首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Developing somatic and zygotic embryos of alfalfa (Medicago sativa L.) exhibited endogenous protein kinase activity and protein acceptors of phosphate groups using both cell-free translational extracts and oligo(dT)-cellulose-column-purified mRNPs. The cell-free-translation extracts from pre-cotyledonary-stage somatic embryos had approximately 50- and 100-fold more protein kinase activity than cotyledonary-stage somatic and zygotic embryos. Several polypeptides were phosphorylated; some of them were unique to the early stage and some to the late-stage developing embryos. A 65 kDa protein was phosphorylated heavily in pre-cotyledonary-stage somatic embryos. This phosphorylated protein was comprised of three main components, two of which were phosphorylated heavily. Heat-shock treated-embryos lost their exitant kinase activity and at the same time another form of protein kinase activity was activated which phosphorylated a novel 28 kDa protein. Endogenous protein kinase activity was also observed within the mRNPs of polysomal and non-polysomal fractions of developing embryos, and this phosphorylated only 65, 43 and 30 kDa proteins within these fractions. A 30 kDa protein from the pre-cotyledonary-stage somatic embryos showed a higher affinity for accepting phosphate groups than the proteins from cotyledonary-stage somatic or zygotic embryos. The activity of protein kinase was largely c-AMP-independent, but was dependent on Ca2+, phospholipid and phorbol ester. The enzyme belongs to the protein kinase-C family; the 65 kDa protein cross-reacts with antibodies made against protein kinase-C (alpha- and beta-isoforms) and it may be an autophosphorylated protein.  相似文献   

2.
Storage proteins of interior spruce ( Picea glauca engelmanii complex) somatic embryos were compared to those of zygotic embryos by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. Somatic embryos contain the same storage proteins as zygotic embryos based on similarities of molecular weight, isoelectric variants, solubility characteristics and disulfide linkages. Storage protein levels varied among different somatic embryo genotypes; however, all genotypes tested accumulated significant amounts of storage proteins. Zygotic and somatic embryos display a similar developmental accumulation of storage proteins. The 22, 24, 33 and 35 kDa proteins appear in early stage embryos, while the 41 kDa protein begins to accumulate during mid cotyledon development. The 22, 24 and 41 kDa proteins accumulate continuously during cotyledon development in somatic embryos cultured on abscisic acid. In contrast, zygotic embryos display a more rapid and transient accumulation of these proteins.  相似文献   

3.
Total protein was extracted from zygotic embryos and from somatic embryos of Picea abies (L.) Karst. (Norway spruce) cultured in vitro at different times during their development. An analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 2-dimensional gel electrophoresis of the protein extracts showed that protein composition and the temporal changes in protein abundance were very similar in the two embryo types. Both zygotic and somatic embryos accumulated storage proteins in abundance during their maturation phase of growth; the somatic embryos when cultured on medium containing 90 m M sucrose and 7.6 μ M ABA. The major storage proteins are composed of polypeptides with molecular masses of about 22, 28, 33 and 42 kDa and they are identical in both embryo types according to their molecular mass and average isoelectric points. These proteins are also the most abundant proteins in the female gametophytic tissue of the mature seed.  相似文献   

4.
Composition and accumulation patterns of storage proteins in female gametophyte and embryos of the white fir (Abies concolor) were investigated during embryogenesis and germination of mature seeds using SDS-PAGE and immunological approach. Altogether 9 major and minor protein components with molecular masses of 14, 16, 22, 24, 27, 30, 35, 38, and 43 kDa were detected in female gametophytes and 9 protein bands in the embryos with the molecular sizes of 14, 16, 22, 24, 25, 27, 34, 38, and 43 kDa. The species seems to deviate in this respect from other representatives of Pinaceae. A conspicuous increase of storage protein synthesis was observed at the stage of fully cellularized female gametophytes and at the cotyledonary stage of embryo development. There exists a high degree of similarity between storage protein profiles of white fir zygotic and somatic embryos. Successive stages of somatic embryogenesis exhibited a high degree of similarity of storage proteins except for cotyledonary stage when a noticeable increase in storage protein synthesis was registered. Conversely, during germination of somatic embryos, an overwhelming majority of storage proteins was depleted.  相似文献   

