首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
不同土壤水分下刺槐和油松的生理特征   总被引:13,自引:0,他引:13  
在适宜土壤水分(70%θf)、中度干旱(55%θf)和严重干旱(40%θf)3种土壤水分条件下研究了黄土高原常见造林树种刺槐(Robinia pseudoacacia L.)和油松(Pinus tabulaeformis Carr.)的生长及水分利用特性.结果表明:干旱胁迫使2树种的成活率、干物质累积和光合速率均显著下降.在适宜水分下刺槐的单叶水分利用率(WUE)最高,严重干旱下最低.刺槐和油松的枝条快速生长期主要集中在3-6月,在中度干旱条件,2个树种均可良好生长;在严重干旱下2个树种的生长均受到显著抑制,但刺槐受影响较大,油松受影响较小.在3种土壤水分条件下刺槐耗水量、生物量及水分利用率均显著高于油松.2树种在中度干旱下的总WUE最高,严重干旱下最低.刺槐属于高耗水树种,油松属于低耗水树种,油松的耐旱性强于刺槐.研究结果表明,刺槐在黄土高原缺水地区不适宜大面积栽植,只能用于水分条件较好的立地条件下造林.油松应尽可能在含水量较高的阴坡或沟坡地带造林.  相似文献   

2.
黄土高原常用造林树种水分利用特征   总被引:14,自引:2,他引:14  
在适宜土壤水分、中度干旱和严重干旱3种土壤水分条件下研究了黄土高原干旱、半干旱地区常用的人工造林树种84k杨树(Populus spp.)、刺槐(Robinia pseudoacacia)、沙棘(Hippophae rhamnoides)和油松(Pinus tabulaeformis)苗木生长及水分利用特征。结果显示,干旱胁迫使各树种成活率、生长速率、光合速率均显著下降;84k杨树和刺槐单叶水分利用率(WUE)在适宜水分下最高,沙棘的在中度干旱下最高;在中度干旱下,4个树种的总水分利用率最高。而严重干旱下最低。无论干旱与否,4个树种中沙棘生长速率最高。在中度干旱条件下,4个树种均可良好生长,而严重干旱下生长均受到显著抑制,其中84k杨树受影响最大;4个树种中沙棘和油松的耐旱性较强,同时油松在各种土壤水分下其生长速度和干物质生产均显著低于其它3个树种;刺槐和84k杨树的耗水量、生物量及水分利用率在3种土壤水分下均显著高于沙棘和油松,84k杨树和刺槐均属于高耗水树种;研究结果表明。84k杨树和刺槐不适宜大面积栽植在黄土高原缺水地区,仅适合栽植在阴坡、沟道等适宜水分条件下。沙棘和油松则适宜栽植在土壤水分较低的地区,如阳坡、峁顶等立地条件上。  相似文献   

3.
利用稳定性氢氧及碳同位素技术,与邻近乡土植物枫香比较,对喀斯特坡地尾巨桉水分来源与水分利用效率的季节性差异进行研究,分析喀斯特地区桉树人工林建设的干旱胁迫风险.结果表明: 浅层(0~50 cm)土壤水同位素值渐变特征明显且与近期雨水同位素值相近,而深层(50~100 cm)土壤水同位素值整体较稳定且明显区别于浅层.土壤含水量整体呈现雨季(5、9月)高于旱季(10月),且上坡高于下坡的基本特征.枫香不受旱、雨季土壤含水率差异的影响,始终以浅层土壤水为主要水源,水分利用效率持续较高.尾巨桉水分来源受不同季节、坡位土壤含水率差异的影响:雨季上坡以浅层土壤水为主,雨季下坡对深层土壤水利用比例明显增加;旱季上坡主要利用较深层水分,旱季下坡依赖浅层土壤水.桉树水分利用效率始终低于枫香,但旱季时显著升高.尾巨桉水分来源灵活多变,但干旱条件下水分利用效率显著升高,表明其并未能获得充足的水分供应,预示着生长速率及经济收益遭受负面影响,干旱致死的风险较高.  相似文献   

