首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Fanconi anemia pathway and the DNA interstrand cross-links repair   总被引:4,自引:0,他引:4  
Rosselli F  Briot D  Pichierri P 《Biochimie》2003,85(11):1175-1184
Fanconi anemia (FA) is a genetic cancer-predisposition syndrome characterized by bone marrow failure and cellular and chromosomal hypersensitivity to DNA cross-linking agents. Seven FA genes have been isolated and their products associate to form a pathway that interacts functionally or physically with several DNA-damage response proteins involved in cell cycle checkpoints and/or DNA repair. These proteins include BLM, ATM, BRCA1, XPF and the MRE11/RAD50/NBS1 complex. In spite of several recent striking progresses in the biochemistry and the molecular biology of the disorder, the precise function(s) of the FA proteins remain(s) poorly determined. However, several recent data indicate that the FA pathway could be involved in the coordination of both cell cycle checkpoints and DNA repair.  相似文献   

2.
Repair of DNA interstrand cross-links   总被引:24,自引:0,他引:24  
DNA interstrand cross-links (ICLs) are very toxic to dividing cells, because they induce mutations, chromosomal rearrangements and cell death. Inducers of ICLs are important drugs in cancer treatment. We discuss the main properties of several classes of ICL agents and the types of damage they induce. The current insights in ICL repair in bacteria, yeast and mammalian cells are reviewed. An intriguing aspect of ICLs is that a number of multi-step DNA repair pathways including nucleotide excision repair, homologous recombination and post-replication/translesion repair all impinge on their repair. Furthermore, the breast cancer-associated proteins Brca1 and Brca2, the Fanconi anemia-associated FANC proteins, and cell cycle checkpoint proteins are involved in regulating the cellular response to ICLs. We depict several models that describe possible pathways for the repair or replicational bypass of ICLs.  相似文献   

3.
Fanconi anemia (FA) is an autosomal or X-linked recessive disorder characterized by chromosomal instability, bone marrow failure, cancer susceptibility, and a profound sensitivity to agents that produce DNA interstrand cross-link (ICL). To date, 15 genes have been identified that, when mutated, result in FA or an FA-like syndrome. It is believed that cellular resistance to DNA interstrand cross-linking agents requires all 15 FA or FA-like proteins. Here, we review our current understanding of how these FA proteins participate in ICL repair and discuss the molecular mechanisms that regulate the FA pathway to maintain genome stability.  相似文献   

4.
The disease Fanconi anemia is a genome instability syndrome characterized by cellular sensitivity to DNA interstrand cross-linking agents, manifest by decreased cellular survival and chromosomal aberrations after such treatment. There are at least 13 proteins acting in the pathway, with the FANCD2 protein apparently functioning as a late term effecter in the maintenance of genome stability. We find that the chromatin remodeling protein, Tip60, interacts directly with the FANCD2 protein in a yeast two-hybrid system. This interaction has been confirmed by co-immunoprecipitation and co-localization using both endogenous and epitope-tagged FANCD2 and Tip60 from human cells. The observation of decreased cellular survival after exposure to mitomycin C in normal fibroblasts depleted for Tip60 indicates a direct function in interstrand cross-link repair. The coincident function of Tip60 and FANCD2 in one pathway is supported by the finding that depletion of Tip60 in Fanconi anemia cells does not increase sensitivity to DNA cross-links. However, depletion of Tip60 did not reduce monoubiquitination of FANCD2 or its localization to nuclear foci following DNA damage. The observations indicate that Fanconi anemia proteins act in concert with chromatin remodeling functions to maintain genome stability after DNA cross-link damage.  相似文献   

5.
6.
The Fanconi anemia/BRCA pathway: a coordinator of cross-link repair   总被引:1,自引:0,他引:1  
Fanconi anemia (FA) is a rare inherited disease characterized by genomic instability and markedly increased cancer risk. Efforts to elucidate the molecular basis of FA have unearthed a novel DNA damage response pathway, the integrity of which is critical for cellular resistance to DNA cross-linking agents. Despite significant progress in uncovering the molecular events underlying FA, the precise function of this pathway in DNA repair is unknown. This article will review evidence implicating FA proteins in multiple aspects of DNA cross-link repair and propose a model to explain the selectivity of the FA pathway toward DNA cross-linking agents.  相似文献   