5.
Changes in protein profiles associated with somatic embryogenesis in peanut   总被引:6,自引:0,他引:6  
The somatic embryogenesis potential of zygotic embryo axes of peanut (Arachis hypogaea L. cv. DRG-12) at different stages of development was evaluated by culturing on MS medium with 18.1 μM 2,4-dichlorophenoxyacetic acid (2,4-D). A 100 % frequency with 18.3 somatic embryos per explant was observed from 4 mm long immature zygotic embryo axes collected 31 – 40 d after pollination. Medium supplemented with 16.6 μM picloram resulted in slow development of somatic embryos whereas in the presence of 21.5 μM α-naphthaleneacetic acid (NAA), the explants underwent maturation with induction of roots after 30 d. The changes in protein profiles in zygotic embryo axes at different stages of development correlated with their potential to form somatic embryos. Immature zygotic embryo axes exhibited high frequency somatic embryogenesis in the stage preceding abundant accumulation of 22 and 65 kDa proteins. The content of 22 and 65 kDa proteins decreased immediately after culture on medium fortified with 18.1 μM 2,4-D and increased again after 12 d of culture coinciding with the development of somatic embryos on the explants. The content of 22 and 65 kDa proteins was low at 15 d of culture on medium supplemented with 16.6 μM picloram possibly due to slow development of the somatic embryos on the explant. On maturation medium containing 21.5 μM NAA, a marked increase in the content of 22 and 65 kDa proteins in 15 d-old cultures was observed.  相似文献   

6.
Total protein patterns were studied in the course of development of pea somatic embryos using simple protocol of direct regeneration from shoot apical meristems on auxin supplemented medium. Protein content and total protein spectra (SDS-PAGE) of somatic embryos in particular developmental stages were analysed in Pisum sativum, P. arvense, P. elatius and P. jomardi. Expression of seed storage proteins in somatic embryos was compared with their accumulation in zygotic embryos of selected developmental stages. Pea vegetative tissues, namely leaf and root, were used as a negative control not expressing typical seed storage proteins. The biosynthesis and accumulation of seed storage proteins was observed during somatic embryo development (since globular stage), despite of the fact that no special maturation treatment was applied. Major storage proteins typical for pea seed (globulins legumin, vicilin, convicilin and their subunits) were detected in somatic embryos. In general, the biosynthesis of storage proteins in somatic embryos was lower as compared to mature dry seed. However, in some cases the cotyledonary somatic embryos exhibited comparatively high expression of vicilin, convicilin and pea seed lectin, which was even higher than those in immature but morphologically fully developed zygotic embryos. Desiccation treatments did not affect the protein content of somatic embryos. The transfer of desiccated somatic embryos on hormone-free germination medium led to progressive storage protein degradation. The expression of true seed storage proteins may serve as an explicit marker of somatic embryogenesis pathway of regeneration as well as a measure of maturation degree of somatic embryos in pea.  相似文献   

7.
Mature embryonic axes were used for chickpea (Cicer arietinum L.) regeneration via somatic embryogenesis. Qualitative and quantitative estimation of protein profile during somatic embryogenesis by SDS-PAGE and densitometric analysis showed differential expression of various storage proteins at different stages of somatic embryo development, which was compared with the profile of developing seeds. Total protein content in somatic embryos of chickpea increased from globular stage [2.9 μg mg−1(f.m.)] to cotyledonary stage [4.8 μg mg−1(f.m.)] and then started decreasing during onset of maturation and germination [up to 1.5 μg mg−1(f.m.)]. Differential expression of seed storage proteins, late embryogenesis abundant (LEA) proteins and proteins related with stress response were documented at different stages of somatic embryogenesis. Germinating somatic embryos showed degradation products of several seed storage proteins and the appearance of new polypeptides (76.8, 67.6, 49.9 and 34.2 kDa), which were absent during differentiation of somatic embryos. A low molecular mass (17.7 kDa) polypeptide was uniformly present during all stages of somatic embryogenesis and it may belong to a group of stress-related proteins. This study describes the expression of true seed storage proteins like legumin, vicilin, convicilin and their subunits at different stages of somatic embryogenesis, which may serve as excellent markers for embryogenic pathway of regeneration in chickpea.  相似文献   