4.
 在适宜土壤水分(70%θf),中度干旱(55%θf)和严重干旱(40%θf)3种土壤水分条件下研究杨树(Populus simonii)的耗水特性和水分利用特征。结果表明,随着土壤含水量的下降,杨树叶水势、相对含水量(RWC)、生长速率、光合速率及单叶水分利用效率(WUE)显著下降;在适宜水分和中度干旱条件下,杨树的快速生长和干物质迅速积累时期主要集中在5~6月,严重干旱下快速生长时期和干物质积累主要集中在5月;杨树总耗水量和总生物量的大小顺序为:适宜水分>中度干旱>严重干旱;WUE则表现出中度干旱下最高,严重干旱下最低;杨树在适宜水分下的日、旬、月耗水量明显高于中度干旱和严重干旱处理;杨树在适宜水分、中度干旱和严重干旱条件下的最高耗水月分别在6~7月,最高旬耗水量分别在7月中旬、上旬和6下旬;在中度水分亏缺和严重水分亏缺下的最高耗水日出现的时间比适宜水分下的最高耗水日提前1~2个月以上。一天中的最大耗水高峰随着杨树生育期和土壤含水量的不同而有明显差异。研究结果表明,杨树不具备耐旱植物的特征,因此在黄土高原缺水地区不适宜大面积栽植,只能用于水分条件较好的立地条件下造林。  相似文献   

5.
 利用热扩散式边材液流茎流探针(TDP)和微型自动气象站组成的测定系统于2001年4月在北京林业大学妙峰山教学实验林场(39°54′N,116°28′E)对低山油松(Pinus tabulaeformis)人工林土壤-植物-大气体(SPAC)界面水势梯度及油松木质部边材液流传输速率的时空变化规律及其相关因子进行了连续测定。土壤水势随深度下降逐渐升高,日周期波动幅度减小,灌水后上层土壤水势迅速提高,但随着水分扩散和林地持续蒸散,土壤湿度迅速下降并逐渐与对照趋同;叶片水势连日逐渐降低,灌水后水势较对照有一定程度提高;林冠不同层次叶片水势在日周期内不同时间差异显著,但同一层次之间差异不明显;油松人工林土壤、叶片、大气水势梯度比约为1∶5∶30,灌水后SPAC相临界面水势差增大,水势梯度提高至1∶15∶90。大气水分饱和亏缺与土壤水势和叶片水势、以及土壤水势与叶片水势之间均有极显著相关性。干旱春季灌溉对油松木质部边材液流时空波动产生很大影响,灌水后连日树干上位边材液流峰值出现时间推迟1 h,连日平均液流速率提高48.59%,连日平均最大液流速率提高25.12%。木质部边材液流速率日变化和连日变化与SPAC水势和气象因子如空气相对湿度、空气温度、太阳辐射强度密切相关。与对照相比,灌水后边材液流速率与SPAC各介质水势和界面水势差的相关性下降。  相似文献   

6.
油松幼苗对干旱胁迫的生理生态响应   总被引:8,自引:2,他引:6  
在适宜水分(田间持水量为80%)、轻度干旱(60%)、中度干旱(40%)和重度干旱(20%)4种土壤水分条件下研究了油松的生理生态特征,结果显示; 油松各器官(根、茎、叶)的干物质积累量、干物质积累总量、相对生长率、株高和基径均表现为适宜水分>轻度干旱>中度干旱>重度干旱,而根冠比大小顺序与其相反.气体交换参数(净光合速率、气孔导度、蒸腾速率) 随干旱程度的加剧显著下降,并且净光合速率的下降主要受气孔因素限制.油松的瞬时水分利用效率和长期水分利用效率(稳定碳同位素含量,δ13C)表现适宜水分<轻度干旱<中度干旱<重度干旱,而且中度和重度干旱显著提高油松的水分利用效率.另外,单位干重叶片氮元素含量(N%)随胁迫增加呈下降趋势,而单位干重碳元素含量(C%)却与之相反,从而导致碳氮比随胁迫增加而增加,并且我们的结果显示光合速率与氮含量存在显著正相关. 结果表明,油松可以通过调节自身生长特征、生物量分配模式和叶片营养元素的含量及提高水分利用效率而增强应对干旱胁迫的能力.  相似文献   

