首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Leishmania donovani and Leishmaniainfantum infections cause fatal visceral leishmaniasis, and Leishmaniamajor causes self healing cutaneous lesions. It is poorly understood what genetic differences between these Leishmania species are responsible for the different pathologies of infection. To investigate whether L.donovani species-specific genes are involved in visceral Leishmania infection, we have examined a L.donovani species-specific gene Ld1590 (ortholog of LinJ15_V3.0900) that is a pseudogene in L.major. We have previously shown that transgenic expression of L.donovani Ld1590 in L.major significantly increased the liver and spleen parasite burdens in infected BALB/c mice. In this study we report that Ld1590 potentially encodes a nucleotide sugar transporter (NST) which localizes in the L.donovani Golgi apparatus. Surprisingly, although transgenic expression of the Ld1590 NST increased L.major survival in visceral organs, deletion of Ld1590 NST in L.donovani had no significant effect on L.donovani survival in mice. These observations suggest that loss of the functional Ld1590 gene in L.major may have been associated with reduced virulence in visceral organs in its animal reservoir and could have contributed to L.major’s tropism for cutaneous infections.  相似文献   

2.
Sopina VA 《Tsitologiia》2001,43(7):701-707
Activity and thermoresistance of acid phosphatase were determined in supernatant of Amoeba proteus homogenates using 1-naphthyl phosphate (pH 4.0) and p-nitrophenyl phosphate (pH 5.5). Although tartrate-resistant and tartrate-sensitive acid phosphatases hydrolyse both substrates, the former mainly hydrolyses p-nitrophenyl phosphate and the latter 1-naphthyl phosphate. A decrease in the activity of the total and tartrate-sensitive acid phosphatases, when using 1-naphthyl phosphate, and of the total and tartrate-resistant acid phosphatases, when using p-nitrophenyl phosphate, was found in amoebae acclimated to 10 degrees C (10 degrees-amoebae) compared to those acclimated to 25 degrees C (25 degrees-amoebae). Using 1-naphthyl phosphate, the thermoresistance of the total acid phosphatase was lower in 10 degrees-amoebae than in 25 degrees-amoebae, but the thermostability of tartrate-resistant enzyme was the same in both groups of amoebae. Using p-nitrophenyl phosphate, the thermoresistance of the total and tartrate-resistant acid phosphatases was lower (the latter only slightly) in 10 degrees-amoebae than in 25 degrees-amoebae. It is suggested that at least with the use of 1-naphthyl phosphate a decrease in thermostability of the total acid phosphatase may be due to a decrease in thermoresistance of tartrate-sensitive enzyme. The results obtained confirm the author's previous data on the activity and thermostability of electrophoretic forms of acid phosphatase using 2-naphthyl phosphate in 10- and 25 degrees-amoebae (Sopina, 2001). It is the first case of discovering a correlation between changes in primary cell thermoresistance of amoebae cultured at different temperatures and changes in the activity and thermostability of acid phosphatase in their homogenates, with the number of electrophoretic forms of this enzyme and their mobility being permanent.  相似文献   

3.
Comparison of the Leishmania infantum genome with Leishmania braziliensis and Leishmania major genomes has identified 25 L. infantum species‐specific genes that are absent or pseudogenes in L. major and L. braziliensis. To determine whether these L. infantum species‐specific genes are involved in visceral Leishmania infection, we cloned the orthologues of 14 L. infantum species‐specific genes from the genetically closely related Leishmania donovani and introduced them into L. major. Two of these L. donovani species‐specific genes were found to significantly increase L. major survival in visceral organs in BALB/c mice. One (orthologue of LinJ28_V3.0340; Ld2834) of these two genes was further investigated. The L. donovani Ld2834 null mutants displayed dramatically reduced virulence in BALB/c mice and were unable to survive in axenic amastigote culture conditions arguing that Ld2834 plays a crucial role in enabling L. donovani survive at the increased temperature typically associated with visceral organs. Ld2834 encodes a 50 kDa protein that is localized in the cytoplasma and has no significant sequence similarity with other known genes. This study validates the importance of comparative genomics for understanding Leishmania species pathology and argues that Leishmania species‐specific genes play important roles in tissue tropism and virulence.  相似文献   

