首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the boreal forest, fire, insects, and logging all affect spatial patterns in forest age and species composition. In turn, spatial legacies in age and composition can facilitate or constrain further disturbances and have important consequences for forest spatial structure and sustainability. However, the complex three-way interactions among fire, insects, and logging and their combined effects on forest spatial structure have seldom been investigated. We used a spatially explicit landscape simulation model to examine these interactions. Specifically, we investigated how the amount and the spatial scale of logging (cutblock size) in combination with succession, fire, and spruce budworm outbreaks affect area burned and area defoliated. Simulations included 30 replicates of 300 years for each of 19 different disturbance scenarios. More disturbances increased both the fragmentation and the proportion of coniferous species and imposed additional constraints on the extent of each disturbance. We also found that harvesting legacies affect fire and budworm differently due to differences in forest types consumed by each disturbance. Contrary to expectation, budworm defoliation did not affect area burned at the temporal scales studied and neither amount of logging nor cutblock size influenced defoliation extent. Logging increased fire size through conversion of more of the landscape to early seral, highly flammable forest types. Although logging increased the amount of budworm host species, spruce budworm caused mortality was reduced due to reductions in forest age. In general, we found that spatial legacies do not influence all disturbances equally and the duration of a spatial legacy is limited when multiple disturbances are present. Further information on post-disturbance succession is still needed to refine our understanding of long-term disturbance interactions.  相似文献   

2.
Phenological mismatch has been proposed as a key mechanism by which climate change can increase the severity of insect outbreaks. Spruce budworm (Choristoneura fumiferana) is a serious defoliator of North American conifers that feeds on buds in the early spring. Black spruce (Picea mariana) has traditionally been considered a poor-quality host plant since its buds open later than those of the preferred host, balsam fir (Abies balsamea). We hypothesize that advancing black spruce budbreak phenology under a warmer climate would improve its phenological synchrony with budworm and hence increase both its suitability as a host plant and resulting defoliation damage. We evaluated the relationship between tree phenology and both budworm performance and tree defoliation by placing seven cohorts of budworm larvae on black spruce and balsam fir branches at different lags with tree budburst. Our results show that on both host plants, spruce budworm survival and pupal mass decrease sharply when budbreak occurs prior to larval emergence. By contrast, emergence before budbreak decreases survival, but does not negatively impact growth or reproductive output. We also document phytochemical changes that occur as needles mature and define a window of opportunity for the budworm. Finally, larvae that emerged in synchrony with budbreak had the greatest defoliating effect on black spruce. Our results suggest that in the event of advanced black spruce phenology due to climate warming, this host species will support better budworm survival and suffer increased defoliation.  相似文献   

3.
In a recently published article Sleep et al. ( 2009 ) suggested that 30-yr declines in Canada warbler (1975–2005) based on Breeding Bird Survey (BBS) data could be attributed to 30-yr declines in spruce budworm through a series of analyses based principally on correlations. We demonstrate that the relationship does not hold when a longer-term data set (1968–2008) is used for the analysis. Sleep et al. ( 2009 ) also demonstrated a positive relationship between correlations of Canada warbler abundance and time and spruce budworm defoliation and time using provincial data sets. We examined the underlying BBS data and found that there were insufficient observations of Canada warbler in the western provinces (Alberta and Manitoba) to support the conclusion because most Canada warbler observations occurred far (>100 km) from any budworm defoliation. As well, we used a density-dependent stochastic population growth model as proposed by Sleep et al. ( 2009 ) and found only 2 significant relationships (Nova Scotia, Alberta) between Canada warbler population growth rate and budworm defoliation at the provincial scale. We conclude that little analytical evidence exists to support the idea that Canada warbler decline is a function of spruce budworm decline. © 2011 The Wildlife Society.  相似文献   

4.
Using two tests for direct density dependence and standard techniques of time series analysis, we identified density dependence in defoliation time series of the spruce budworm across its outbreak range in eastern North America over the years 1945–1988. We carried out analyses for the entire region and for grid cells of defoliation maps at five spatial scales created by aggregating the smallest grid cells. The rate of detection of direct density dependence, as assessed by two previously published methods, decreased with increasing spatial scale. Using both methods, density dependence was detected more frequently at the periphery of the outbreak range, where defoliation rate was lower. This result suggested that density-dependent regulation may be stronger in those areas. The first order autoregressive process was the basic model for defoliation dynamics overall and the most common model across spatial scales. Second-order processes were encountered much less frequently, and those commonly identified as resulting from delayed density dependence generally occurred across spatial scales at a rate expected by chance alone. Our results were similar to those of other published studies, which have found the detection of density dependence to decrease at larger spatial scales. The results also reinforced the importance of considering spatial scale when diagnosing population processes using time series of abundance for single species. Received: 26 December 1999 / Accepted: 17 March 2000  相似文献   

