fatty acid and/or polyketide biosynthetic enzymes. AcpXL purified from S. meliloti expressing pSSB-1 is fully acylated, mainly with 27-hydroxyoctacosanoate. Expression of lpxXL in E. coli behind a T7 promoter results in overproduction in vitro of the expected R. leguminosarum acyltransferase, which is C28-AcpXL-dependent and utilizes (3-deoxy-d-manno-octulosonic acid)2-lipid IV(A) as the acceptor. These findings confirm that lpxXL is the structural gene for the C28 acyltransferase. LpxXL is distantly related to the lauroyltransferase (LpxL) of E. coli lipid A biosynthesis, but highly significant LpxXL orthologues are present in Agrobacterium tumefaciens, Brucella melitensis, and all sequenced strains of Rhizobium, consistent with the occurrence of long secondary acyl chains in the lipid A molecules of these organisms.  相似文献   

13.
Abstract A combined subtraction hybridization and polymerase chain reaction/amplification technique was used to develop a DNA probe which was specific for the Rhizobium leguminosarum biovar phaseoli and the Rhizobium tropici group. Total genomic DNA preparations from Rhizobium leguminosarum biovar viciae, Rhizobium leguminosarum biovar trifolii, Rhizobium sp., Agrobacterium tumefaciens, Rhizobium fredii, Bradyrhizobium japonicum, Bradyrhizobium ssp. and Rhizobium meliloti were pooled and used as subtracter DNA against total genomic DNA from the Rhizobium leguminosarum biovar phaseolo strain KIM5s. Only one round of subtraction hybridization at 65°C was necessary to remove all cross-hybridizing sequences. Dot blot hybridizations with total genomic DNA of the eight subtracter organisms and 29 bacteria of different groups confirmed the high specificity of the isolated DNA sequences. Dot blot hybridizations and total genomic DNA from ten different R. Leguminosarum biovar phaseoli and R. tropici strains resulted in strong hybridization signals for all strains tested. The DNA probe for the R. tropici and R. leguminosarum biovar phaseoli group was used for dot blot hybridization with DNA extracts from three tropical and one boreal soil. When correlated with data from Most Probable Number analyses the probe was capable of detecting as low as 3 × 104 homologous indigenous rhizobia per g soil. The technique offers great benefits for the development of DNA probes for monitoring bacterial populations in environmental samples.  相似文献   

14.
Symbiotic DNA sequences involved in nodulation by Rhizobium must include genes responsible for recognizing homologous hosts. We sought these genes by mobilizing the symbiotic plasmid of a broad host-range Rhizobium MPIK3030 (= NGR234) that can nodulate Glycine max, Psophocarpus tetragonolobus, Vigna unguiculata, etc., into two Nod- Rhizobium mutants as well as into Agrobacterium tumefaciens. Subsequently, cosmid clones of pMPIK3030a were mobilized into Nod+ Rhizobium that cannot nodulate the chosen hosts. Nodule development was monitored by examining the ultrastructure of nodules formed by the transconjugants. pMPIK3030a could complement Nod- and Nif- deletions in R. leguminosarum and R. meliloti as well as enable A. tumefaciens to nodulate. Three non-overlapping sets of cosmids were found that conferred upon a slow-growing Rhizobium species, as well as on R. loti and R. meliloti, the ability to nodulate Psophocarpus and Vigna, thus pointing to the existence of three sets of host-specificity genes. Recipients harboring these hsn regions had truly broadened host-range since they could nodulate both their original hosts as well as MPIK3030 hosts.  相似文献   

15.
By hybridization and heteroduplex studies the fixABC and nifA genes of the Rhizobium leguminosarum symbiotic plasmid pRL6JI have been identified. DNA sequencing of the region containing nifA showed an open reading frame of 1557 bp encoding a protein of 56, 178 D. Based on sequence homology, this ORF was confirmed to correspond to the nifA gene. Comparison of three nifA proteins (Klebsiella pneumoniae, Rhizobium meliloti, Rhizobium leguminosarum) revealed only a weak relationship in their N-terminal regions, whereas the C-terminal parts exhibited strong homology. Sequence analysis also showed that the R. leguminosarum nifA gene is followed by nifB and preceded by fixC with an open reading frame inserted in between. This novel ORF of 294 bp was found to be highly conserved also in R. meliloti. No known promoter and termination signals could be defined on the sequenced R. leguminosarum fragment.  相似文献   