4.
Previously, we isolated and characterized the gene encoding the 3-Nucleotidase/Nuclease (Ld3NT/NU) from the human pathogen, Leishmania donovani. This unique cell surface enzyme has been shown to be involved in the salvage of host-derived purines, which are essential for the survival of this important protozoan parasite. In this report, we assessed whether the 3-Nucleotidase/Nuclease was conserved amongst other pathogenic Leishmania and related trypanosomatid parasites. Results of pulsed field gel electrophoresis and Southern blotting showed that a Ld3NT/NU gene homolog was present in each of the visceral and cutaneous Leishmania species tested (i.e. isolates of L. donovani, L. infantum, L. tropica, L. major and L. mexicana, respectively). Further, results of colorimetric assays using 3-adenosine monophosphate as substrate demonstrated that each of these organisms also expressed significant levels of 3-nucleotidase enzyme activity. In addition, we showed that a Ld3NT/NU gene homolog was expressed in each of these Leishmania species as a > 40 kDa 3-nucleotidase enzyme activity. A Ld3NT/NU gene homolog was also identified in two Crithidia species (C. fasciculata and C. luciliae) and Leptomonas seymouri but was only marginally detectable in Trypanosoma brucei, Trypanosoma cruzi and Phytomonas serpens. Cumulatively, results of this study showed that an Ld3NT/NU homolog was conserved amongst pathogenic Leishmania sp. which suggests that this enzyme must play an critical role in purine salvage for all members of this group of human pathogens.  相似文献   

5.
In previous studies we characterized arginine transporter genes from Trypanosoma cruzi and Leishmania donovani, the etiological agents of chagas disease and kala azar, respectively, both fatal diseases in humans. Unlike arginine transporters in higher eukaryotes that transport also lysine, these parasite transporters translocate only arginine. This phenomenon prompted us to identify and characterize parasite lysine transporters. Here we demonstrate that LdAAP7 and TcAAP7 encode lysine-specific permeases in L. donovani and T. cruzi, respectively. These two lysine permeases are both members of the large amino acid/auxin permease family and share certain biochemical properties, such as specificity and Km. However, we evidence that LdAAP7 and TcAAP7 differ in their regulation and localization, such differences are likely a reflection of the dissimilar L. donovani and T. cruzi life cycles. Failed attempts to delete both alleles of LdAAP7 support the premise that this is an essential gene that encodes the only lysine permeases expressed in L. donovani promastigotes and T. cruzi epimastigotes, respectively.  相似文献   

6.
A small library of 26 2,2′-[alkane-α,ω-diylbis(oxyphenylene)]bis-1H-benzimidazoles has been prepared and evaluated against Giardia intestinalis, Entamoeba histolytica, Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani, and Plasmodium falciparum. Among the tested compounds, eight derivatives (17, 19, 20, 24, 27, 30, 32 and 35) exhibited an anti-Plasmodium falciparum activity characterized by IC50 values in the range of 180–410 nM (0.11–0.21 μg/mL) and selectivity indexes (IC50 rat skeletal myoblasts L6 cells vs IC50P. falciparum K1 strain) varying between 92 and more than 450. Two of the eight novel drug leads, namely compounds 19 and 32, were also active against G. intestinalis and L. donovani with selectivity indexes of 122 and >164 respectively.  相似文献   

7.
In contrast to their mammalian hosts, protozoan parasites do not synthesize purines de novo, but depend on preformed nucleotides that they purportedly obtain by salvage pathways. Nucleoside hydrolases may play a crucial role in that salvage process. By screening Leishmania donovani libraries with polyclonal antibodies against promastigote soluble exo-antigens, we have identified a cDNA encoding a protein with significant homology to nonspecific and uridine–inosine-preferring nucleoside hydrolases. Sequence comparison demonstrated that all the residues involved in Ca2+-binding and substrate recognition in the active site are conserved among the characterized protozoan nucleoside hydrolases. Genomic analysis suggests that it is a single copy gene in L. donovani, and its homologues are present in members representing other Leishmania species complexes. Both Northern blot and immunoblot analyses indicate that it is constitutively expressed in L. donovani promastigotes. The recombinant enzyme overexpressed in and purified from bacteria showed significant activity with all naturally occurring purine and pyrimidine nucleosides, and efficient utilization of p-nitrophenyl-β- -ribofuranoside as a substrate. Altogether, the sequence comparison and substrate specificity data identify this L. donovani nucleoside hydrolase as a nonspecific nucleoside hydrolase. Further, the nucleoside hydrolase was localized to specific foci in L. donovani promastigotes by immunofluorescent assays. Although the conservation of the nucleoside hydrolases among protozoan parasites offers promise for the design of broad-spectrum anti-parasitic drugs, the existence of multiple and distinct nucleoside hydrolases in a single species demands special consideration.  相似文献   