7.
DNA interstrand crosslinks (ICLs) are cytotoxic lesions that threaten genome integrity. The Fanconi anemia (FA) pathway orchestrates ICL repair during DNA replication, with ubiquitylated FANCI‐FANCD2 (ID2) marking the activation step that triggers incisions on DNA to unhook the ICL. Restoration of intact DNA requires the coordinated actions of polymerase ζ (Polζ)‐mediated translesion synthesis (TLS) and homologous recombination (HR). While the proteins mediating FA pathway activation have been well characterized, the effectors regulating repair pathway choice to promote error‐free ICL resolution remain poorly defined. Here, we uncover an indispensable role of SCAI in ensuring error‐free ICL repair upon activation of the FA pathway. We show that SCAI forms a complex with Polζ and localizes to ICLs during DNA replication. SCAI‐deficient cells are exquisitely sensitive to ICL‐inducing drugs and display major hallmarks of FA gene inactivation. In the absence of SCAI, HR‐mediated ICL repair is defective, and breaks are instead re‐ligated by polymerase θ‐dependent microhomology‐mediated end‐joining, generating deletions spanning the ICL site and radial chromosomes. Our work establishes SCAI as an integral FA pathway component, acting at the interface between TLS and HR to promote error‐free ICL repair.  相似文献   

8.
9.
The eleven Fanconi anemia (FA) proteins cooperate in a novel pathway required for the repair of DNA cross-links. Eight of the FA proteins (A, B, C, E, F, G, L, and M) form a core enzyme complex, required for the monoubiquitination of FANCD2 and the assembly of FANCD2 nuclear foci. Here, we show that, in response to DNA damage, Chk1 directly phosphorylates the FANCE subunit of the FA core complex on two conserved sites (threonine 346 and serine 374). Phosphorylated FANCE assembles in nuclear foci and colocalizes with FANCD2. A nonphosphorylated mutant form of FANCE (FANCE-T346A/S374A), when expressed in a FANCE-deficient cell line, allows FANCD2 monoubiquitination, FANCD2 foci assembly, and normal S-phase progression. However, the mutant FANCE protein fails to complement the mitomycin C hypersensitivity of the transfected cells. Taken together, these results elucidate a novel role of Chk1 in the regulation of the FA/BRCA pathway and in DNA cross-link repair. Chk1-mediated phosphorylation of FANCE is required for a function independent of FANCD2 monoubiquitination.  相似文献   

10.
The Fanconi anemia (FA) pathway proteins are thought to be involved in the repair of irregular DNA structures including those encountered by the moving replication fork. However, the nature of the DNA structures that recruit and activate the FA proteins is not known. Because FA proteins function within an extended network of proteins, some of which are still unknown, we recently established cell-free assays in Xenopus laevis egg extracts to deconstruct the FA pathway in a fully replication-competent context. Here we show that the central FA pathway protein, xFANCD2, is monoubiquitinated (xFANCD2-L) rapidly in the presence of linear and branched double-stranded DNA (dsDNA) structures but not single-stranded or Y-shaped DNA. xFANCD2-L associates with dsDNA structures in an FA core complex-dependent manner but independently of xATRIP, the regulatory subunit of xATR. Formation of xFANCD2-L is also triggered in response to circular dsDNA, suggesting that dsDNA ends are not required to trigger monoubiquitination of FANCD2. The induction of xFANCD2-L in response to circular dsDNA is replication and checkpoint independent. Our results provide new evidence that the FA pathway discriminates among DNA structures and demonstrate that triggering the FA pathway can be uncoupled from DNA replication and ATRIP-dependent activation.  相似文献   

11.
12.
Bifunctional alkylating agents and other drugs which produce DNA interstrand cross-links (ICLs) are among the most effective antitumor agents in clinical use. In contrast to agents which produce bulky adducts on only one strand of the DNA, the cellular mechanisms which act to eliminate DNA ICLs are still poorly understood, although nucleotide excision repair is known to play a crucial role in an early repair step. Using haploid Saccharomyces cerevisiae strains disrupted for genes central to the recombination, nonhomologous end-joining (NHEJ), and mutagenesis pathways, all these activities were found to be involved in the repair of nitrogen mustard (mechlorethamine)- and cisplatin-induced DNA ICLs, but the particular pathway employed is cell cycle dependent. Examination of whole chromosomes from treated cells using contour-clamped homogenous electric field electrophoresis revealed the intermediate in the repair of ICLs in dividing cells, which are mostly in S phase, to be double-strand breaks (DSBs). The origin of these breaks is not clear since they were still efficiently induced in nucleotide excision and base excision repair-deficient, mismatch repair-defective, rad27 and mre11 disruptant strains. In replicating cells, RAD52-dependent recombination and NHEJ both act to repair the DSBs. In contrast, few DSBs were observed in quiescent cells, and recombination therefore seems dispensable for repair. The activity of the Rev3 protein (DNA polymerase zeta) is apparently more important for the processing of intermediates in stationary-phase cells, since rev3 disruptants were more sensitive in this phase than in the exponential growth phase.  相似文献   

