首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For dark-grown seedlings of Pharbitis nil capacity to flower in response to a single inductive dark period was established by 24 h white, far-red (FR) or ruby-red (BCJ) light and by a skeleton photoperiod of 10 min red (R)-24 h dark-10 min R. FR alone was ineffective without a brief terminal (R) irradiation, confirming that the form of phytochrome immediately prior to darkness is a crucial factor for flowering in Pharbitis. The magnitude of the flowering response was significantly greater after 24 h FR or white light (WL) (at 18° C and 27° C) than after two brief skeleton R irradiations, but the increased flowering response was not attributable to photosynthetic CO2 uptake because this could not be detected in seedlings exposed to 24 h WL at 18° C. Photophosphorylation could have contributed to the increased flowering response as photosystem I fluorescence was detectable in plants exposed to FR, BCJ, or WL, but there were large differences between flowering response and photosystem I capacity as indicated by fluorescence. We conclude that phytochrome plays a major role in photoresponses regulating flowering. There was no simple correlation between developmental changes, such as cotyledon expansion and chlorophyll formation during the 24-h irradiation period, and the capacity to flower in response to a following inductive dark period. Changes in plastid ultrastructure were considerable in light from fluorescent lamps and there was complete breakdown of the prolamellar body with or without lamellar stacking at 27 or 18° C, respectively, but plastid reorganization was minimal in FR-irradiated seedlings.Abbreviations BCJ irradiation from photographic ruby-red lamps - FR far-red light - Pfr far-red-absorbing from of phytochrome - P total phytochrome content - R red light - WL white light from fluorescent lamps  相似文献   

2.
Photoinduction and photoinhibition of germination in seed from a homozygous tobacco (Nicotiana tabacum L.) line containing an introduced oat phyA cDNA (encoding phytochrome A) is compared with that of isogenic wild-type (WT) tobacco. Under continuous irradiation by a light source with a low redfar-red (RFR) ratio the transgenic tobacco seed appeared to be less susceptible to photoinhibition of germination compared with WT seed. However, induction of germination following a short pulse by R (666 nm) was not enhanced in the genotype transformed by oat phyA cDNA compared with the WT; neither did germination of the transgenic tobacco seed show an increased sensitivity to saturating pulses of light of longer wavelengths (666–730 nm). In seeds of transgenic Arabidopsis thaliana (L.) Heynh. which contained an introduced phytochrome-B-encoding cDNA, levels of dark germination were enhanced, consistent with mediation of response by phytochrome B-Pfr. The germination behaviour of Arabidopsis genotypes wich contained an introduced cDNA encoding phytochrome A, however, did not significantly differ from that of the WT.Abbreviations ABO seed transformed with Arabidopsis phyB - cDNA; CaMV cauliflower mosaic virus - FR far-red light - Pfr far-red-absorbing form of phytochrome - Ptot total phytochrome - Pfr/Ptot phytochrome photoequilibrium - R red light - RBO seed transformed with rice phyB cDNA - RFR quantum ratio of red and far-red light - WL white light - WL + FR whitelight supplemented with far-red light - WT wild type The authors wish to thank R.D. Vierstra (Department of Horticulture, University of Wisconsin-Madison, USA) for providing the transgenic tobacco line, and M.T. Boylan, D. Wagner and P.H. Quail (U.C. Berkeley/USDA Plant Gene Expression Center, Albany, Calif. USA) for providing the transgenic Arabidopsis lines. The work presented in this paper was funded by grants from the Agricultural and Food Research Council (H.S., A.C.M., G.C.W.).  相似文献   