8.
Leishmaniasis is a vector‐borne infectious disease with a wide range of pathologies depending on the species of Leishmania. Leishmania parasites are transmitted by the sand fly vector as promastigotes; within the mammalian host, Leishmania parasites differentiate into amastigotes and replicate in macrophages. The A2 protein from Leishmania donovani is expressed predominantly in amastigotes and therefore likely plays a role in survival in the mammalian host. In the present study, we have determined that the A2 protein colocalized with the Leishmania endoplasmic reticulum binding protein, BiP, was induced by stress and complexed with BiP following heat shock. The A2 gene in Leishmania major is a non‐expressed pseudogene, and we present evidence that ectopic expression of a transfected A2 gene in L. major enhanced its viability following heat shock. A2 may therefore play a role in protecting L. donovani from stress associated with infection in visceral organs, including the fever typically associated with visceral leishmaniasis. Interestingly, when comparing A2 protein localization, we also observed that the Leishmania secreted acid phosphatase SAcP protein was transported out of the parasite‐containing phagolysosome and was located throughout the macrophage cytoplasm in vesicles, providing the first example of a secreted Leishmania‐derived protein exiting the parasite‐containing phagolysosome.  相似文献   

9.
Protein phosphatase M family (PPM; Mg2+-dependent protein phosphatases), which specifically dephosphorylates serine/threonine residues, consists of pyruvate dehydrogenase phosphatases, SpoIIE, adenylate cyclase and protein phosphatase type 2Cs (PP2Cs). To identify Candida albicans PP2Cs, the archetype of the PPM Ser/Thr phosphatases, we thoroughly searched the public C. albicans genome database and identified seven PP2C members. One of the PP2Cs in C. albicans, designated as CaPTC8 gene, represents a new member of PP2C genes. Northern blot analysis showed that the expression of CaPTC8 was positively responsive to high osmolarity, temperature or serum-stimulated filamentous growth. Gene disruption further demonstrated that deletion of CaPTC8 gene caused the defect of hyphal formation. Sequence analysis revealed that two conserved amino acids His and Asn in the prototypical members of the PPM family were substituted by Val and Asp in the PTC8p-like proteins. In addition, posterior analysis for site-specific profile showed that seven more sites are under the selection of functional divergence between these two groups of proteins. Three-dimensional homology modeling illustrated the signatures of the two groups in the conserved catalytic region of the protein phosphatases. Hence, CaPTC8 plays a role in stress responses and is required for the yeast-hyphal transition, and the CaPTC8-related genes are evolutionarily conserved. The phylogenetic relationships of all members of the PPM family strongly support the existence of a distinct and new subfamily of the PP2C-related proteins, PP2CR.  相似文献   

10.
A soluble protein phosphatase from the promastigote form of the parasitic protozoanLeishmania donovani was partially purified using Sephadex G-100, DEAE-cellulose and again Sephadex G-100 columns. The partially purified enzyme showed a native molecular weight of about 42, 000 in both Sephadex G-100 and sucrose density gradient centrifugation. The sedimentation constant, stokes radius and frictional ratio were found to be 3.43S, 2.8 nm and 1.20 respectively. The enzyme preferentially utilized phosphohistone as the best exogenous substrate. Mg2+ ions were essential for enzyme activity; among other metal ions Mn2+ can replace Mg2+ to a certain extent whereas Ca2+, Co2+ and Zn2+ could not substitute for Mg2+. The pH optimum of the enzyme was 6.5–7.5 and the temperature optimum 37°C. The apparent Km for phosphohistone was 7.14 M. ATP, ADP, inorganic phosphate and pyrophosphate had inhibitory effect on the enzyme activity whereas no inhibition was observed with sodium tartrate and okadaic acid. These results suggest thatL. donovani promastigotes possess a protein phosphatase which has similar characteristics with the mammalian protein phosphatase 2C.Abbreviations PMSF phenylmethylsulfonyl fluoride - DTT dithiothreitol - TCA trichloroacetic acid - BSA bovine serum albumin - EDTA ethylenediamine tetraacetic acid - ATP adenosine triphosphate - ADP adenosine diphosphate - AMP adenosine monophosphate - EGTA Ethyleneglycol-bis-(-aminoethyl ether) N,N,N,N-tetraacetic acid  相似文献   