7.
在气候变暖背景下,树木径向生长对气候因子的响应会随区域干湿变化而有所差异。秦岭属于气候敏感区和生态脆弱区,南北气候特征差异明显,分析气候变化背景下树木径向生长对气候因子及干旱事件的响应,对准确预测未来气候变化对树木生长的影响至关重要。为探究该地区不同干湿环境下油松对气候因子及干旱事件响应的特点及差异,共采集秦岭中西部南北坡共4个样点的油松树轮样芯,利用树木年轮生态学的方法,分析各地油松年表与气候因子之间的关系,通过计算抵抗力、恢复力、恢复弹力等指标探究树木径向生长对干旱事件的应对能力,结果表明:1)在西部和北坡的3个样点,油松径向生长主要与前一年7—9月、当年5—7月的气温呈显著负相关,与当年5月降水呈显著正相关,在中部南坡油松径向生长主要与当年2—4月、9月气温呈显著正相关,与当年4月降水呈显著负相关;2)生长季气温升高所引发的水分亏缺,是研究区西部和北坡油松径向生长受限制的主要原因,且中部南坡油松生长受气温和干旱因子的制约要明显弱于其它3个样点;3)西部北坡油松对干旱的抵抗能力、恢复能力及恢复弹力均弱于西部南坡及中部北坡油松。在未来对研究区树木的管理与保护工作中,应更加关注西部北坡...  相似文献   

8.
黄土区防护林主要造林树种水分供需关系研究   总被引:34,自引:5,他引:34  
通过3年的定位观测,分析了晋西黄土区护林主要造林树种刺槐和油松寺地供水与耗水关系,油松和刺槐林地4-6月林地水分消耗大于供给,供耗矛盾突出;雨季水分供应充足,土壤贮水增加;相同条件下密度大的林分耗水量较大,在干旱季节和年份,相同条件下,密度大的林分林地有效供水较少,林地水分亏损较为严重;不同坡向的水分缺量大小顺序为阳坡>半阳坡>阴坡,本文引入耗水特性系数来表示林分耗水的大小和需水量的满足程度,研究表明,用耗水特性系数表示林木规律和水分供耗关系是适合的衡量指标。  相似文献   

9.
以秦岭北麓南五台油松为样本,建立油松树轮宽度标准化年表(STD),研究油松径向生长与气候因子之间的相关性。结果表明: 秦岭北麓油松径向生长与前一年9月及当年5月水分因子呈显著正相关,与前一年11月温度因子呈显著正相关,与前一年10月、当年5月温度因子呈显著负相关。油松径向生长对不同气候因子响应均存在明显的滞后效应。油松径向生长与PDSI干旱指数具有较好的相关性,特别是与前一年9—12月、当年5月PDSI呈显著正相关。回归模型能较好地模拟树轮宽度指数与PDSI之间的关系,油松极宽窄轮的形成主要是干旱作用的结果。综合各种气候指标,PDSI能更好地反映研究区油松径向生长的特征。  相似文献   

10.
灌溉对干旱沙区紫花苜蓿生物学特性的影响   总被引:21,自引:0,他引:21  
白文明 《生态学报》2002,22(8):1247-1253
研究了干旱沙区不同水分处理下紫花苜蓿的 (Medicago sativa L.)生物学特性。结果表明 ,不同水分处理对紫花苜蓿植株高度、根系伸长生长和地上生物量形成的影响是不同的。在生长季内 ,灌水量最少的喷灌处理 W3植株高度最低 ,灌水量较多的漫灌处理 W1和灌水量居中的喷灌处理 W2植株高度相对较高 ,表明较多的灌水有利于植株高度的生长 ;对于根系长度则相反 ,灌水量最少的喷灌处理 W3根系伸长生长较快 ,到结实后期根系长度达到最大值 1 0 7.60 cm,说明适当的干旱可以促进紫花苜蓿根系伸长生长 ;地上生物量则是灌水量居中的喷灌处理 W2最高 ,表明在干旱沙区这种特殊的环境条件下 ,采取 W2这种灌溉方式种植紫花苜蓿 ,既可以获得较高的地上生物量 ,又可以节约利用水分  相似文献   

11.