3.
Photocontrol of stem elongation in light-grown plants of Fuchsia hybrida   总被引:1,自引:1,他引:0  
D. Vince-Prue 《Planta》1977,133(2):149-156
Stems of the caulescent long-day plant, Fuchsia hybrida cv Lord Byron, showed 2 types of response to light. In one, internode length was increased by far-red irradiation given at the end of an 8 h photoperiod: the response was no greater with prolonged exposure and was less when the start of far-red was delayed. The effect of far-red was reversible by a subsequent exposure to red light. Internode length was inversely proportional to the Pfr/P ratio established before entry to darkness and there was no evidence for loss of Pfr during a 16 h dark period. The inhibitory effect of Pfr acted at a relatively late stage of internode growth. With the development of successive internodes a second response appeared in which stems lengthened following prolonged daily exposures to red or far-red light, or mixtures of the two, or to brief breaks with red or white light. In these later internodes, a short exposure to far-red near the middle of the night was not reversible by red because red alone promoted elongation at this time. Internode length increased with increase in the daily duration of light and, when light was given throughout an otherwise dark period of 16 h, with increase in illuminance to a saturation value of 200 lx from tungsten lamps. Elongation increased as a linear function of decrease in photostationary state of phytochrome down to Pfr/P0.3; however, internodes were shorter in far-red light than in 25% red/red+far-red. It was concluded that stem length is a net response to two modes of phytochrome action. An inductive effect of Pfr inhibits a late stage in internode expansion, and a phytochrome reaction which operates only in light (and may involve pigment cycling) promotes an early stage of internode development. Stem elongation is thus a function both of the daily duration of light and its red/red+far-red content. The outgrowth of axillary buds was controlled by the first type of phytochrome action only.Abbreviations and symbols FR far red light - R red light - P phytochrome - Pfr phytochrome in the far-red light absorbing form - SD 8 h short days - LDP long-day plant - SDP short-day plant  相似文献   

4.
D. C. Morgan  T. O'Brien  H. Smith 《Planta》1980,150(2):95-101
Treatment of the whole of aSinapis alba plant with supplementary far-red light (FR), in back-ground white light (WL), induces a rapid increase in stem extension rate. This rapid increase is regulated by the light environment of the stem itself. Supplementary FR to the stem increases extension rate after a lag period of 10–15 min. A lag period of 3–4 h follows FR irradiation of the leaf, before an increase in extension rate is detectable. When the stem is given supplementary FR, the change in extension rate which is induced increases with increasing FR fluence rate, and with decreasing phytochrome photoequilibrium. There is no difference between the effects of supplementary FR max 719 nm and supplementary FR max 739 nm for these relationships. The increase in extension rate induced by supplementary FR is reversed by an increase in the fluence rate of red light (R). These data indicate that the response is controlled by phytochrome photoequilibrium.Abbreviations B blue light - FR far-red light - R red light - WL white light - Pfr far-red absorbing form of phytochrome - Pr red absorbing form of phytochrome - Ptot total phytochrome level (=Pr+Pfr); -Pfr/Ptot, measured - ER difference in stem extension rate, before and after treatment  相似文献   

5.
Summary To follow changes in the status of phytochrome in green tissue and to relate these changes to the photoperiodic control of flowering, we have used a null response technique involving 1.5-min irradiations with mixtures of different ratios of R and FR radiation.Following a main photoperiod of light from fluorescent lamps that was terminated with 5 min of R light, the proportion of Pfr in Chenopodium rubrum cotyledons was high and did not change until the 3rd hour in darkness; at this time, Pfr disappeared rapidly. When the dark period began with a 5-min irradiation with BCJ or FR light to set the proportion of Pfr low Pfr gradually reappeared during the first 3 h of darkness and then disappeared again.The timing of disappearance of Pfr is consistent with the involvement of phytochrome in photoperiodic time measurement. Reappearance of Pfr after an initial FR irradiation explains why FR irradiations sometimes fail to influence photoperiodic time measurement or only slightly hasten time measurement. A R light interruption to convert Pr to Pfr delayed, the timer by 3 h but only for interruptions after and not before the time of Pfr disappearance. Such 5-min R-light interruptions did not influence the operation of the rhythmic timekeeping mechanism. Continuous or intermittent-5 min every 1.5 h-irradiations of up to 6 h in duration were required to rephase the rhythm controlling flowering. A skeleton photoperiod of 6 h that was began and terminated by 5 or 15 min of light failed to rephase the rhythm.The shape of the curves for the rhythmic response of C. rubrum to the length of the dark period are sometimes suggestive of clocks operating on the principle of a tension-relaxation mechanism. Such a model allows for separate timing action of a rhythm and of Pfr disappearance over the early hours of darkness. Separate timing action does not, however, preclude an interaction between the rhythm and phytochrome in controlling flowering.Abbreviations FR far-red - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - R red - BCJ photographic ruby-red irradiation A grant in aid of research from the National Research Council of Canada to B. G. Cumming is gratefully acknowledged.  相似文献   