11.
PCR has proved useful for rapid diagnosis and typing of Leishmania. Lack of specificity to discriminate between species and/or sensitivity to detect from clinical samples has always been an issue. Previously developed primers either require PCR–RFLP analysis for Leishmania aethiopica discrimination or lack sensitivity to detect L. aethiopica from clinical samples. Here we report the development and validation of L. aethiopica specific PCR primers (V5F/V10R) based on cysteine protease B (cpb), a multicopy and polymorphic gene of Leishmania. V5F/V10R primers differentiate L. aethiopica from Leishmania tropica, Leishmania major, Leishmania donovani and Leishmania infantum by direct PCR. In addition, they are sensitive enough to detect L. aethiopica from biopsy samples. The primers can be very useful for epidemiological studies, species typing and diagnosis of L. aethiopica directly from clinical samples. Implementation of these primers in routine L. aethiopica diagnosis can improve detection rate, save time, money and labor required for culturing Leishmania.  相似文献   

12.
Protein tyrosine phosphatases (PTPs) form a large family of enzymes involved in the regulation of numerous cellular functions in eukaryotes. Several protein tyrosine phosphatases have been recently identified in trypanosomatides. Here we report the purification and biochemical characterization of TcPTP1, a protein tyrosine phosphatase from Trypanosoma cruzi, the causing agent of Chagas’ disease. The enzyme was cloned and expressed recombinantly in Escherichia coli and purified by Ni-affinity chromatography. Biochemical characterization of recombinant TcPTP1 with the PTP pseudo-substrate pNPP allowed the estimation of a Michaelis–Menten constant Km of 4.5 mM and a kcat of 2.8 s−1. We were able to demonstrate inhibition of the enzyme by the PTP1b inhibitor BZ3, which on its turn was able to accelerate the differentiation of epimastigotes into metacyclic forms of T. cruzi induced by nutritional stress. Additionally, this compound was able to inhibit by 50% the infectivity of T. cruzi trypomastigotes in a separate cellular assay. In conclusion our results indicate that TcPTP1 is of importance for cellular differentiation and invasivity of this parasite and thus is a valid target for the rational drug design of potential antibiotics directed against T. cruzi.  相似文献   

13.
14.
The effect of pH during formalin fixation on acid phosphatases in human tissues was studied. Lysosomal-type acid phosphatase was sensitive to alkaline fixation, being completely inactive after fixation at pH 9.0. Prostatic and tartrate-resistant osteoclastic/macrophagic types were alkaline fixation-resistant, as was an acid phosphatase localized in endothelium, endometrial stromal cells and intestinal nerves. The latter activity was further separable into fluoride- and tartrate-sensitive beta-glycerophosphatase and fluoride-sensitive, tartrate-resistant alpha-naphthyl phosphatase. The activities appeared to represent either different, tightly associated enzymes or separate activity centres of a single enzyme. Alkaline fixation-resistant alpha-naphthyl phosphatase at endothelial, endometrial and neuronal sites was also well demonstrated in unfixed or neutral formalin-fixed sections as tartrate-resistant activity similar to classical tartrate-resistant acid phosphatase, but these phosphatases appear to be antigenically different. Alkaline fixation-resistant acid phosphatase showed a restricted tissue distribution both in endothelium (mainly in vessels of abdominal organs) and at neuronal sites (only in intestinal nerves). Alkaline fixation-resistant acid phosphatase appears to represent a previously unknown or uncharacterized enzyme activity whose chemical properties could not be classified as any previously known type of acid or other phosphatases.  相似文献   

