首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urine production and N output were monitored in northern elephant seal (Mirounga angustirostris) pups progressing through 10 weeks of a natural postweaning fast. Urine output declind by 84% (to 69±12 ml·day–1) at 10 weeks (P<0.05). Glomerular filtration rate at 10 weeks was 51% of the 67±3 ml serum·min–1 observed during week 1 (P<0.05). Urine N excretion fell by 69% to 1.2±0.17 g·day–1, while urinary concentration increased (P<0.05). Serum urea declined from an initial 11 mmol·1–1 to 5–7 mmol·1–1 by 5 weeks. The fall in urinary N loss (and thus amino acid oxidation) was concomitant with depressed metabolic rate. Therefore, protein contributed little toward meeting energy demands (i.e., <4% of average metabolic rate) throughout fasting. These data indicate that fasting pups improve water conservation and minimize protein catabolism during prolonged natural fasts without an exogenous source of water.Abbreviations AA amino acid(s) - AMR average metabolic rate - ANOVA one-way analysis of variance - BMR basal metabolic rate - BUN blood urea nitrogen - EP end product - EWL evaporative water loss - [Gr]s serum creatinine concentration - GFR glomerular filtration rate - LBM lean body mass - LML Long Marine Laboratory - MR metabolic rate - NEFA non-esterified fatty acids - RMR resting metabolic rate - TCA tricarboxylic acid - U:C ulinary urea: creatinine concentration ratio  相似文献   

2.
When Corynebacterium glutamicum is grown with a sufficient nitrogen supply, urea crosses the cytoplasmic membrane by passive diffusion. A permeability coefficient for urea diffusion of 9 × 10–7 cm s–1 was determined. Under conditions of nitrogen starvation, an energy-dependent urea uptake system was synthesized. Carrier-mediated urea transport was catalyzed by a secondary transport system linked with proton motive force. With a K m for urea of 9 μM, the affinity of this uptake system was much higher than the affinity of urease towards its substrate (K m approximately 55 mM urea). The maximum uptake velocity depended on the expression level and was relatively low [2–3.5 nmol min–1 (mg dry wt.)–1]. Received: 11 August 1997 / Accepted: 2 December 1997  相似文献   

3.
Spirulina platensis was cultivated, in comparative studies, using several sources of nitrogen. The standard source used (sodium nitrate) was the same as that used in the synthetic medium Zarrouk, whereas the alternative nitrogen sources consisted of ammonium nitrate, urea, ammonium chloride, ammonium sulphate or acid ammonium phosphate. The initial nitrogen concentrations tested were 0.01, 0.03 and 0.05 M in an aerated photobioreactor at 30 °C, with an illuminance of 1900 lux, and 12 h-light/12 h-dark photoperiod over a period of 672 h. Maximum biomass was produced in medium containing sodium nitrate (0.01–0.03–0.05 M), followed by ammonium nitrate (0.01 M) and urea (0.01 M). The final biomass concentrations were 1.992 g l–1 (0.03 M sodium nitrate), 1.628 g l–1 (0.05 M sodium nitrate), 1.559 g l–1 (0.01 M sodium nitrate), 0.993 g l–1 (0.01 M ammonium nitrate) and 0.910 g l–1 (0.01 M urea). This suggested that it is possible to utilize nitrogen sources other than sodium nitrate for growing S. platensis, in order to decrease the production costs of scaled up projects.  相似文献   

4.
The capacity of Elodea nuttallii (Planch.) St. John and Elodea canadensis Michx. to remove nitrogen from water was evaluated in laboratory experiment. The growth rate of plants and their effect on the nitrogen level of hypertrophic Lake Zwemlust (the Netherlands) as well as on lake water enriched with nitrogen were investigated. The plants grew best in water enriched with up to 2 mg NH4-Nl–1 and 2 mg NH4-Nl–1 plus 2 mg NO3 Nl–1. During a 14 day experiment, plants absorbed from 75% to 90% of nitrogen. Higher nitrogen concentration than 4 mg l–1 had a negative effect on growth of both species. Elodea nuttallii and E. canadensis prefer NOinf4/p+ over NOinf4/p– when both ions were present in water in equal concentrations.  相似文献   