13.
Fibroblasts from patients with Fanconi anemia (FA) display genomic instability, hypersensitivity to DNA cross-linking agents, and deficient DNA end joining. Fibroblasts from two FA patients of unidentified complementation group also had significantly increased cellular homologous recombination (HR) activity. Results described herein show that HR activity levels in patient-derived FA fibroblasts of groups A, C, and G were 10-fold greater than those seen in normal fibroblasts. In contrast, HR activity in group D2 fibroblasts was identical to that in normal cells. Western blot analysis revealed that the RAD51 protein was elevated 10-fold above normal levels in group A, C, and G fibroblasts, but was not altered in group D2 fibroblasts. HR activity levels in these former cells could be restored to near-normal levels by electroporation with anti-RAD51 antibody, whereas similar treatment of normal and complementation group D2 fibroblasts had no effect. These findings are consistent with a model in which FA proteins function to coordinate DNA double-strand break repair activity by regulating both recombinational and non-recombinational DNA repair. Interestingly, whereas positive regulation of DNA end joining requires the combined presence of all FA proteins thus far tested, suppression of HR, which is minimally dependent on the FANCA, FANCC, and FANCG proteins, does not require FANCD2.  相似文献   

14.
A.F. Alpi  K.J. Patel 《DNA Repair》2009,8(4):430-435
The hereditary genetic disorder Fanconi anemia (FA) belongs to the heterogeneous group of diseases associated with defective DNA damage repair. Recently, several reviews have discussed the FA pathway and its molecular players in the context of genome maintenance and tumor suppression mechanisms [H. Joenje, K.J. Patel, The emerging genetic and molecular basis of Fanconi anaemia, Nat. Rev. Genet. 2 (2001) 446–457; W. Wang, Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins, Nat. Rev. Genet. 8 (2007) 735–748; L.J. Niedernhofer, A.S. Lalai, J.H. Hoeijmakers, Fanconi anemia (cross)linked to DNA repair, Cell 123 (2005) 1191–1198; K.J. Patel, Fanconi anemia and breast cancer susceptibility, Nat. Genet. 39 (2007) 142–143]. This review assesses the influence of post-translational modification by ubiquitin. We review and extract the key features of the enzymatic cascade required for the monoubiquitylation of the FANCD2/FANCI complex and attempt to include recent findings into a coherent mechanism. As this part of the FA pathway is still far from fully understood, we raise several points that must be addressed in future studies.  相似文献   

15.
Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway   总被引:17,自引:0,他引:17  
Fanconi anemia (FA) is a human autosomal recessive cancer susceptibility disorder characterized by cellular sensitivity to mitomycin C and ionizing radiation. Although six FA genes (for subtypes A, C, D2, E, F, and G) have been cloned, their relationship to DNA repair remains unknown. In the current study, we show that a nuclear complex containing the FANCA, FANCC, FANCF, and FANCG proteins is required for the activation of the FANCD2 protein to a monoubiquitinated isoform. In normal (non-FA) cells, FANCD2 is monoubiquitinated in response to DNA damage and is targeted to nuclear foci (dots). Activated FANCD2 protein colocalizes with the breast cancer susceptibility protein, BRCA1, in ionizing radiation-induced foci and in synaptonemal complexes of meiotic chromosomes. The FANCD2 protein, therefore, provides the missing link between the FA protein complex and the cellular BRCA1 repair machinery. Disruption of this pathway results in the cellular and clinical phenotype common to all FA subtypes.  相似文献   

16.
Cells deficient in the Werner syndrome protein (WRN) or BRCA1 are hypersensitive to DNA interstrand cross-links (ICLs), whose repair requires nucleotide excision repair (NER) and homologous recombination (HR). However, the roles of WRN and BRCA1 in the repair of DNA ICLs are not understood and the molecular mechanisms of ICL repair at the processing stage have not yet been established. This study demonstrates that WRN helicase activity, but not exonuclease activity, is required to process DNA ICLs in cells and that WRN cooperates with BRCA1 in the cellular response to DNA ICLs. BRCA1 interacts directly with WRN and stimulates WRN helicase and exonuclease activities in vitro. The interaction between WRN and BRCA1 increases in cells treated with DNA cross-linking agents. WRN binding to BRCA1 was mapped to BRCA1 452–1079 amino acids. The BRCA1/BARD1 complex also associates with WRN in vivo and stimulates WRN helicase activity on forked and Holliday junction substrates. These findings suggest that WRN and BRCA1 act in a coordinated manner to facilitate repair of DNA ICLs.  相似文献   