8.
9.
Somatic embryogenesis (SE) of Pinus strobus L. has been greatly improved over the last few years with respect to both the initiation frequencies from a number of seed families and production of mature somatic embryos that readily convert to plants. However, there are no data on biochemical characterization of somatic embryos in relation to zygotic embryos of eastern white pine and on the optimal duration of the maturation stage. It is believed that somatic embryos closely resembling zygotic embryos not only morphologically but biochemically would display more vigorous growth. Hence, in this study the accumulation pattern of the most abundant seed storage proteins in zygotic and somatic embryos were characterized by sodium dodecyl sulphate‐polyacrylamide gel electrophoresis (SDS‐PAGE) and identified by amino acid sequencing and tandem mass spectrometry (MS/MS). This showed that somatic embryos accumulated storage proteins in a similar manner to zygotic embryos and that the most abundant were the buffer‐insoluble 11S‐ globulins MW 59.6 kDa, which dissociated under reduced conditions to 38.2–40.0 and 22.5–23.5 kDa range polypeptides, and buffer‐soluble 7S vicilin‐like proteins MW 46.0–49.0 kDa, which did not separate under reduced conditions. Other relatively abundant soluble proteins were in the ranges of 25–27 and 27–29 kDa. The only group of proteins that showed different migration profiles in the presence of β‐mercaptoethanol (ME) were the low molecular mass proteins of 14.6–16.5 kDa. Somatic embryos that matured for 9 weeks on medium with 6% sucrose accumulated more storage proteins than those matured on medium with 3% sucrose and the extension of the maturation period to 12 weeks resulted in significant reduction of the storage proteins on both media. As expected, somatic embryos matured on medium with 6% sucrose had lower water potential (Ψ) than those from medium with 3% sucrose. Nonetheless, the somatic embryos matured under the best of tested conditions (6% sucrose for 9 weeks) had slightly higher water content; 1.35 ± 0.28 g H2O g?1 DM (mean ± sd ) than the mature non‐dried zygotic embryos; (1.16 ± 0.09 g H2O g?1 DM), and accumulated less storage proteins, whose amounts were either similar to (7S‐vicilins) or below (11S‐globulins) those found in the immature zygotic embryos collected 2 weeks prior to the usual cone collection. The implications of these results for further research and development of viable artificial seed is discussed.  相似文献   

10.
Summary The somatic embryogenic potential of Cercis canadensis (redbud) ovules was compared to changes in ovule protein profiles over time. Ovules collected 82–159 dpa were cultured on a modified SH medium and evaluated after six weeks for the development of somatic embryos. Proteins were extracted from additional ovules and analyzed by SDS-PAGE. Ovules produced somatic embryos from 96–139 dpa and the maximum embryogenic response occurred at 107 dpa. Changes in the staining intensity of six protein bands were associated with changes in embryogenic potential. The intensity 32 and 36 kDa proteins decreased when ovules became competent to produce somatic embryos. The four remaining bands (18, 19, 56, and 94 kDA) increased in intensity from the middle to the end of the sampling period and these changes were associated with the loss of the somatic embryogenic potential.Abbreviations BSA Bovine Serum Albumin - dpa days post anthesis - 2,4-D 2,4-dichlorophenoxyacetic acid - kDa kilodalton - PVPP polyvinylpolyprrolidone - SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis - SH modified Schenk and Hildebrandt medium (1972)  相似文献   

11.
One of the main seed storage proteins of Norway spruce ( Picea abies ), is a salt-soluble protein with an average molecular mass of 42 kDa. This protein was localized by immunocytochemical methods in ultrathin sections of megagametophytes active in storage protein synthesis, as analyzed by SDS-PAGE. The megagametophyte in spruce starts accumulating storage materials, proteins and lipids, as the young embryo grows into the gametophytic tissue. It then continues to accumulate these storage products throughout seed development (Hakman 1993). Megagametophytes at an early stage of storage protein accumulation were chosen in this study for analysing the likely transport pathway of the proteins, since only a small amount of lipid had yet accumulated in the cells, and cell organelles were still easy to distinguish. An antibody against the 42 kDa storage protein showed very good reactivity with the 42 kDa protein in immunoblot experiments with total protein extracts from megagametophytes and embryos. In ultrathin sections of the megagametophyte, the antibodies were preferentially localized in the lumen of Golgi cisterna, in Golgi-associated vesicles, protein deposits close to the vacuolar membrane and in protein storage vacuoles (protein bodies). These observations indicate that the transport is mediated by the Golgi apparatus.
Also, proteins present in storage vacuoles in mature zygotic and somatic embryos showed intense labelling with these antibodies in ultrathin sections.  相似文献   