5.
Physical and chemical conditions, particulate matter and N-uptake were characterized at two sampling sites at the eastern German coast of the Baltic Sea (Pomeranian Bay) over the annual period of 1997 (February–November). The inshore sampling sites (5 m water depth) differed with respect to the potential influences of river run-off and salt water exchange (mean values of salinity: 7.05 and 8.72 PSU), respectively. The mean org-Cdiss/org-Cpart-ratios (4.9 and 12.6) fell in the same order of magnitude (1.0–12.6) as values of neighboring inshore waters, and increasing values reflect an enhancement of the trophic level. Beside differences of nitrogen concentrations (dissolved inorganic nitrogen: 1.8–23.8 and 0.9–9.9 mol l–1), particulate nitrogen (4.30–41.01 and 2.69–9.08 mol l–1) and absolute uptake of N-nutrients (mean sum of NH4 +, urea, NO3 uptake rates: 0.141 and 0.087 mol l–1 h–1), specific uptake of 15N-labelled nutrients (NH4 +, urea, NO3 ) as well as the relationships between the measured variables characterize distinguishable inshore systems. The high variability at the shallow sampling sites prevents, however a simple resolution of the seasonal courses. Light dose could be identified as a potential key in order to describe long-term variations of N-uptake at the station with higher organic matter concentration (station KW), but phytoplankton development is better reflected in the seasonal course of N-uptake at the other station. Specific nitrogen uptake rates (NH4 +: 0.0009–0.0353 h–1, urea: 0.0001–0.0137 h–1, NO3 : 0.000004–0.0009 h–1) and relative nitrogen preferences indicate extraordinary importance of reduced nitrogenous nutrients (NH4 +, urea) at both stations throughout the year.  相似文献   

6.
Creatine kinase (ATP:creatine N-phosphotransferase, EC 2.7.3.2) is a good model for studying dissociation and reassociation during unfolding and refolding. This study compares self-reassociated CK dimers and CK dimers that contain hybrid dimers under proper conditions. Creatine kinase forms a monomer when denatured in 6 M urea for 1 h which will very quickly form a dimer when the denaturant is diluted under suitable conditions. After modification by DTNB, CK was denatured in 6 M urea to form a modified CK monomer. Dimerization of this modified subunit of CK occurred upon dilution into a suitable buffer containing DTT. Therefore, three different types of reassociated CK dimers including a hybrid dimer can be made from two different CK monomers in the proper conditions. The CK monomers are from a urea-denatured monomer of DTNB-modified CK and from an unmodified urea dissociated monomer. Equal enzyme concentration ratios of these two monomers were mixed in the presence of urea, then diluted into the proper buffer to form the three types of reassociated CK dimers including the hybrid dimer. Reassociated CK dimers including all three different types recover about 75% activity following a two-phase course (k 1 = 4.88 × 10–3 s–1, k 2 = 0.68 × 10–3 s–1). Intrinsic fluorescence spectra of the three different CK monomers which were dissociated in 6 M urea, dissociated in 6 M urea after DTNB modification, and a mixture of the first two dissociated enzymes were studied in the presence of the denaturant urea. The three monomers had different fluorescence intensities and emission maxima. The intrinsic fluorescence maximum intensity changes of the reassociated CK dimers were also studied. The refolding processes also follow biphasic kinetics (k 1 = 3.28 × 10–3 s–1, k 2 = 0.11 × 10–3 s –1) after dilution in the proper solutions. Tsou's method [Tsou (1988), Adv. Enzymol. Rel. Areas Mol. Biol. 61, 381–436] was also used to measure the kinetic reactivation rate constants for the different three types of reassociated CK dimers, with different kinetic reactivation rate constants observed for each type. CK dissociation and reassociation schemes are suggested based on the results.  相似文献   

7.
Although common bean (Phaseolus vulgaris L.) has good potential for N2 fixation, some additional N provided through fertilizer usually is required for a maximum yield. In this study the suppressive effect of N on nodulation and N2 fixation was evaluated in an unfertile soil under greenhouse conditions with different levels of soil fertility (low=no P, K and S additions; medium = 50, 63 and 10 mg kg–1 soil and high = 200, 256 and 40 mg kg–1 soil, respectively) and combined with 5, 15, 60 and 120 mg N kg–1 soil of 15N-labelled urea. The overall average nodule number and weight increased under high fertility levels. At low N applications, nitrogen had a synergistic effect on N2 fixation, by stimulating nodule formation, nitrogenase activity and plant growth. At high fertility and at the highest N rate (120 mg kg–1 soil), the stimulatory effect of N fertilizer on N2 fixation was still observed, increasing the amounts of N2 fixed from 88 up to 375 mg N plant–1. These results indicate that a suitable balance of soil nutrients is essential to obtain high N2 fixation rates and yield in common beans.  相似文献   