Background and aims

Pinyon pine (Pinus edulis Engelm.) is an important tree species in the western United States that has experienced large-scale mortality during recent severe drought. The influence of soil conditions on pinyon pine response to water availability is poorly understood. We investigated patterns of tree mortality and response of tree water relations and growth to experimental water addition at four sites across a three million year soil-substrate age gradient.

Methods

We measured recent pinyon mortality at four sites, and tree predawn water potential, leaf carbon isotope signature, and branch, leaf, and stem radial growth on 12 watered and unwatered trees at each site. Watered trees recieved fifty percent more than growing season precipitation for 6 years.

Results

Substrate age generally had a greater effect on tree water stress and growth than water additions. Pinyon mortality was higher on intermediate-aged substrates (50–55%) than on young (15%) and old (17%) substrates, and mortality was positively correlated with pinyon abundance prior to drought.

Conclusions

These results suggest high soil resource availability and consequent high stand densities at intermediate-age substrates predisposes trees to drought-induced mortality in semi-arid regions. The response of tree water relations to water addition was consistent with the inverse texture hypothesis; watering reduced tree water stress most in young, coarsely textured soil, likely because water rapidly penetrated deep in the soil profile where it was protected from evapotranspiration.  相似文献   

12.
Water deficits affect citrus physiology, yield, fruit size and quality. Citrus can respond to drought stress conditions through endogenous hormonal regulation of water status and leaf abscission. In this work, we assayed the efficiency of an amendment to soilless media in delaying the drought stress effect in young citrus seedlings and trees. Substrate amendment promoted plant survival of citrus seedlings subjected to several cycles of drought stress and rehydration. In budded trees, the amendment increased substrate water content, leaf water potential, leaf number, root biomass, CO2 assimilation and stomatal conductance over that of control plants growing in non-amended substrates. We conclude that the substrate amendment reduced the damaging effects of drought stress in citrus plants. The longer survival of seedlings in the amended treatment together with the reduction in leaf abscission and the improvement of physiological parameters, can account for a higher vigour of citrus grown under water stress conditions.  相似文献   

13.
The aim of the present study was to assess the ecophysiological state of Scots pine (Pinus sylvestris L.) growing at different heights on one of the typical coastal sand dunes in the dune field situated in southwestern Estonia. Dependence of the anatomical structure, morphological parameters, nutrients accumulation and biochemical characteristics of needles on the location of the site on the dune and on the concentration of nutrients in soil and in needle tissues was established. Correlation analysis revealed the dependence of chlorophyll a on the concentration of N and Mg in soil as well as in needles. The mesophyll area and chlorophyll concentration in needles were smallest on the top of the dune. The proportion of epidermis in the total needle cross-section area from the top was a little larger than in the needles from the bottom; the epicuticular wax layer on needles decreased towards the top. The length of needles and shoots was the lowest on the top of the dune, where the growth substrate contains notably less nutrients and water than needed for optimum growth of trees. The t test showed statistically significant larger average tree-ring width of the pines growing at the bottom. The pines on the top and at the bottom of the dune were not sensitive to temperature conditions. The radial growth of pines on the top of the dune was positively correlated with the total precipitation of the previous year.  相似文献   

14.
Environmental controls on carbon dynamics operate at a range of interacting scales from the leaf to landscape. The key questions of this study addressed the influence of water and nitrogen (N) availability on Pinus palustris (Mill.) physiology and primary productivity across leaf and canopy scales, linking the soil‐plant‐atmosphere (SPA) model to leaf and stand‐scale flux and leaf trait/canopy data. We present previously unreported ecophysiological parameters (e.g. Vcmax and Jmax) for P. palustris and the first modelled estimates of its annual gross primary productivity (GPP) across xeric and mesic sites and under extreme drought. Annual mesic site P. palustris GPP was ~23% greater than at the xeric site. However, at the leaf level, xeric trees had higher net photosynthetic rates, and water and light use efficiency. At the canopy scale, GPP was limited by light interception (canopy level), but co‐limited by nitrogen and water at the leaf level. Contrary to expectations, the impacts of an intense growing season drought were greater at the mesic site. Modelling indicated a 10% greater decrease in mesic GPP compared with the xeric site. Xeric P. palustris trees exhibited drought‐tolerant behaviour that contrasted with mesic trees' drought‐avoidance behaviour.  相似文献   