5.
Abstract.  1. Stage-specific survival and recruitment of spruce budworm were measured by frequent sampling of foliage in four outbreak populations over a 15-year period in Ontario and Quebec, Canada.
2. Patterns of change in population density during the outbreak collapse phase were closely linked to changes in survival of the late immature stages, and were determined largely by the impact of natural enemies.
3. Host-plant feedback also contributed significantly to survival patterns throughout the outbreak: annual defoliation influenced survival of fourth and fifth instars and fecundity while cumulative defoliation influenced survival of the very early larval stages (first and second) via impacts on stand condition.
4. Inclusion of this host-plant feedback reveals spruce budworm population dynamics as a function of density-related trophic interactions that vary in their order and strength of influence over time. This view re-introduces the importance of forest interactions as a component of dynamics of the spruce budworm.  相似文献   

6.
1. Competitive and synergistic interactions directly or indirectly drive community dynamics of herbivorous insects. Novel interactions between non-native and native insects are unpredictable and not fully understood. 2. We used manipulative experiments on mature red spruce trees to test interactions between a non-native phloem feeding insect, the brown spruce longhorn beetle (BSLB), and an outbreaking native defoliator, the spruce budworm. We subjected treatment trees to defoliation by three densities of spruce budworm larvae. Treatment trees were: stressed by (i) girdling (to mimic beetle feeding) or (ii) girdling + BSLB before spruce budworm larvae were introduced on branches in sleeve cages. Budworm larvae then fed on foliage and developed to pupation. We assessed all branches for budworm performance, defoliation, shoot production and shoot growth. 3. Shoot length did not differ in response to stress from girdling or BSLB infestation. Neither stress from girdling, nor interactions with BSLB feeding affected spruce budworm performance or defoliation. Intraspecific impacts on performance and defoliation in relation to budworm density were stronger than the effects of tree stress. 4. Prior infestation of red spruce by BSLB in our experimental set-up did not influence spruce budworm performance. BSLB is a successful invader that has blended into its novel ecological niche because of ecological and phylogenetic similarities with a native congener, Tetropium cinnamopterum. 5. Outbreaks by BSLB will not likely impede or facilitate spruce budworm outbreaks if they co-occur. It would be useful to evaluate the reverse scenario of BSLB success after defoliation stress by spruce budworm.  相似文献   

7.
Aim The Mediterranean Basin is recognized for its high levels of species richness, rarity and endemicity. Our main aim was to evaluate the relative effects of environmental and spatial variables and their scale‐specific importance on beta diversity patterns along a gradient of mediterraneity, using spiders as a model group. Location This study was carried out in 18 coastal dune sites along the Portuguese Atlantic coast. This area encompasses 445 km and comprises two distinct biogeographic regions, Eurosiberian (northern coast) and Mediterranean (centre and south). Methods A forward selection procedure was carried out to select environmental and spatial variables responsible for determining beta diversity patterns. Variation partitioning and principal coordinates of neighbour matrices (PCNM) were used to estimate the contribution of pure environmental and pure spatial effects and their shared influence on beta diversity patterns and to estimate the relative importance of environmental structured variation and pure spatial variation at multiple spatial scales. Results Climate, ground vegetation dune cover and area were selected by a forward selection procedure. The same procedure identified three PCNM variables, all corresponding to large and medium spatial scales. Variation partitioning revealed that 46.1% of the variation of beta diversity patterns was explained by a combination of environmental and PCNM variables. Most of this variation (42.5%) corresponded to spatial variation (environmental spatially structured and pure spatial). Climate and vegetation structure influences were predominant at the PCNM1 and PCNM3 scales, while area was more important at the intermediate PCNM2 scale. Main conclusions Our study revealed that beta diversity of spiders was primarily controlled by a broad‐scale gradient of mediterraneity. The relative importance of environmental variables on the spider assemblage composition varied with spatial scale. This study highlights the need of considering the scale‐specific influence of niche and neutral processes on beta diversity patterns.  相似文献   