6.
Coaction of three factors controlling chlorophyll and anthocyanin synthesis   总被引:1,自引:0,他引:1  
Helga Kasemir  Hans Mohr 《Planta》1982,156(3):282-288
In a three-factor analysis the rate of chlorophyll a (Chl) accumulation in excised mustard cotyledons was studied as a function of kinetin, light (operating through phytochrome, P fr) and an excision factor. It was found that the three factors operate additively provided that the P fr level is high enough. When the P fr level is below approximately 1 per cent (<0.01) the effectiveness of the excision factor decreases while the effect of kinetin remains additive. The observed additivity is explained by a model where the three factors operate independently through a common intermediate (presumably 5-aminolevulinate) in the biosynthetic chain leading to Chl. With regard to the coaction of the excision factor and phytochrome it is concluded that the production of the excision factor requires the operation of phytochrome (even though saturated at a low P fr level) while the action of the excision factor is independent of phytochrome. This conclusion was confirmed by experiments in which the rate of light-mediated anthocyanin synthesis was measured in excised mustard cotyledons. The effect of excision in the case of anthocyanin formation differs kinetically from the effect of excision on Chl formation.Abbreviations Chl chlorophyll(ide) a - P fr far-red absorbing form of phytochrome - P fr/P tot ratio at photoequilibrium - RL red light - FR far-red light - GL green light - RG9 light long wavelength far-red light - WL white light  相似文献   

7.
A. Wildermann  H. Drumm  E. Schäfer  H. Mohr 《Planta》1978,141(2):211-216
After sowing, mustard (Sinapis alba L.) seedlings were grown for 48 h in white light (25°C). These fully de-etiolated, green seedlings were used as experimental material between 48 and 72 (84) h after sowing. The question researched was to what extent control by light of hypocotyl elongation is due to phytochrome in these seedlings. It was found that the light effect on hypocotyl growth is very probably exerted through phytochrome only. In particular, we found no indication for the involvement of a specific blue light photoreceptor pigment.Abbreviations HIR high irradiance reaction - Pfr far-red absorbing, physiologically active form of phytochrome - Pr red absorbing, physiologically inactive form of phytochrome - Pot total phytochrome, i.e. [Pr]+[Pfr] - [Pfr]/[Ptot] - red red light - fr far-red light - wl white light - bl blue light - di dichromatic irradiation - l hypocotyl length  相似文献   

8.
Jorge J. Casal  Harry Smith 《Planta》1988,176(2):277-282
Under continuous white light (WL), extension growth of the first internode in Sinapis alba L. was promoted by low red (R): far-red (FR) ratios reaching the stem and-or the leaves. Conversely, the growth promotion by end-of-day light treatments was only triggered by FR perceived by the leaves and cotyledons, while FR given to the growning internode alone was tatally ineffective. Continuous WL+FR given to the internode was also in-effective if the rest of the shoot remained in darkness. Both the background stem growth, and the growth promotion caused by either an end-of-day FR pulse or continuous WL+FR given to the internode, increased with increasing fluence rates of WL given to the rest of the shoot. The increase by WL of the growth-stimulatory effect of low phytochrome photoequilibria in the internode appears to be mediated by a specific blue-light-absorbing photoreceptor, as blue-deficient light from sodium-discharge lamps, or from filtered fluorescent tubes, promoted background stem growth similarly to WL but did not amplify the response to the R:FR ratio in the internode. Supplementing the blue-deficient light (94 mol·m-2·s-1) with low fluence rates of blue (<9 mol·m-2·s-1) restored the promotive effect of low R:FR reaching the internode.Abbreviations BL blue light - FR far-red light - PAR photosynthetically active radiation - Pfr/P ratio between the FR-absorbing form and total phytochrome - R red light - SOX low-pressure sodium lamp - WL white light Supported by the Consejo Nacional de Investigaciones Cientificas y Técnicas (República Argentina) and the ORS scheme (UK)  相似文献   