12.
In the present study we have characterized the synthesis of members of the HSP30 family during Xenopus laevis development using a polyclonal antipeptide antibody derived from the carboxyl end of HSP30C. Two-dimensional PAGE/immunoblot analysis was unable to detect any heat-inducible small HSPs in cleavage, blastula, gastrula, or neurula stage embryos. However, heat-inducible accumulation of a single protein was first detectable in early tailbud embryos with an additional 5 HSPs at the late tailbud stage and a total of 13 small HSPs at the early tadpole stage. In the Xenopus A6 kidney epithelial cell line, a total of eight heat-inducible small HSPs were detected by this antibody. Comparison of the pattern of protein synthesis in embryos and somatic cells revealed a number of common and unique heat inducible proteins in Xenopus embryos and cultured kidney epithelial cells. To specifically identify the protein product of the HSP30C gene, we made a chimeric gene construct with the Xenopus HSP30C coding sequence under the control of a constitutive promoter. This construct was microinjected into fertilized eggs and resulted in the premature and constitutive synthesis of the HSP30C protein in gastrula stage embryos. Through a series of mixing experiments, we were able to specifically identify the protein encoded by the HSP30C gene in embryos and somatic cells and to conclude that HSP30C synthesis was first heat-inducible at the early tailbud stage of development. The differential pattern of heat-inducible accumulation of members of the HSP30 family during Xenopus development suggests that these proteins may have distinct functions at specific embryonic stages during a stress response.  相似文献   

13.
An embryogenic cell suspension, continuously grown in Murashige and Skoog (MS) medium with 0.5 mg/L of 2,4-dichlorophenoxyacetic acid, was established from friable callus of Solanum tuberosum internode sections. The cell suspension was predominantly composed of cell masses and free embryogenic cells. When transferred to an auxin-free medium with zeatin, somatic embryos (SEs) developed and converted to complete plants when cultured on solid MS medium without growth regulators. The system produced approximately 600 SEs per 50 mL of medium. In this investigation, accumulation of extracellular proteins (EPs) of different molecular weights were found associated to different phases of the embryogenic process. At the initiation of the cell suspension, cell clusters and free cells present in the culture (phase "A") secreted a 78kDa EP, unique to this phase. In phase "B", which is related to embryonic cell determination process, proteins (7-14kDa) were secreted mainly by embryogenic cells. In phase "C", SEs in different developmental stages secreted protein of 32 kDa, which appeared as a particular feature of the phase. EPs of phase "D", secreted by torpedo and mature embryos, had molecular weights between 20 and 50 kDa. Further studies will be necessary to identify these proteins and link them to previously identified somatic embryogenesis-related proteins. Histological analysis of the potato embryogenesis in liquid media showed unicellular origin of the SE.  相似文献   

14.
Compared to seeds, somatic embryos accumulated relatively low levels and different types of storage carbohydrates. The regulation of starch accumulation was studied to determine its effects on desiccation tolerance and vigor of dry somatic embryos. Somatic embryos of Medicago sativa are routinely matured through three phases: 7 days of development; 10 days of phase I maturation, a rapid growth phase; and 10 days of phase II maturation, a phase leading to the acquisition of desiccation tolerance. The control of starch deposition was investigated in alfalfa somatic embryos by manipulating the composition of the phase I maturation medium with different levels of sucrose, abscisic acid, glutamine and different types of carbohydrates and amino acids. After phase II maturation, mature somatic embryos were collected for desiccation and subsequent conversion, or for biochemical analyses. Starch deposition occurred primarily during phase I maturation, and variations in the composition of this medium influenced embryo quality, storage protein and starch accumulation. A factorial experiment with two levels of glutamine × three levels of sucrose showed that increasing the sucrose concentration from 30 to 80 g/l increased embryo size and starch content, but had minimal effect on accumulation of storage proteins; glutamine also increased embryo size, but decreased starch content and increased accumulation of the high salt soluble S-2 (medicagin) storage proteins. ABA did not influence any of the parameters tested when included in phase I maturation at concentration up to 10 μM. Replicating sucrose with maltose, glucose, or glucose and fructose did not alter embryo size or starch accumulation (mg/g fresh weight), but replacement with fructose alone reduced embryo size, and replacement with glucose alone reduced germination. Suplementation with the amino acids, asparagine, aspartic acid and glutamine increased seedling vigor, but decreased the starch content of embryos. The data indicate that starch accumulation in somatic embryos is regulated by the relative availability of carbon versus nitrogen nutrients in the maturation medium. The quality of mature somatic embryos, determined by the rate of seedling development (conversion and vigor), correlated with embryo size, storage protein and free amino acid but not with starch. Therefore, further improvements in the quality of somatic embryo may be achieved through manipulation of the maturation medium in order to increase storage protein, but not starch deposition.  相似文献   