8.
Sikora  L. J.  Enkiri  N. K. 《Plant and Soil》2001,235(1):65-73
Composts are considered low analysis fertilizers because their nitrogen and phosphorus content are around 1% and the organic nitrogen mineralization rate is near 10%. If compost is added to agricultural land at the N requirement of grain crops (40 – 100 kg N ha–1), application rates approach 40–100 mg ha–1. Much lower rates may be advisable to avoid rapid accumulation of growth limiting constituents such as heavy metals found in some composts. Combining low amendment rates of composts with sufficient fertilizer to meet crop requirements is an appealing alternative which (a) utilizes composts at lower rates than those needed to supply all the crop N requirement, (b) reduces the amount of inorganic fertilizer applied to soils, and (c) reduces the accumulation of non-nutrient compost constituents in soils. A study was conducted to compare the effects of blends of biosolids compost (C) with 15N urea(U) or 15NH4 15NO3 (N) fertilizers to fertilizer alone on tall fescue (Festuca arundinacea L.) growth and N uptake. Blends which provided 0, 20, 40 or 60 mg N kg–1 application rate as compost N and 120, 100, 80 or 60 mg N kg–1 as fertilizer N, respectively, were added to Sassafras soil (Typic Hapludults). Fescue was grown on the blends in a growth chamber for 98 days. Fescue yields recorded by clippings taken at 23, 46 and 98 days and roots harvested after the 98-day clipping increased with increasing fertilizer level for both NH4NO3 and urea and with or without compost. Nitrogen uptake by fescue responded similarly to yield with increases recorded with increasing fertilizer levels with or without compost. Paired comparisons based on cumulative 98-day clippings data showed that yields from blends were equal to yields from fertilizer treatments containing the same percentage of fertilizer as the blends. These data indicated that compost did not provide sufficient plant-available N to increase yields or N uptake. None of the blends equaled 120 mg N kg–1 fertilizer rate except for 100 mg NH4NO3-or urea-N kg–1 –20 mg compost-N kg–1blends. The data suggest that biosolids compost blended with fertilizer at a rate of 2–6 mg ha –1 did not supply sufficient additional available N to increase yields or N uptake over those of fertilizer alone.  相似文献   

9.
The effects of enrichment with phosphate (0–500 µg. 1–1) and forms of nitrogen (nitrate, nitrite, ammonia an and urea) (0–3500 µgg. –1) on the phytoplankton growth of Lobo Reservoir (Brazil) were studied in July, 1979. Suspended matter, chlorophyll a, cell concentrations and the carotenoid:cchlorophyll ratio were estimated following 14 days of in situ incubation. Phosphate alone caused no significant effects, but enrichment with nitrogen caused a substantial increase on the growth of phytoplankton. Comparison between the different forms of nitrogen showed insignificant effects after their additions with 350 µg. –1 and in combination with phosphate. However, when nitrogen was added in large quantities (3 500 µg. –1), significant differences between the nitrogeneous forms were found, with urea causing the strongest effect. In July, nitrogen is mhe main limiting nutrient to phytoplankton growth of Lobo Reservoir.Supported by CNPq and FAPESP.  相似文献   

10.
To study the impact of high atmospheric nitrogen deposition on the leaching of NO3 and NH4+ beneath forest and heathland vegetation, investigations were carried out in adjacent forest and heathland ecosystems in Northwest Germany. The study area is subjected to high deposition of nitrogen ranging from 15.9 kg ha–1 yr–1 in bulk precipitation to 65.3 kg ha–1 yr–1 beneath a stand of Pinus sylvestris L. with NH4–N accounting for 70–80% of the nitrogen deposited. Considerable leaching of nitrogen compounds from the upper horizons of the soil, mostly as nitrate, occurred at most of the forest sites and below a mixed stand of Calluna vulgaris (L.) Hull. and Erica tetralix, but was low in a Betula pubescens Ehrh. swamp forest as well as beneath Erica tetralix L. wet heath and heath dominated by Molinia caerulea(L.) Moench. Ground water concentrations of both NO3–N and NH4–N did not exceed 1 mg L–1 at most of the sites investigated.  相似文献   