8.
Artificial defoliation has been used commonly to simulate defoliation by insect herbivores in experiments, in spite of the fact that obvious differences exist between clipping foliage and natural defoliation due to insect feeding. We used a greenhouse experiment to compare the effects of artificial and western spruce budworm (Choristoneura occidentalis Freeman) defoliation on the growth and biomass allocation of 3-yr old half-sib seedlings from mature Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco variety glauca] trees that showed phenotypic resistance versus susceptibility to budworm defoliation in the forest. Artificial clipping of buds mimicked the effects of budworm feeding on total seedling biomass when 50% of the terminal buds were damaged. However, artificial defoliation decreased seedling height, relative growth rate of height, and shoot: root ratio more than budworm defoliation, whereas budworm defoliation decreased stem diameter relative growth rate more than artificial defoliation. Half-sib seedling progeny from resistant maternal tree phenotypes had greater height, diameter, biomass, and shoot: root ratio than seedlings from susceptible phenotypes. We concluded that careful artificial defoliation could generally simulate effects of budworm defoliation on total biomass of Douglas-fir seedlings, but that the two defoliation types did not have equal effects on biomass allocation between shoot and root. Further, an inherently higher growth rate and a greater allocation of biomass to shoot versus root are associated with resistance of Douglas-fir trees to western spruce budworm defoliation.  相似文献   

9.
Increasing air temperatures and changing precipitation patterns due to climate change can affect tree growth in boreal forests. Periodic insect outbreaks affect the growth trajectory of trees, making it difficult to quantify the climate signal in growth dynamics at scales longer than a year. We studied climate‐driven growth trends and the influence of spruce budworm (Choristoneura fumiferana Clem.) outbreaks on these trends by analyzing the basal area increment (BAI) of 2058 trees of Abies balsamea (L.) Mill., Picea glauca (Moench) Voss, Thuja occidentalis L., Populus tremuloides Michx., and Betula papyrifera Marsh, which co‐occurs in the boreal mixedwood forests of western Quebec. We used a generalized additive mixed model (GAMM) to analyze species‐specific trends in BAI dynamics from 1967 to 1991. The model relied on tree size, cambial age, degree of spruce budworm defoliation, and seasonal climatic variables. Overall, we observed a decreasing growth rate of the spruce budworm host species, A. balsamea and P. glauca between 1967 and 1991, and an increasing growth rate for the non‐host, P. tremuloides, B. papyrifera, and T. occidentalis. Our results suggest that insect outbreaks may offset growth increases resulting from a warmer climate. The observation warrants the inclusion of the spruce budworm defoliation into models predicting future forest productivity.  相似文献   

10.
Climate change is altering phenology; however, the magnitude of this change varies among taxa. Compared with phenological mismatch between plants and herbivores, synchronization due to climate has been less explored, despite its potential implications for trophic interactions. The earlier budburst induced by defoliation is a phenological strategy for plants against herbivores. Here, we tested whether warming can counteract defoliation‐induced mismatch by increasing herbivore‐plant phenological synchrony. We compared the larval phenology of spruce budworm and budburst in balsam fir, black spruce, and white spruce saplings subjected to defoliation in a controlled environment at temperatures of 12, 17, and 22°C. Budburst in defoliated saplings occurred 6–24 days earlier than in the controls, thus mismatching needle development from larval feeding. This mismatch decreased to only 3–7 days, however, when temperatures warmed by 5 and 10°C, leading to a resynchronization of the host with spruce budworm larvae. The increasing synchrony under warming counteracts the defoliation‐induced mismatch, disrupting trophic interactions and energy flow between forest ecosystem and insect populations. Our results suggest that the predicted warming may improve food quality and provide better growth conditions for larval development, thus promoting longer or more intense insect outbreaks in the future.  相似文献   