15.
Trypanothione disulfide (T[S]2), an unusual form of glutathione found in parasitic protozoa, plays a crucial role in the regulation of the intracellular thiol redox balance and in the defense against oxidative stress. Trypanothione reductase (TR) is central to the thiol metabolism in all trypanosomatids, including the human pathogens Trypanosoma cruzi, Trypanosoma brucei and Leishmania. Here we report the cloning, sequencing and expression of the TR encoding gene from L. (L.) amazonensis. Multiple protein sequence alignment of all known trypanosomatid TRs highlights the high degree of conservation and illustrates the phylogenetic relationships. A 3D homology model for L. amazonensis TR was constructed based on the previously reported Crithidia fasciculata structure. The purified recombinant TR shows enzyme activity and in vivo expression of the native enzyme could be detected in infective promastigotes, both by Western blotting and by immunofluorescence. Nucleotide sequence data reported in this paper is available in the GenBankTM database under accession number DQ530259.  相似文献   

16.
Promastigotes from log phase and stationary phase cultures of Leishmania donovani, L. braziliensis panamensis, L. tropica, L. major, and L. mexicana amazonensis were analyzed for their content of protein kinase and acid phosphatase activities. Cell surface, historic-specific protein kinase activity was 1.3- to 2.8-fold higher in stationary phase cells of all species except for L. tropica in which the activities of stationary and log phase cells were equal; L. mexicana amazonensis had the highest histone-specific protein kinase activity and L. donovani the lowest. When viable, motile promastigotes of all five species were incubated for 10 min with [γ-32P]ATP and Mg2+ (10 mM) in the absence of exogenous histone acceptor; about one dozen proteins were phosphorylated in each case. Both log phase and stationary phase promastigotes of all five species extensively phosphorylated a 50-kDa protein that had the mobility of tubulin. Incubation of pure calf brain tubulin with [γ-32P]ATP and purified L. donovani protein kinase resulted in extensive phosphorylation of the former. Highly infective metacyclic forms (PNA-) of L. major, isolated from a stationary culture using the peanut agglutinin (PNA), contained eight times more histone-specific protein kinase activity than noninfective log phase cells (PNA+). The PNA- and PNA+ forms of L. major both phosphorylated a 50-kDa protein when incubated with [γ-32P]ATP and magnesium or manganese ions (10 mM); the 50-kDa protein was precipitated by anti-tubulin rabbit antibodies. Extracts of all five species contained large amounts of acid phosphatase activity. With the exception of L. braziliensis panamensis for which late log phase organisms contained 12-fold more tartrate-resistant acid phosphatase activity than did early log phase cells, stationary and log phase parasites contained approximately the same amount of acid phosphatase activity.  相似文献   

17.
Sopina VA  Beliaeva TN 《Tsitologiia》2000,42(6):602-612
In free-living Amoeba proteus (strain B), acid phosphatase (AcP) was examined by disc-electrophoresis in polyacrylamide gel. The tartrate-sensitive amebian AcP was greatly inhibited by dithiothreitol and Cu2+, and only partly inhibited by sodium orthovanadate, ammonium molybdate, EDTA, disodium salt and Mg2+, Ca2+, Zn2+ and Mn2+. On the contrary, it appeared to be resistant to sulfhydryl reagents--4(hydroxymercury) benzoic acid, sodium salt and N-ethylmaleimide. Unlike the tartrate-sensitive enzyme, the tartrate-resistant AcP was greatly inhibited by EDTA and partly inhibited by dithiothreitol, Mg2+ and Cu2+ (Mn2+ > Cu2+), being activated by orthovanadate, molybdate, sulfhydryl reagents, Mg2+, Ca2+ and Zn2+. Both tartrate-sensitive and tartrate-resistant AcPs lack apparently free SH-groups necessary for their catalytic activities. Using 2-naphthyl phosphate as a substrate at pH 4.5, six AcP electromorphs were revealed in cytosol and sediment, four of these being most frequently localized in the former, and two in the latter. Two other AcP electromorphs were confined to the sediment only. Depending on the quantity of sedimented amoebae making a homogenate (0.5 or 2.0 cm3), that was added to Percoll solution, the lysosomal AcP fraction in polyacrylamide gel was represented by one or two tartrate-sensitive electromorphs. Therefore, tartrate-resistant AcP in A. proteus may be a lysosomal enzyme, while tartrate-resistant AcP may correspond to serine/threonine protein phosphatase.  相似文献   