11.
Summary Nitrogen metabolism and urea kinetics were studied in rock hyraxes (Procavia habessinica) fed diets of different protein content.The maintenance nitrogen (N) requirement of the rock hyrax (311 mg·kg–0.75·24 h–1 of dietary N, or 209 mg·kg–0.75·24 h–1 of truly digestible N) is similar to that of several marsupial species, and thus lower than that of other eutherians.Urea recycled to the gut, measured with single injections of14C-urea, was 63% and 60% of urea entry rate on diets with 14.6% and 8.2% crude protein, respectively. Urea recycling increased to 70% when water intake was restricted, but decreased to 40% on a low (5.3%) protein diet, presumably because of a low energy intake.Urea utilization in the gut, measured with single injections of15N-urea, was 59% and 53% of urea degradation on the 14.6% and 8.2% protein diets, respectively. Urea utilization increased to 71% on the low protein diet, and increased to 98% with water restriction.The low maintenance nitrogen requirement appears to be the main physiological attribute of the rock hyrax enabling it to survive periods of low dietary protein availability. However, this low requirement can be related to the low basal metabolic rate of the Hyracoidea in general, and thus is not necessarily a primary adaptation to the environment.  相似文献   

12.
Summary The metabolic and cardiac responses to temperature were studied in two species (four subspecies) of western chipmunks (genusEutamias), inhabiting boreal and alpine environments. A specially designed (Fig. 1) implantable biopential radiotransmitter was used to measure heart rate in unrestrained animals. The estimated basal metabolic rates (EBMR) were 1.78 (E. minimus borealis), 1.64 (E. m. oreocetes), 1.50 (E. m. operarius), and 1.69 ml O2 g–1 h–1 (E. amoenus luteiventris), or 839, 752, 698, and 628 ml O2 kg–0.75 h–1, respectively, for the four subspecies (Table 1). The two alpine species (E.m.or. andE.m.op.) had significantly lower EBMR than both of their boreal counterparts. The EBMR from all animals are 120–135% of the predicted values based on body weights of the animals. The thermal neutral zone for the four subspecies ranged from 23.5 to 32°C and the minimum thermal conductances were 0.113, 0.111, 0.112 and 0.112 ml O2 g–1 h–1 °C–1, respectively, or 54.4, 54.0, 50.4 and 52.1 ml O2 kg–0.75 h–1 °C–1, respectively (Fig. 2). No interspecific diffence in conductance was observed. These values are 72 to 85% of their weight specific values. The body temperature ranged between 35.0 and 39.5°C and was usually maintained between 36 and 38°C in all subspecies between ambient temperatures of 3 and 32°C. The estimated basal heart rates were 273, 296, 273 and 264 beats/min, respectively, for the four subspecies, 49–55% of their predicted weight specific values. The resultant oxygen pulses (metabolic rate/heart rate) were 5.49, 4.50, 4.48 and 5.56×10–3 ml O2/beat, respectively, which are 2 to 2.4 times their weight specific values (Table 2).The observed reduction of basal heart rate without the corresponding decreases of basal metabolic rate and body temperature indicate sufficient compensatory increases in stroke volume and/or A-V oxygen difference at rest. Such cardiovascular modifications provide extra reserves when demand for aerobic metabolism rises during bursts of activity typically observed in the western chipmunk.Abbreviations A-V arterio-venous - EBMR estimated basal metabolic rate (ml O2 g–1 h–1) - HR heart rate (beats/min) - MR metabolic rate (ml O2 g–1 h–1) - OP oxygen pulse (ml O2/heart beat) - Ta, Tb ambient and body temperature (°C)  相似文献   

13.
Ledgard  S.F.  Sprosen  M.S.  Penno  J.W.  Rajendram  G.S. 《Plant and Soil》2001,229(2):177-187
Effects of rate of nitrogen (N) fertilizer and stocking rate on production and N2 fixation by white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L.) were determined over 5 years in farmlets near Hamilton, New Zealand. Three farmlets carried 3.3 dairy cows ha–1 and received urea at 0, 200 or 400 kg N ha–1 yr–1 in 8–10 split applications. A fourth farmlet received 400 kg N ha–1 yr–1 and had 4.4 cows ha–1.There was large variation in annual clover production and total N2 fixation, which in the 0 N treatment ranged from 9 to 20% clover content in pasture and from 79 to 212 kg N fixed ha–1 yr–1. Despite this variation, total pasture production in the 0 N treatment remained at 75–85% of that in the 400 N treatments in all years, due in part to the moderating effect of carry-over of fixed N between years.Fertilizer N application decreased the average proportion of clover N derived from N2 fixation (PN; estimated by 15N dilution) from 77% in the 0 N treatment to 43–48% in the 400 N treatments. The corresponding average total N2 fixation decreased from 154 kg N ha–1 yr–1 to 39–53 kg N ha–1 yr–1. This includes N2 fixation in clover tissue below grazing height estimated at 70% of N2 fixation in above grazing height tissue, based on associated measurements, and confirmed by field N balance calculations. Effects of N fertilizer on clover growth and N2 fixation were greatest in spring and summer. In autumn, the 200 N treatment grew more clover than the 0 N treatment and N2 fixation was the same. This was attributed to more severe grazing during summer in the 0 N treatment, resulting in higher surface soil temperatures and a deleterious effect on clover stolons.In the 400 N treatments, a 33% increase in cow stocking rate tended to decrease PN from 48 to 43% due to more N cycling in excreta, but resulted in up to 2-fold more clover dry matter and N2 fixation because lower pasture mass reduced grass competition, particularly during spring.  相似文献   