11.
We introduce a novel spatially explicit framework for decomposing species distributions into multiple scales from count data. These kinds of data are usually positively skewed, have non‐normal distributions and are spatially autocorrelated. To analyse such data, we propose a hierarchical model that takes into account the observation process and explicitly deals with spatial autocorrelation. The latent variable is the product of a positive trend representing the non‐constant mean of the species distribution and of a stationary positive spatial field representing the variance of the spatial density of the species distribution. Then, the different scales of emergent structures of the distribution of the population in space are modelled from the latent density of the species distribution using multi‐scale variogram models. Multi‐scale kriging is used to map the spatial patterns previously identified by the multi‐scale models. We show how our framework yields robust and precise estimates of the relevant scales both for spatial count data simulated from well‐defined models, and in a real case‐study based on seabird count data (the common guillemot Uria aalge) provided by large‐scale aerial surveys of the Bay of Biscay (France) performed over a winter. Our stochastic simulation study provides guidelines on the expected uncertainties of the scales estimates. Our results indicate that the spatial structure of the common guillemot can be modelled as a three‐level hierarchical system composed of a very broad‐scale pattern (~ 200 km) with a stable location over time that might be environmentally controlled, a broad‐scale pattern (~ 50 km) with a variable shape and location, that might be related to shifts in prey distribution, and a fine‐scale pattern (~ 10 km) with a rather stable shape and location, that might be controlled by behavioural processes. Our framework enables the development of robust, scale‐dependent hypotheses regarding the potential ecological processes that control species distributions.  相似文献   

12.
As all biodiversity-related variables, ecological indicators are influenced by environmental factors working at different spatial scales. However, assessing the relationship between environmental factors and ecological indicators is limited to a set of spatial scales determined a priori. This a priori assumption can hide important relationships, especially for ecological indicators with a complex spatial structure that can be driven, for example, by the influence of multiple pollutants with different dispersion ranges or by the influence of local and regional factors such as land-cover and climate. To relate ecological indicators and environmental factors without assuming a priori spatial scales of analysis, we used a Linear Model of Coregionalization. This method has been used in literature to analyze the joint distribution of biodiversity variables. Here we show that it can be used to gain insight into spatial patterns of relationships between ecological indicators and underlying environmental factors. We applied this method to a region of south-west Europe, relating data from land-cover, altitude and climate with an ecological indicator, the abundance of fruticose lichen species, known to be very sensitive to multiple environmental factors. Based on variogram analysis we identified distinct spatial scales of relationships between the ecological indicator and environmental factors. For each spatial scale we described relationships using Principal Component Analysis applied to the coregionalization matrices. This way we could assess how strong the relationship between each environmental factor and ecological indicator at each spatial scale was: at medium scales (c. 15 km) open spaces areas (a proxy for particle emissions) were more important; at larger scales (c. 45 km) open spaces, artificial areas (a proxy for gaseous pollutants) and also climate were preponderant. Thus, multivariate geostatistics provided a tool to improve knowledge on relationships between ecological indicators and environmental factors at multiple spatial scales without setting a priori spatial scales of analysis.  相似文献   

13.
On occasion Greenbank et al. (1980) in their 1973 to 1976 study on spruce budworm moth dispersal in New Brunswick, Canada, detected intense line concentrations of airborne moths crossing special radar observing sites located about 100 km inland from both the Bay of Fundy and the Northumberland Straits. Line concentrations of insects reflect the presence of atmospheric convergence lines. Data from a surface mesonetwork and wind and temperature soundings up to 2 km collected in New Brunswick from 1976 to 1978 around the period of spruce budworm moth activity has revealed sea breeze fronts to be the meteorological origin for the line concentrations of moths. Analysis has shown sea breeze fronts penetrating 80 to 100 km inland in New Brunswick can be expected once or twice each year during the moth dispersal period. An equation for maximum inland penetration was developed which gave a correlation coefficient of 0.78 between predicted and observed inland penetrations with a standard error of 17.5 km. Predicted sea-breeze frontal penetrations of 100 km or more were considered likely to produce a line concentration of moths observable at the radar sited. Using this criteria the prediction scheme delineated four out of the five nights when line concentrations of moths were observed and only over-predicted on one occasion. Thus meteorological data can be used to predict the appearance of line concentrations of spruce budworm moths and so provide input into population redistribution studies and into the development of control strategies directed at the adult budworm.Presented at Eighth International Congress in Biometeorology, 9–14 September 1979, Shefayim, Israel.  相似文献   

14.
The success of invasive ants is frequently attributed to genetic and behavioural shifts in colony structure during or after introduction. The Argentine ant ( Linepithema humile ), a global invader, differs in colony genetic structure and behaviour between native populations in South America and introduced populations in Europe, Japan, New Zealand and North America. However, little is known about its colony structure in Australia. We investigated the genetic structure and behaviour of L. humile across Melbourne, Victoria by quantifying variation at four microsatellite loci and assaying intraspecific aggression at neighbourhood (30–200 m), fine (1–3.3 km) and regional (5–82 km) spatial scales. Hierarchical analyses across these scales revealed that most genetic variation occurred among workers within nests (∼98%). However, although low genetic differentiation occurred among workers between nests at the fine and regional scales (∼2%), negligible differentiation was detected among workers from neighbouring nests. Spatial genetic autocorrelation analysis confirmed that neighbouring nests were genetically more similar to each other. Lack of aggression within and across these scales supported the view that L. humile is unicolonial and forms a large supercolony across Melbourne. Comparisons of genetic structure of L. humile among single nests sampled from Adelaide, Brisbane, Hobart and Perth with Melbourne showed no greater levels of genetic differentiation or dissimilar spatial structure, suggesting an Australia-wide supercolony.  相似文献   