15.
Fine root growth in natural vegetation is difficult to predict due to its regulation by soil and plant factors. Field studies in arid ecosystems show a variety of root responses to soil resources and to plant aboveground phenology that sometimes differ from root responses predicted by controlled experiments. There is a pressing need to cover a greater diversity of plant species and ecological scenarios in field studies. In this paper, we have studied fine roots of Prosopis flexuosa trees living with or without access to phreatic water in an inter-dune valley and a dune flank, respectively, in the Central Monte Desert, Argentina. We have described fine root growth over time and at different depths by rhizotron observations and soil core auger samples in relation to soil water and nutrients, tree crown phenology, plant water and nutrient status. We have found that surface soil moisture from rainfall is the variable that best predicts seasonal topsoil fine root growth. Access to groundwater advanced leaf sprouting with respect to rainfall, but did not advance root growth that stayed linked to rainfall in valley and dune flank trees. Trees without access to phreatic water produced deeper and thicker or denser roots, which is consistent with the poor soil resource content of dunes. Variations in rainfall dynamics due to global climate change may have a particular impact on fine roots and ecosystem processes such as biogeochemistry and carbon budget in dune flank trees as well as in valley trees.  相似文献   

16.
Irrigation effects on whole-plant sap flow and leaf-level water relations were characterised throughout a growing season in an experimental olive (Olea europaea L.) orchard. Atmospheric evaporative demand and soil moisture conditions for irrigated and non-irrigated olive trees were also monitored. Whole-plant water use in field-grown irrigated and rain fed olive trees was determined using a xylem sap flow method (compensation heat-pulse velocity). Foliage gas exchange and water potentials were determined throughout the experimental period. Physiological parameters responded diurnally and seasonally to variations in tree water status, soil moisture conditions and atmospheric evaporative demand. There was a considerable degree of agreement between daily transpiration deduced from heat-pulse velocity and that determined by calibration using the Penman–Monteith equation in the field. Summer drought caused decreasing leaf gas exchange and water potentials, and a progressive increase in hydraulic conductance (stronger in non-irrigated than irrigated trees), probably attributable to modifications in hydraulic properties at the soil-root interface. Negligible hysteresis, attributable to low plant capacitance, was observed in the relationship between leaf water potential and sap flow. A proportional decrease in maximum daily leaf conductance with increasing vapour pressure deficit was observed, while mean daytime canopy stomatal conductance decreased with the season. As a result, plant water use was limited and excessive drought stress prevented. Non-irrigated olive trees recovered after the summer drought, showing a physiological behaviour similar to that of irrigated trees. In addition to physiological and environmental factors, there are endogenous keys (chemical signals) influencing leaf level parameters. Olive trees are confirmed to be economical and sparing users of soil water, with an efficient xylem sap transport, maintenance of significant gas exchange and transpiration, even during drought stress.  相似文献   

17.
Hydraulic redistribution (HR), the passive movement of water via roots from moist to drier portions of the soil, occurs in many ecosystems, influencing both plant and ecosystem-water use. We examined the effects of HR on root hydraulic functioning during drought in young and old-growth Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] and ponderosa pine (Pinus ponderosa Dougl. Ex Laws) trees growing in four sites. During the 2002 growing season, in situ xylem embolism, water deficit and xylem vulnerability to embolism were measured on medium roots (2–4-mm diameter) collected at 20–30 cm depth. Soil water content and water potentials were monitored concurrently to determine the extent of HR. Additionally, the water potential and stomatal conductance (gs) of upper canopy leaves were measured throughout the growing season. In the site with young Douglas-fir trees, root embolism increased from 20 to 55 percent loss of conductivity (PLC) as the dry season progressed. In young ponderosa pine, root embolism increased from 45 to 75 PLC. In contrast, roots of old-growth Douglas-fir and ponderosa pine trees never experienced more than 30 and 40 PLC, respectively. HR kept soil water potential at 20–30 cm depth above –0.5 MPa in the old-growth Douglas-fir site and –1.8 MPa in the old-growth ponderosa pine site, which significantly reduced loss of shallow root function. In the young ponderosa pine stand, where little HR occurred, the water potential in the upper soil layers fell to about –2.8 MPa, which severely impaired root functioning and limited recovery when the fall rains returned. In both species, daily maximum gs decreased linearly with increasing root PLC, suggesting that root xylem embolism acted in concert with stomata to limit water loss, thereby maintaining minimum leaf water potential above critical values. HR appears to be an important mechanism for maintaining shallow root function during drought and preventing total stomatal closure.  相似文献   