9.
H. Mohr  H. Drumm  R. Schmidt  B. Steinitz 《Planta》1979,146(3):369-376
Induction by light of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) and of anthocyanin in cotyledons of the mustard (Sinapis alba L.) seedling is strongly affected by a light pretreatment which operates through phytochrome. If PAL or anthocyanin is induced by a light pulse, the effectiveness of phytochrome (Pfr) is strongly increased by a light pretreatment; however, if the increase of the PAL level or synthesis of anthocyanin is elicited by continuous far-red light (operating via phytochrome in the High Irradiance Response), effectiveness of light is strongly reduced by the same light pretreatment. This reduction of effectiveness is correlated with a decrease of total phytochrome (Ptot) caused by the light pretreatment. It is argued that the observations are compatible only with the open phytochrome-receptor model as suggested by Schäfer (J. Mathem. Biol. 2, 41–56, 1975). The peaks of the time courses of the PAL levels under continous far-red light are located at 48 h after sowing and do not depend on the original level of phytochrome. The decrease of the PAL levels beyond 48 h after sowing takes place independently of phytochrome and of the actual level of PAL.Abbreviations Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - Ptot total phytochrome (Pr+Pfr) - {ie369-1} [Pfr] /[Ptot], photoequilibrium of phytochrome at wavelength - HIR High Irradiance Response - PAL phenylalanine ammonialyase (EC 4.3.1.5)  相似文献   

10.
R. Grill  C. J. P. Spruit 《Planta》1972,108(3):203-213
Summary Addition of water to dry seeds of Pinus spp. increased the detectable phytochrome immediately and the level reached after 2 h in darkness was retained for at least 20 h at 20° C. The in-vivo difference spectra of phytochrome in Pinus seeds showed absorption maxima at approximately 656 nm and at 710 nm to 715 nm. An isosbestic point was observed at about 680 nm. Shifts towards longer wavebands were obtained especially with tissue containing substantial amounts of chlorophyll and are, therefore, not due to diverse types of phytochrome. Embryo tissue of Ginkgo biloba showed also a maximum in R at 655 nm but the peak in FR occurred at a longer wavelength, 725 nm. This was confirmed by determining action spectra for the phototransformations PrPfr.The dark reactions of phytochrome in Pinus differed from those in Ginkgo. Following a short exposure to R light, the total quantity of photoreversible pigment in Pinus seeds remained constant for several hours in darkness at room temperature. Dark reversion of Pfr occurred extremely rapidly and tPfr 50 was only 0.3 h. In Ginkgo embryos total phytochrome in darkness following a brief exposure to R light was not completely stable. Reversion of Pfr was much slower and tPfr 50 was slightly less than 2 h.It is concluded that, at least as regards the spectral qualities, the phytochrome in Gymnospermae differs from that of Angiospermae and is apparently also not identical in Coniferae and Ginkgoinae. Abbreviations. R = red; FR = far-red; R/FR ratio = (A) red max./(A) far-red max. of difference spectrum. The peak positions and the isosbestic point are estimated from the difference spectra and are approximate only. Pr = red-absorbing form of phytochrome, Pfr = far-red absorbing formThis work was carried out with financial support from the Netherlands Organisation for Pure Scientific Research (Z.W.O.).312th Communication.  相似文献   

11.
The effects of continuous red and far-red light and of brief light pulses on the growth kinetics of the mesocotyl, coleoptile, and primary leaf of intact oat (Avena sativa L.) seedlings were investigated. Mesocotyl lengthening is strongly inhibited, even by very small amounts of Pfr, the far-red light absorbing form of phytochrome (e.g., by [Pfr]0.1% of total phytochrome, established by a 756-nm light pulse). Coleoptile growth is at first promoted by Pfr, but apparently inhibited later. This inhibition is correlated in time with the rupturing of the coleoptile tip by the primary leaf, the growth of which is also promoted by phytochrome. The growth responses of all three seedling organs are fully reversible by far-red light. The apparent lack of photoreversibility observed by some previous investigators of the mesocotyl inhibition can be explained by an extremely high sensitivity to Pfr. Experiments with different seedling parts failed to demonstrate any further obvious interorgan relationship in the light-mediated growth responses of the mesocotyl and coleoptile. The organspecific growth kinetics, don't appear to be influenced by Pfr destruction. Following an irradiation, the growth responses are quantitatively determined by the level of Pfr established at the onset of darkness rather than by the actual Pfr level present during the growth period.Abbreviation Pfr far-red light absorbing form of phytochrome  相似文献   