17.
DNA interstrand cross-links are formed by chemotherapy drugs as well as by products of normal oxidative metabolism. Despite their importance, the pathways of cross-link metabolism are poorly understood. Laser confocal microscopy has become a powerful tool for studying the repair of DNA lesions that can be detected by immunofluorescent reagents. In order to apply this approach to cross-link repair, we have synthesized conjugates of 4,5',8-trimethylpsoralen (TMP) and easily detected compounds such as Lissamine rhodamine B sulfonyl chloride (LRB-SC), biotin, and digoxigenin. These conjugates are activated by UVA, and we have analyzed the intracellular localization of DNA damage and DNA reactivity by confocal and immunofluorescence microscopy. The LRB-SC-TMP conjugate 2 appeared mainly in the mitochondria, while the biotin-TMP conjugate 4 preferentially localized in the cytoplasm. Adducts formed by UVA and digoxigenin conjugates of TMP 7a and 4,5'-dimethylangelicin (DMA) 7b, which forms only monoadducts, were largely localized to the nucleus. Exposure of cells incubated with 7a and 7b to a 364 nm UV laser directed toward defined nuclear regions of interest resulted in localized adduct formation which could be visualized by immunofluorescence. Repair-proficient cells were able to remove the photoadducts, while repair-deficient cells were unable to repair the damage. The results indicated that the digoxigenin-TMP conjugate 7a and digoxigenin-DMA conjugate 7b can be used for studying the repair of laser localized DNA monoadducts and cross-links.  相似文献   

18.
Zhang N  Liu X  Li L  Legerski R 《DNA Repair》2007,6(11):1670-1678
DNA interstrand cross-linking agents have been widely used in chemotherapeutic treatment of cancer. The majority of interstrand cross-links (ICLs) in mammalian cells are removed via a complex process that involves the formation of double-strand breaks at replication forks, incision of the ICL, and subsequent error-free repair by homologous recombination. How double-strand breaks effect the removal of ICLs and the downstream homologous recombination process is not clear. Here, we describe a plasmid-based recombination assay in which one copy of the CFP gene is inactivated by a site-specific psoralen ICL and can be repaired by gene conversion with a mutated homologous donor sequence. We found that the homology-dependent recombination (HDR) is inhibited by the ICL. However, when we introduced a double-strand break adjacent to the site of the ICL, the removal of the ICL was enhanced and the substrate was funneled into a HDR repair pathway. This process was not dependent on the nucleotide excision repair pathway, but did require the ERCC1-XPF endonuclease and REV3. In addition, both the Fanconi anemia pathway and the mismatch repair protein MSH2 were required for the recombinational repair processing of the ICL. These results suggest that the juxtaposition of an ICL and a DSB stimulates repair of ICLs through a process requiring components of mismatch repair, ERCC1-XPF, REV3, Fanconi anemia proteins, and homologous recombination repair factors.  相似文献   

19.
Fanconi anemia (FA) is a multigene cancer susceptibility disorder characterized by cellular hypersensitivity to DNA interstrand cross-linking agents such as mitomycin C (MMC). FA proteins are suspected to function at the interface between cell cycle checkpoints, DNA repair, and DNA replication. Using replicating extracts from Xenopus eggs, we developed cell-free assays for FA proteins (xFA). Recruitment of the xFA core complex and xFANCD2 to chromatin is strictly dependent on replication initiation, even in the presence of MMC indicating specific recruitment to DNA lesions encountered by the replication machinery. The increase in xFA chromatin binding following treatment with MMC is part of a caffeine-sensitive S-phase checkpoint that is controlled by xATR. Recruitment of xFANCD2, but not xFANCA, is dependent on the xATR-xATR-interacting protein (xATRIP) complex. Immunodepletion of either xFANCA or xFANCD2 from egg extracts results in accumulation of chromosomal DNA breaks during replicative synthesis. Our results suggest coordinated chromatin recruitment of xFA proteins in response to replication-associated DNA lesions and indicate that xFA proteins function to prevent the accumulation of DNA breaks that arise during unperturbed replication.  相似文献   

20.
B Hang  A T Yeung    M W Lambert 《Nucleic acids research》1993,21(18):4187-4192
A DNA binding protein with specificity for DNA containing interstrand cross-links induced by 4,5',8-trimethylpsoralen (TMP) plus long wavelength ultraviolet (UVA) light has been identified in normal human chromatin. Protein binding to DNA was determined using a gel mobility shift assay and an oligonucleotide containing a hot spot for formation of psoralen interstrand cross-links. Specificity of the damage-recognition protein for cross-links was demonstrated both by a positive correlation between level of cross-link formation in DNA and extent of protein binding and by effective competition by treated but not undamaged DNA for the binding protein. Chromatin protein extracts from cells from individuals with the genetic disorder, Fanconi anemia, complementation group A (FA-A), which have decreased ability to repair damage produced by TMP plus UVA light, failed to show any protein binding to TMP plus UVA treated DNA. We have previously shown that these chromatin protein extracts contain a DNA endonuclease complex, pI 4.6, which specifically recognizes and incises DNA containing interstrand cross-links and which in FA-A cells is defective in its ability to incise this damaged DNA (Lambert et al. (1992) Mutation Res., 273, 57-71). Together, these findings suggest that the DNA binding protein identified is involved in recognition and repair of DNA interstrand cross-links.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号