15.
Landscape‐level forest management has long been hypothesized to affect forest insect outbreak dynamics, but empirical evidence remains elusive. We hypothesized that the combination of increased hardwood relative to host tree species, prevalence of younger forests, and fragmentation of those forests due to forest harvesting legacies would reduce outbreak intensity, increase outbreak frequency, and decrease spatial synchrony in spruce budworm Choristoneura fumiferana outbreaks. We investigated these hypotheses using tree ring samples collected across 51 sites pooled into 16 subareas distributed across a large ecoregion spanning the international border between Ontario (Canada), and Minnesota (USA). This ecoregion contains contrasting land management zones with clear differences in forest landscape structure (i.e. forest composition and spatial configuration) while minimizing the confounding influence of climate. Cluster analyses of the 76‐yr time‐series generally grouped by subareas found within the same land management zone. Spatial nonparametric covariance analysis indicated that the highest and lowest degree of spatial synchrony of spruce budworm outbreaks were found within unmanaged wilderness and lands managed at fine spatial scales in Minnesota, respectively. Using multivariate analysis, we also found that forest composition, configuration, and climate together accounted for a total of 40% of the variance in outbreak chronologies, with a high level of shared variance between composition and configuration (13%) and between composition and climate (9%). At the scale of our study, climate on its own did not explain any of the spatial variation in outbreaks. Outbreaks were of higher frequency, lower intensity, and less spatially synchronized in more fragmented, younger forests with a lower proportion of host species, with opposing outbreak characteristics observed in regions characterised by older forests with more concentrated host species. Our study is the first quantitative evaluation of the long‐standing ‘silvicultural hypothesis’ of spruce budworm management specifically conducted at a spatio‐temporal scale for which it was intended.  相似文献   

16.
To simulate feeding by the spruce budworm ( Choristoneura fumiferana Clem.), the apical current-year shoots on 1-year-old branches in the uppermost whorl of 6-year-old balsam fir [ Abies balsamea (L.) Mill.] trees were either removed completely by debudding before the start of the growing season or defoliated 0, 50, 90 or 100% shortly after budbreak. Debudded branches were treated at the apical end with 0, 0.1 or 1.0 mg of indole-3-acetic acid (IAA) (g lanolin)−1. Ninety % of the 1-year-old needles were also removed from some of the experimental branches. After ca 4 weeks of growth, the radial width of new xylem and the level of IAA were determined in the 1-year-old internode. The IAA content was measured by radioimmunoassay.
The removal or defoliation of current-year shoots inhibited tracheid production and decreased the IAA level. Exogenous IAA stimulated tracheid production and increased the IAA level in debudded branches. Current-year shoot defoliation also inhibited current-year shoot elongation. The inhibitory effect of current-year needle removal on all parameters generally increased with increasing intensity of defoliation. The removal of 1-year-old needles did not affect the IAA level or current-year shoot elongation, nor did it influence tracheid production in branches with current-year shoots. However, removal of 1-year-old needles inhibited tracheid production in debudded branches supplied with exogenous IAA. The results indicate that (1) IAA is involved in the control of tracheid production in the 1-year-old internode, (2) IAA is supplied primarily by current-year shoots, and (3) defoliation by the spruce budworm inhibits tracheid production partly by decreasing the supply of IAA.  相似文献   

17.
From 1971 to 1973 several Bacillus thuringiensis formulations were tested in the field against larvae of the spruce budworm under various conditions of population and tree defoliation. The results showed B. thuringiensis treatments can be a weapon in the control of spruce budworm outbreaks and the beneficial effect of B. thuringiensis treatments appear to be prolonged over 1 or 2 years. A new compact formulation was developed making B. thuringiensis treatments more economical and competitive with chemical insecticides.  相似文献   