12.
Phytochrome was studied spectrophotometrically in Avena sativa L. seedlings that had been grown for 6 d in continous white fluorescent light from lamps. Greening was prevented through the use of the herbicide San 9789. When placed in the light, phytochrome (Ptot) decreased with first order kinetics (1/2 2 h) but reached a stable low level (2.5% of the dark level) after 36 h. This concentration of phytochrome remained constant in the light and during the initial hours of a subsequent dark period, but increased significantly after a prolonged dark period. Evidence suggests that the constant pool of phytochrome in the light is achieved through an equilibrium between synthesis of the red absorbing (Pr) and destruction of the far-red absorbing form (Pfr) of phytochrome. It is concluded that the phytochrome system in light-grown oat seedlings is qualitatively the same as that known from etiolated monocotyledonous seedlings, but different than that described for cauliflower florets.Abbreviations Pfr the far-red light absorbing form of phytochroma - Pr the red light absorbing form of phytochrome - Ptot Pr+Pfr - ks rate constant of Pr synthesis - kd rate constant of Pfr destruction - MOPS N-morpholino-3-propane-sulfonic acid - IRIS Tris (hydroxymethyl) amino methane - San 9789 4-chloro-5-(methyl amino)-2-(,,-trifluoro-m-tolyl)-3(2H)pyridazinone  相似文献   

13.
S. Frosch  H. Mohr 《Planta》1980,148(3):279-286
Carotenoid accumulation in the cotyledons of the mustard seedling (Sinapis alba L.) is controlled by light. Besides the stimulatory function of phytochrome in carotenogenesis the experiments reveal the significance of chlorophyll accumulation for the accumulation of larger amounts of acrotenoids. A specific blue light effect was not found. The data suggest that light exerts its control over carotenoid biogenesis through two separate mechanisms: A phytochrome regulation of enzyme levels before a postulated pool of free carotenoids, and a regulation by chlorophyll draining the pool by complex-formation.Abbreviations Chl chlorophyll(s) - PChl protochlorophyll(ide) - HIR high irradiance reaction (of phytochrome) - Pfr far-red absorbing, physiologically active form of phytochrome - Pr red absorbing, physiologically inactive form of phytochrome - Pfof total phytochrome, i.e. [Pr]+[Pfr] - [Pfr]/[Pfof], wavelength dependent photoequilibrium of the phytochrome system - red red light - fr far-red light  相似文献   

14.
K. Malhotra  H. Oelze-Karow  H. Mohr 《Planta》1982,154(4):361-370
We have performed a comprehensive study on the mechanism of regulation of carotenogenesis by light in the shoot of Sorghum vulgare. Our work shows that carotenoid accumulation is simultaneously controlled by phytochrome (Pfr) and by the availability of chlorophyll. Throughout plastidogenesis light dependent chlorophyll and carotenoid accumulation are interdependent processes: Accumulation of chlorophyll in natural light requires the presence of carotenoids; likewise, accumulation of considerable amount of carotenoids depends on the availability of chlorophyll. However, in both cases the efficiency of the biosynthetic pathway, the potential biosynthetic rates (capacities) are determined by phytochrome. A push and pull model of carotenogenesis advanced previously (Frosch and Mohr 1980, Planta 148, 279) to explain carotenogenesis in the mustard (Sinapis alba) seedling also applies to the monocotyledonous milo (Sorghum vulgare) seedling. Therefore, we suggest that the model applies to carotenogenesis in higher plants in general.Abbreviations Chl chlorophyll(s) - PChl protochlorophyll(ide) - HIR High irradiance response (of phytochrome) - Pfr far-red absorbing, physiologically active form of phytochrome - P red absorbing physiologically inactive form of phytochrome - Ptot total phytochrome - i.e. [Pr]+[Pfr] =[Pfr]+[Ptot], wavelength dependent photoequilibrium of the phytochrome system - RL red light - FR far-red light  相似文献   