16.
An unusual feature of the lipid A from the plant endosymbionts Rhizobium etli and Rhizobium leguminosarum is the presence of a proximal sugar unit consisting of a 2-amino-2-deoxy-gluconate moiety in place of glucosamine. An outer membrane oxidase that generates the 2-amino-2-deoxy-gluconate unit from a glucosamine-containing precursor is present in membranes of R. leguminosarum and R. etli but not in S. meliloti or Escherichia coli. We now report the identification of a hybrid cosmid that directs the overexpression of this activity by screening 1800 lysates of individual colonies of a R. leguminosarum 3841 genomic DNA library in the host strain R. etli CE3. Two cosmids (p1S11D and p1U12G) were identified in this manner and transferred into S. meliloti, in which they also directed the expression of oxidase activity in the absence of any chromosomal background. Subcloning and sequencing of the oxidase gene on a 6.5-kb fragment derived from the approximately 20-kb insert in p1S11D revealed that the enzyme is encoded by a gene (lpxQ) that specifies a protein of 224 amino acid residues with a putative signal sequence cleavage site at position 28. Heterologous expression of lpxQ using the T7lac promoter system in E. coli resulted in the production of catalytically active oxidase that was localized in the outer membrane. A new outer membrane protein of the size expected for LpxQ was present in this construct and was subjected to microsequencing to confirm its identity and the site of signal peptide cleavage. LpxQ expressed in E. coli generates the same products as seen in R. leguminosarum membranes. LpxQ is dependent on O(2) for activity, as demonstrated by inhibition of the reaction under strictly anaerobic conditions. An ortholog of LpxQ is present in the genome of Agrobacterium tumefaciens, as shown by heterologous expression of oxidase activity in E. coli.  相似文献   

17.
Transposon Tn5-induced C4-dicarboxylate transport mutants of Rhizobium meliloti 2011 which could be complemented by cosmid pRmSC121 were subdivided into two classes. Class I mutants (RMS37 and RMS938) were defective in symbiotic C4-dicarboxylate transport and in nitrogen fixation. They were mutated in the structural gene dctA, which codes for the C4-dicarboxylate carrier. Class II mutants (RMS11, RMS16, RMS17, RMS24, and RMS31) expressed reduced activity in symbiotic C4-dicarboxylate transport and in nitrogen fixation. These mutants were mutated in regulatory dct genes which do not play an essential role in the symbiotic state. Thin sections of alfalfa nodules induced by the wild type and class I and class II mutants were analyzed by light microscopy. Class mutants induced typical Fix- nodules, showing a large senescent zone, whereas nodules induced by class II mutants only differed in an enhanced content of starch granules compared with wild-type nodules. Class I mutants could be complemented by a 2.1-kilobase SalI-HindIII subfragment of cosmid pRmSC121. DNA sequencing of this fragment resulted in the identification of an open reading frame, which was designated dctA because Tn5 insertion sites of the class I mutants mapped within this coding region. The dctA gene was preceded by a nif consensus promoter and an upstream NifA-binding element. Upstream of the dctA promoter, the 5' end of the R. meliloti dctB gene could be localized. The amino acid sequence of the N-terminal part of the R. meliloti DctB protein shared 49% homology with the corresponding part of the R. leguminosarum DctB protein. The DctA protein consisted of 441 or 453 amino acids due to two possible ATG start codons, with calculated molecular masses of 46.1 and 47.6 kilodaltons, respectively. The hydrophobicity plot suggests that DctA is a membrane protein with several membrane passages. The amino acid sequences of the R. meliloti and the R. leguminosarum DctA proteins were highly conserved (82%).  相似文献   

18.
Abstract Strains of Rhizobium sp. (Galega) (R. galegae), R. meliloti, R. leguminosarum , and R. loti were compared for their lipopolysaccharide (LPS) and whole cell protein patterns. Antigenic properties of these LPS and proteins were tested by immunoblotting with rabbit antiserum raised against R. galegae strain HAMBI 540. The LPS and protein patterns of R. galegae strains differed from those of the other rhizobia tested. By immunoblotting, a species-specific R. galegae LPS antigen and two proteins specific for R. galegae were identified. Our results support the suggestion that R. galegae strains form a distinct taxonomic group within the genus Rhizobium .  相似文献   

19.
A single large plasmid was isolated from multiplasmid-harboring strains Rhizobium leguminosarum 1001 and R. trifolii 5. These single plasmids, as well as the largest plasmid detectable in R. phaseoli 3622, hybridized with part of the nif structural genes of Klebsiella pneumoniae. In contrast, the plasmids of R. meliloti strains V7 and L5-30 did not show hybridization with the nif genes of K. pneumoniae, indicating that these genes might be located either on the chromosome or on a much larger plasmid which as yet has not been isolated. Studies of the homology between plasmids of fast-growing Rhizobium species showed that a specific deoxyribonucleic acid sequence, which carries the structural genes for nitrogenase, is highly conserved on a plasmid in R. leguminosarum, R. trifolii, and R. phaseoli. Furthermore, it was found that this type of plasmid in the different species shares extensive deoxyribonucleic acid homology, suggesting that strains in the R. leguminosarum cluster have preserved a nif plasmid.  相似文献   

20.
Non-nodulating mutant of Rhizobium leguminosarum biovar trifolli produces the phenolate type of siderophore consisting of 2,3-dihydroxybenzoic acid and threonine. The activity of this compound against the various bacteria was tested. Only, the growth of R. leguminosarum strains was stimulated by siderophore. The other species of Rhizobium, especially R. meliloti, were sensitive to this agent. The growth of R. meliloti was also inhibited by agrobactin and pseudobactin. This effect was reversed by ferric iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号