15.
Differential protein profiles of three stages of somatic embryogenesis, including globular, torpedo, and cotyledonary somatic embryos, of Coffea arabica cv. Catuaí Vermelho were analyzed in an attempt to better understand somatic embryogenesis in coffee plants. Somatic embryos at these different stages of development were collected from in vitro-grown cultures, and then macerated in liquid nitrogen. Proteins were extracted with phenol and further quantified using the Bradford method. The bidimensional electrophoresis analysis revealed a wide range of proteins ranging between 10 and 160?kDa and of pH values ranging from 3 to 10. Several differentially expressed proteins were identified by mass spectrometry, and some were found to be specific to these different stages of somatic embryogenesis in coffee. The enolase and 11S storage globulin proteins, for example, could be used as molecular markers for somatic embryo development stages and for embryogenic and non-embryogenic genotype differentiation, respectively.  相似文献   

16.
Accumulation of proline, activities of peroxidase (POX), catalase (CAT), phenylalanine ammonia lyase (PAL) and malate dehydrogenase (MDH) were studied during different developmental stages of somatic embryos in chickpea. Callus cultures that did not form somatic embryos served as control. While increased levels of proline and POX activity were noticed in globular stages of embryos, CAT activity increased during early and late heart-shaped embryo formation indicating tissue-specific activation of these enzymes. The activity of PAL reached a peak during torpedo and cotyledonary stages of embryo development. On the other hand, MDH activity enhanced during the germination of somatic embryos inferring more requirement of energy during this stage. Electrophoretic (sodium dodecyl sulfate polyacrylamide gel electrophoresis) pattern of proteins revealed that ten bands are associated with non-embryogenic tissues, whereas 11 bands with globular, heart, torpedo and cotyledonary stages of embryo development and nine bands during the germination stage of embryos. Two extra stage-specific protein bands with molecular masses of 16 and 18 kDa appeared during globular, heart, torpedo, and cotyledonary stages. But, these bands disappeared during germination of embryos and are absent in non-embryogenic cultures. This study thus may help in the identification of proteins and the role of above enzymes during different developmental stages of somatic embryo induction and their maturation in a recalcitrant leguminous crop plant chickpea.  相似文献   

17.
Conifer somatic embryo germination and early seedling growth are fundamentally different than in their zygotic counterparts in that the living maternal megagametophyte tissue surrounding the embryo is absent. The megagametophyte contains the majority of the seed storage reserves in loblolly pine and the lack of the megagametophyte tissue poses a significant challenge to somatic embryo germination and growth. We investigated the differences in seed storage reserves between loblolly pine mature zygotic embryos and somatic embryos that were capable of germination and early seedling growth. Somatic embryos utilized in this study contained significantly lower levels of triacylglycerol and higher levels of storage proteins relative to zygotic embryos. A shift in the ratio of soluble to insoluble protein present was also observed. Mature zygotic embryos had roughly a 3:2 ratio of soluble to insoluble protein whereas the somatic embryos contained over 5-fold more soluble protein compared to insoluble protein. This indicates that the somatic embryos are not only producing more protein overall, but that this protein is biased more heavily towards soluble protein, indicating possible differences in metabolic activity at the time of desiccation.  相似文献   