14.
Summary The nitrogen fixation rate in a 4-year-old stand of the woody legumeLeucaena leucocephala (Lam.) de Wit. was estimated in the field at a rather dry site in Tanzania by use of an acetylene reduction technique. The diurnal mean value during April–May was 35 nmol C2H4 mg–1 (dry weight) nodules h–1, with a variation between 22±8 and 48±12 nmol C2H4 mg–1 (dry weight) nodules h–1 in early morning and at midday, respectively. The nodule biomass was determined by auger sampling to be 51±16 kg (dry weight) ha–1. Most of the nodules were found at the 10–30 cm soil depth level. A rough calculation of the amount of nitrogen fixed annually arrived at 110±30 kg ha–1. The results give strong support for the use ofL. leucocephala for soil enrichment in less humid areas of tropical Africa.  相似文献   

15.
Summary Cl influx into cells ofChara corallina is shown to be stimulated by a factor of 2 to 4 by starvation of Cl. The time constant for the induction of this effect is about 4.0 ksec and that for its decay when Cl is reprovided, 1.7 ksec. Intracellular perfusion of tonoplast-free cells with solutions of varying Cl concentration shows that Cl influx can be controlled directly by the concentration of Cl at the inside of the plasma membrane. Both the time course for the initial stages of induction of the starvation-stimulated flux and its absolute magnitude can be accounted for by assuming cytoplasmic Cl concentration to be the only intracellular condition to change during Cl starvation. The existence of a feedback loop between cytoplasmic Cl and Cl influx provides an alternative explanation to observations previously used in support of a Cl/OH exchange hypothesis (F.A. Smith, 1972,New Phytol. 71:595).  相似文献   

16.
Production of nisin and pediocin were followed, respectively, in Lactococcus lactis subsp. lactis CECT 539 and Pediococcus acidilactici NRRL B-5627 grown with lactose and four different nitrogen sources. Neither NH4Cl nor glycine improved production of the bacteriocins. Both yeast extract and Casitone increased pediocin production from 55 BU ml–1 to 195 BU ml–1 and 185 BU ml–1, respectively. Nisin increased from 21 BU ml–1 to 74 BU ml–1 and 59 BU ml–1 with these nitrogen sources.  相似文献   

17.
Wild-type Aspergillus nidulans has an active transport system specific for urea which concentrates urea at least 50-fold relative to the extracellular concentration. It is substrate concentration dependent, with an apparent K m of 3×10–5 m for urea. Competition studies and the properties of mutants indicate that thiourea is taken up by the same system as urea. Thiourea is toxic at 5mm to wild-type cells of Aspergillus nidulans. Mutants, designated ureA1 to ureA16, resistant to thiourea have been isolated, and transport assays and growth tests show that they are specifically impaired in urea transport. The mutant ureA1 has a higher K m value than the wild type for thiourea uptake. The ureA locus has been assigned to linkage group VIII. ureA1 is recessive for thiourea resistance while semidominant for the low uptake characteristic. The urea uptake system is under nitrogen regulation, with l-glutamine as the probable effector. The mutants, meaA8 and gdhA1, which are insensitive to ammonium control of many nitrogen-regulated metabolic systems, are also insensitive to ammonium control of urea uptake, but both are sensitive to l-glutamine regulation.Formerly at the Department of Genetics, University of Glasgow, Glasgow, Scotland.  相似文献   