18.
To investigate potential range shifts in a changing climate it is becoming increasingly common to develop models that account for demographic processes. Metapopulation models incorporate the spatial configuration of occupied habitat (i.e. arrangement, size and quality), population demographics, and inter‐patch dispersal making them suitable for investigating potential threats to small mammal range and abundance. However, the spatial scale (resolution) used to represent species–environment dynamics may affect estimates of range shift and population resilience by failing to realistically represent the spatial configuration of suitable habitat, including stepping stones and refugia. We aimed to determine whether relatively fine‐scale environmental information influenced predictions of metapopulation persistence and range shift. Species distribution models were constructed for four small terrestrial mammals from southern Australia using environmental predictors measured at 0.1 × 0.1 km (0.01 km2) or 1.0 × 1.0 km (1 km2) resolution, and combined with demographic information to parameterise coupled niche‐population models. These models were used to simulate population dynamics projected over 40‐yr under a stable and changing climate. Initial estimates of the area of available habitat were similar at both spatial scales. However, at the fine‐scale, habitat configuration comprised a greater number of patches (ca 12 times), that were more irregular in shape (ca 8 times the perimeter:area), and separated by a tenth of the distance than at the coarse‐scale. While small patches were not more prone to extinction, populations generally declined at a higher rate and were associated with a lower expected minimum abundance. Despite increased species vulnerability at the fine‐scale, greater range shifts were measured at the coarse‐scale (for species illustrating a shift at both scales). These results highlight the potential for range shifts and species vulnerability information to be misrepresented if advanced modelling techniques incorporating species demographics and dispersal inadequately represent the scale at which these processes occur.  相似文献   

19.
The spruce budworm, Choristoneura fumiferana, is presumed to be panmictic across vast regions of North America. We examined the extent of panmixia by genotyping 3,650 single nucleotide polymorphism (SNP) loci in 1975 individuals from 128 collections across the continent. We found three spatially structured subpopulations: Western (Alaska, Yukon), Central (southeastern Yukon to the Manitoba–Ontario border), and Eastern (Manitoba–Ontario border to the Atlantic). Additionally, the most diagnostic genetic differentiation between the Central and Eastern subpopulations was chromosomally restricted to a single block of SNPs that may constitute an island of differentiation within the species. Geographic differentiation in the spruce budworm parallels that of its principal larval host, white spruce (Picea glauca), providing evidence that spruce budworm and spruce trees survived in the Beringian refugium through the Last Glacial Maximum and that at least two isolated spruce budworm populations diverged with spruce/fir south of the ice sheets. Gene flow in the spruce budworm may also be affected by mountains in western North America, habitat isolation in West Virginia, regional adaptations, factors related to dispersal, and proximity of other species in the spruce budworm species complex. The central and eastern geographic regions contain individuals that assign to Eastern and Central subpopulations, respectively, indicating that these barriers are not complete. Our discovery of previously undetected geographic and genomic structure in the spruce budworm suggests that further population modelling of this ecologically important insect should consider regional differentiation, potentially co‐adapted blocks of genes, and gene flow between subpopulations.  相似文献   

20.
Insect outbreaks are major natural disturbance events that affect communities of forest birds, either directly by affecting the food supply or indirectly by changing the vegetation composition of forest canopies. An examination of correlations between measures of bird and insect abundance across different spatial scales and over varying time lag effects may provide insight into underlying mechanisms. We developed a hierarchical Bayesian model to assess correlations between counts of eight warbler species from the Breeding Bird Survey in eastern Canada, 1966 to 2009, with the presence of spruce budworm (Choristoneura fumiferana Clem.) at immediate local scales and time‐lagged regional scales, as measured by extent of defoliation on host tree species. Budworm‐associated species Cape May warbler (Setophaga tigrina), bay‐breasted warbler (Setophaga castanea), and Tennessee warbler (Oreothlypis peregrina) responded strongly and positively to both local and regional effects. In contrast, non‐budworm‐associated species, Blackburnian warbler (Setophaga fusca), magnolia warbler (Setophaga magnolia), Canada warbler (Cardellina canadensis), black‐throated blue warbler (Setophaga caerulescens), and black‐throated green warbler (Setophaga virens), only responded to regional effects in a manner that varied across eastern Canada. The complex responses by forest birds to insect outbreaks involve both increased numerical responses to food supply and to longer term responses to changes in forest structure and composition. These effects can vary across spatial scales and be captured in hierarchical population models, which can serve to disentangle common trends from data when examining drivers of population dynamics like forest management or climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号