18.
The effect of abscisic acid (ABA), non-permeating osmoticumand desiccation treatment on storage protein synthesis duringmaturation of somatic embryos of Picea glauca (Moench) Voss.was examined. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE) and Western blot analysis demonstrated that someof the major crystalloid and matrix polypeptides were absentfrom somatic embryos maturing on medium containing ABA and lowosmoticum. However, treatment with polyethylene glycol-4000(PEG) in combination with ABA resulted in the synthesis of aspectrum of storage polypeptides resembling that of mature zygoticembryos. These storage proteins accumulated throughout an 8-weekculture period, resulting in a threefold higher protein contentthan somatic embryos maturing for the same time in the absenceof PEG. The structure and distribution of protein bodies incells of these osmotically treated somatic embryos was similarto that in cells of mature zygotic embryos. Treatment with 5·0-7·5%PEG prevented catabolism of the accumulated storage polypeptidesduring desiccation. The optimal culture conditions for somaticembryo maturation and storage protein deposition was 16 µMABA and 7·5% PEG for 8 weeks followed by desiccation.Analysis of mRNAs by in vitro translation and immunoprecipitationof translated products showed that the crystalloid protein mRNAprofiles of zygotic and those of somatic embryos maturing on16 µM ABA in the absence of PEG were similar. The differencesobserved in the pattern of accumulated polypeptides in thesesomatic embryos and those of mature zygotic embryos, therefore,indicates that storage-protein synthesis in response to osmoticumis in part regulated at the translational level. During regenerationof somatic embryos to plantlets the storage polypeptides wererapidly utilized in a manner similar to that in zygotic seedlings.Copyright1993, 1999 Academic Press Desiccation, osmotic stress, storage proteins, Picea, embryogenesis—somatic, mRNA (crystalloid protein)  相似文献   

19.
The morphology of somatic embryos of Norway spruce ( Picea abies ) varies among different cell lines, from less developed somatic embryos with small embryonic regions (group B) to well developed embryos with large embryonic regions (group A). Only well developed somatic embryos will undergo a maturation process after a treatment with ABA and develop into mature somatic embryos, which is required for plant regeneration. We have previously shown that the presence of specific extracellular proteins can be correlated with the morphology of the somatic embryos. In the present study we show that extracellular proteins concentrated from group A cell lines can stimulate group B embryos to develop further and that seed extract can stably convert B embryos into A embryos. The arabinogalactan protein (AGP) fraction of the extracellular proteins and of the seed extract was shown to be an active component for stimulating B embryos to develop further. Furthermore, the amount and type of extracellular AGPs, as detected with β-glucosyl Yariv reagent and monoclonal antibodies, varied among different types of tissues and cell lines. The data show that development of somatic embryos in Norway spruce is associated with particular extracellular AGPs, which have a regulatory function.  相似文献   

20.
Many plant species contain a seed-specific tonoplast intrinsic protein (TIP) in their protein storage vacuoles (PSVs). Although the function of the protein is not known, its structure implies it to act as a transporter protein, possibly during storage nutrient accumulation/breakdown or during desiccation/imbibition of seeds. As mature somatic embryos of Picea abies (L.) Karst. (Norway spruce) contain PSVs, we examined the presence of TIP in them. Both the megagametophyte and seed embryo accumulate storage nutrients, but at different times and we therefore studied the temporal accumulation of TIP during seed development. Antiserum against the seed-specific a-TIP of Phaseolus vulgaris recognized an abundant 27 kDa tonoplast protein in mature seeds of P. abies. By immunogold labeling of sectioned mature megagametophytes we localized the protein to the PSV membrane. We also isolated the membranes of the PSVs from mature seeds and purified an integral membrane protein that reacted heavily with the antiserum. A sequence of 11 amino acid residues [AEEATHPDSIR], that was obtained from a polypeptide after in-gel trypsin digestion of the purified membrane protein, showed high local identity to a-TIP of Arabidopsis thaliana and to a-TIP of P. vulgaris. The greatest accumulation of TIP in the megagametophytes occurred at the time of storage protein accumulation. A lower molecular mass band also stained from about the time of fertilization until early embryo development. The staining of this band disappeared as the higher molecular mass (27 kDa) band accumulated in the megagametophyte during seed development. Total protein was also extracted from developing zygotic embryos and from somatic embryos. In zygotic embryos low-levels of TIP were seen at all stages investigated, but stained most at the time of storage protein accumulation. The protein was also present in mature somatic embryos but not in proliferating embryogenic tissues in culture. In addition to the seed tissue material, the antiserum also reacted with proteins present in extracts from roots and hypocotyls but not cotyledons from 13-day-old seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号