18.
In order to provide a relatively simple means of predicting live herbaceous plant moisture content from a readily available meteorological index with an accuracy adequate for fire hazard assessment, the moisture content fluctuations of certain species were correlated with the values of a seasonal drought index based on soil moisture deficiency. The simple linear regression models provided the best fit of the relationship between plant moisture content and the Keetch-Byram drought index (KBDI) values. KBDI predicted with accuracy, for two growing seasons, the moisture content of three annual herbaceous plants ( Piptatherum miliaceum, Parietaria diffusa, Avena sterillis) with shallow rooting systems, typical of the understory vegetation of Pinus brutia forests in the Mediterranean region of Crete, Greece. The greatest aberrations between measured and predicted values of plant moisture content were observed early (May) and late (September) in the growing season, when plant phenology (flushing and withering stages respectively) appears to become the dominant factor in determining plant moisture content regardless of the soil moisture conditions. The KBDI was poorly correlated with the live-needle moisture content of deeply rooted P. brutia trees and modestly with the soil water content of the upper layers. This indicates that the index adequately reflects the moisture condition of the surface soil layers but not the water content deeper in the soil.  相似文献   

19.
不同土壤水分状况对杨树、沙棘水分关系及生长的影响   总被引:25,自引:1,他引:25  
在盆栽条件下对杨树、沙棘进行了3种土壤水分处理,研究结果表明:沙棘的叶含水率在同一土壤水分下比杨树高、而水势低,说明沙棘叶的抗旱保水能力强于杨树;沙棘单叶的光合速率能够长时间维持在较高的水平,蒸腾速率却并非如此。杨树无论在生长初期,还是生长中期其单叶WUE均高于沙棘。以新生枝生物量/耗水总量计算的整体WUE在3种土壤水分条件下,杨树的WUE分别是沙棘的2.4倍、2.3倍、2倍,其差异达极显著水平,但在3种土壤水分条件下2个树种都以中度亏缺下的水分利用率最高。整个生长季节处在严重干旱下的杨树和沙棘的生长均受到显著影响,沙棘生长受干旱影响程度小于杨树,从整个生长趋势上看杨树适宜于良好水分下的生长,沙棘在适宜水分和中度亏缺下均可良好生长。  相似文献   

20.
 The present study was carried out to elucidate the response mechanisms of 50-year-old Pinus halepensis Mill. trees to a long-term and severe drought. The amount of water available to trees was artificially restricted for 12 months by covering the soil with a plastic roof. Over the short term a direct and rapid impact of drought was evident on the water relations and gas exchanges of trees: as the soil dried out in the Spring, there was a concurrent decrease of predawn water potential; transpiration was strongly reduced by stomatal closure. Seasonal changes in the water volume fractions of twig and stem xylem were observed and interpreted as the result of cavitation and refilling in the xylem. When droughted trees recovered to a more favourable water status, refilling of embolized xylem was observed; twig predawn water potentials were still negative in the period when the embolism was reversed in the twig xylem. A few months after the removal of the covering, no differences in whole plant hydraulic resistance were observed between droughted and control trees. Needle and shoot elongation and stem radial growth were considerably reduced in droughted trees; no strategy of trees to allocate carbon preferentially to the stem conducting tissues was apparent throughout the experiment. An after-effect of the drought on growth was observed. Received: 4 August 1997 / Accepted: 1 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号