18.
Field and laboratory experiments were designed to determine the differential growth and toxin response to inorganic and organic nitrogen additions in Pseudo-nitzschia spp. Nitrogen enrichments of 50 μM nitrate (KNO3), 10 μM ammonium (NH4Cl), 20 μM urea and a control (no addition) were carried out in separate carboys with seawater collected from the mouth of the San Francisco Bay (Bolinas Bay), an area characterized by high concentrations of macronutrients and iron. All treatments showed significant increases in biomass, with chlorophyll a peaking on days 4–5 for all treatments except urea, which maintained exponential growth through the termination of the experiment. Pseudo-nitzschia australis Frenguelli abundance was 103 cells l−1 at the start of the experiment and increased by an order of magnitude by day 2. Particulate domoic acid (pDA) was initially low but detectable (0.15 μg l−1), and increased throughout exponential and stationary phases across all treatments. At the termination of the experiment, the urea treatment produced more than double the amount of pDA (9.39 μg l−1) than that produced by the nitrate treatment (4.26 μg l−1) and triple that of the control and ammonium treatments (1.36 μg l−1 and 2.64 μg l−1, respectively). The mean specific growth rates, calculated from increases in chlorophyll a and from cellular abundance of P. australis, were statistically similar across all treatments.These field results confirmed laboratory experiments conducted with a P. australis strain isolated from Monterey Bay, CA (isolate AU221-a) grown in artificial seawater enriched with 50 μM nitrate, 50 μM ammonium or 25 μM of urea as the sole nitrogen source. The exponential growth rate of P. australis was significantly slower for cells grown on urea (ca. 0.5 day−1) compared to the cells grown on either nitrate or ammonium (ca. 0.9 day−1). However the urea-grown cells produced more particulate and dissolved domoic acid (DA) than the ammonium- or nitrate-grown cells. The field and laboratory experiments demonstrate that P. australis is able to grow effectively on urea as the primary source of nitrogen and produced more pDA when grown on urea in both natural assemblages and unialgal cultures. These results suggest that the influence of urea from coastal runoff may prove to be more important in the development or maintenance of toxic blooms than previously thought, and that the source of nitrogen may be a determining factor in the relative toxicity of west coast blooms of P. australis.  相似文献   

19.
Two experiments have been conducted, one in semi-solid Hoagland nutrient medium and the other in shallow pots containing saline soil. N2-fixing bacteria belonging toAzospirillum, Azotobacter, Klebsiella andEnterobacter were inoculated separately on kallar grass grown in semi-solid nutrient medium. It was shown that inoculation affects root proliferation and also results in15N isotopic dilution. The % Ndfa ranged from 47–70 whereas no significant effect on the total nitrogen uptake was observed. The bacterial colonization of the root surface and the presence of enteric bacteria inside the root hair cells is reported. In a soil pot experiment, non-N2-fixingPolypogon monspeliensis was used as a reference plant (control). A treatment receiving a high rate of nitrogen was also used as a non-N2-fixing control.15N-labelled ammonium sulphate at 20 kg N ha–1 and 90 kg N ha–1 was used. The % Ndfa in the aerial parts of kallar grass was 12–15 whenP. monspeliensis was used as reference plant whereas 37–39% Ndfa was estimated when the treatment receiving high nitrogen fertilizer was used as a non-N2-fixing control. These investigations revealed some problems of methodology which are discussed.  相似文献   

20.
Oxygen consumption (VO2) of juvenile Arctic cod (Boreogadus saida) was investigated at low tempera tures (six temperatures; range -0.5 to 2.7°C). Small (mean wt. 6–8 g) and large (mean wt. 14 g) fish were acclimated, or adjusted to a constant temperature (0.4°C), for 5 months and then tested for metabolic cold adaptation (elevated metabolic rates in polar fishes). Short-term (2 weeks) acclimated fish showed elevated VO2 similar to previously established values for polar fishes, but there was no such evidence after longterm acclimation. Long-term acclimation caused VO2 values to drop significantly (from 86.0 to 46.5 mg O2·kg–1·h–1, at 0.4°C), which showed that metabolic cold adaptation was a phenomenon caused by insufficien: acclimation time for fish in respiration experiments. We also measured the effects of temperature and feeding on VO2. A temperature increase of 2.3°C resulted in relatively large increases in VO2 for both longand short-term acclimated fish (Q10 = 6.7 and 7.1, respectively), which suggests that metabolic processes are strongly influenced by temperature when it is close to zero. Feeding individuals to satiation caused significant increases in VO2 above pre-fed values (34–60% within 1–2 days after feeding). Respiration budgets of starved and fed Arctic cod at ambient temperatures in Resolute Bay N.W.T., Canada, were used to model annual respiration costs and potential weight loss. Low respiration costs for Arctic cod at ambient temperatures result in high growth efficiency during periods of feeding and low weight loss during periods of starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号