18.
Our knowledge concerning the mechanisms of cell cycle regulation in organisms belonging to the Trypanosometidae family is limited. Leishmania donovani are parasitic protozoa that cause kala azar, a fatal form of visceral leishmaniasis in humans. Here we provide evidence that the L. donovani genome contains a Cdc20 homologue. Cdc20 is a regulator of the Anaphase Promoting Complex/Cyclosome (APC/C) that mediates ubiquitin-dependent proteasomal degradation of key cell cycle regulators in eukaryotes. We show that L. donovani Cdc20 protein (LdCdc20p) can complement a lack of yeast Cdc20 protein in Saccharomyces cerevisiae cells, validating the functionality of LdCdc20p. Furthermore, we demonstrate cyclic expression of LdCdc20p and that it contains an active RXXL destruction motif, a distinctive feature of proteins targeted for proteasomal degradation by APC/C. Finally, in line with the proteasome mediating LdCdc20p degradation, promastigotes exposed to proteasome inhibitor display elevated LdCdc20p levels. Taken together our data indicate that Leishmania regulate their cell cycle by ubiquitin-dependent proteasomal degradation mediated by the APC/C.  相似文献   

19.
Tartrate-resistant acid phosphatase active on nucleoside di- and triphosphate substrates was isolated from developing rat bone and purified 2500-fold. The enzyme concentration had a purple coloration and activity that was sensitive to reducing agents. Mild reducing agents such as ferrous ion and ascorbic acid caused loss of purple color and increased activity toward substrates severalfold; however, a strong reductant such as dithionite caused loss of both color and activity which were partially restored by addition of ferrous ion and ascorbic acid. Enzyme activity was homogeneous with protein during the final gel permeation steps of chromatography and gave an apparent molecular size of about 40,000 Da. Determination of iron in the most pure preparation revealed the presence of 1.3 atoms of iron per molecule of the tartrate-resistant enzyme E2. Other properties of the purified enzyme include a pI of approximately 9.5 and sensitivity to inhibition by ions of copper, zinc, fluoride, and molybdate. Antibody prepared to the pre-concanavalin A (Con A)-Sepharose purified enzyme reacted with all protein from the Con A step, but it did not react with tartrate-sensitive acid phosphatase from rat bone or with potato acid phosphatase. Purple acid phosphatase from rat bone has many properties that parallel the iron-containing purple acid phosphatases from rat spleen, bovine spleen, and pig uterine secretions.  相似文献   

20.
The initial 7 steps of the glycolytic pathway from glucose to 3-phosphoglycerate are localized in the glycosomes in Leishmania, including step 6, catalyzed by the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In L. donovani and L. mexicana, there exists a second GAPDH enzyme present in the cytosol that is absent in L. braziliensis and that has become a pseudogene in L. major. To investigate the role of the cytosolic GAPDH (cGAPDH), an L. donovani cGAPDH-null mutant was generated, and conversely, the functional L. donovani cGAPDH was introduced into L. major and the resulting engineered parasites were characterized. The L. donovani cGAPDH-null mutant was able to proliferate at the same rate as the wild-type parasite in glucose-deficient medium. However, in the presence of glucose, the L. donovani cGAPDH-null mutant consumed less glucose and proliferated more slowly than the wild-type parasite and displayed reduced infectivity in visceral organs of experimentally infected mice. This demonstrates that cGAPDH is functional in L. donovani and is required for survival in visceral organs. Restoration of cGAPDH activity in L. major, in contrast, had an adverse effect on L. major proliferation in glucose-containing medium, providing a possible explanation of why it has evolved into a pseudogene in L. major. This study indicates that there is a difference in glucose metabolism between L. donovani and L. major, and this may represent an important factor in the ability of L. donovani to cause visceral disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号