15.
A. M. Jose  E. Schäfer 《Planta》1979,146(1):75-81
In a membrane fraction isolated from hypocotyls of Phaseolus aureus Roxb. the activity of a number of enzymes was regulated by red and far-red irradiation in vitro, provided that the tissue received a brief red light treatment before extraction. Other enzymes showed no photoregulation. There were two types of photocontrol, neither of which could be detected in the solute fraction, nor in extracts from completely etiolated material. One (Type I) was a red/far-red reversible regulation of the rate of enzyme activity, depending on the light given (in vivo or in vitro) before the assay was begun. The second (Type II) was a promotion of enzyme activity by red or far-red light given during the assay. The action spectra for type II responses do not coincide with either the phytochrome absorption or difference spectra. However, the effectiveness of red and far-red was correlated with the Pfr/P ratio present at the beginning of the assay, such that far-red was more efficient at high Pfr/P and red at low Pfr/P ratios. All enzymes that were regulated involved ATP. In samples that showed enzyme regulation, small changes in fluorescence yield of tryptophan and the covalent probe Fluram (Roche) accompanied the photoconversion of phytochrome, but no fluorescence changes could be measured after briefly incubating the membrane fraction with ATP. The results indicate that light may affect the interaction of ATP with the membrane fraction.Abbreviations F far-red light - Pr and Pfr phytochrome in the red and far-red absorbing forms - Ptot total phytochrome - R red light - RNP ribonucleoprotein  相似文献   

16.
A. Ritter  E. Wagner  M. G. Holmes 《Planta》1981,153(6):556-560
The spectral control of hypocotyl elongation in light-grown Chenopodium rubrum L. seedlings has been studied. The results showed that although the seedlings responded to changes in the quantity of combined red and far-red radiation, they were also very sensitive to changes in the quantity of blue radiation reaching the plant. Altering the proportion of red: far-red radiation in broad waveband white light caused marked differences in hypocotyl extension. Comparison of the responses of green and chlorophyll-free seedlings indicated no qualitative difference in the response to any of the light sources used, although photosynthetically incompetent plants were more sensitive to all wavelengths. Blue light was found to act primarily of a photoreceptor which is different from phytochrome. It is concluded that hypocotyl extension rate in vegetation shade is photoregulated by the quantity of blue light and the proportion of red: far-red radiation. In neutral shade, such as that caused by stones or overlying soil, hypocotyl extension appears to be regulated primarily by the quantity of light in the blue waveband and secondarily by the quantity of light in the red and far-red wavebands.Abbreviations B blue - FR far-red - k 1, k 2 rate constants for photoconverison of Pr to Pfr and Pfr to Pr, respective - k 1/k 1 +k 2= phytochrome photoequilibrium - k 1 +k 2= phytochrome cycling rate - Pr=R absorbing form of phytochrome - Pfr=FR absorbing form of phytochrome - Ptot Pr+Pfr - PAR photosynthetically active radiation = 400–700 nm - R red - WL white light  相似文献   

17.
Che-Jun Pjon  Masaki Furuya 《Planta》1968,81(4):303-313
Summary In-vivo phytochrome determinations in totally etiolated rice seedlings with a dual-wavelength spectrophotometer showed that on a fresh weight basis phytochrome concentration was highest in the coleoptile apex (0.175 of mean) ( O.D.) g-1 (fresh weight). The age of the seedlings had little effect on the pattern of phytochrome distribution in the coleoptiles.The extent of growth inhibition observed 2 days after the irradiations was proportional to the logarithm of P fr amount in the coleoptiles at the time of initial exposure to either red or blue light. Ultraviolet irradiation, however, did not induce either reversible growth inhibition or optically detectable phytochrome changes in vivo.After the conversion of P r to P fr bya brief red irradiation, non-photochemical transformation of phytochrome was observed in intact coleoptile tissues. Most of the optically measurable P fr disappeared within 6 hours at 27°, when the total ( O.D.) decreased to about one fifth of the original level. The optical data did not agree with the fact that 50% of the initial physiological reversibility was still observed 9 hours later. No significant difference in dark transformation rate was seen between intact and excised coleoptile tissues.Abbreviations P r red light absorbing form of phytochrome - P fr far-red light absorbing form of phytochrome - ( O.D.) the change in the optical density difference reading at two wavelengths, following irradiation of the sample with actinic sources of red and far-red light - UV ultraviolet light  相似文献   

18.
In etiolated seedlings of Raphanus sativus L. the inhibition of hypocotyl elongation by continuous light showed a major bimodal peak of action in the red and far-red, and two minor peaks in the blue regions of the spectrum. It is argued that, under conditions of prolonged irradiation, phytochrome is the pigment controlling the inhibition of hypocotyl elongation by red and far-red light, but that its mode of action in far-red is different from that in red. A distinct pigment is postulated for blue light.Abbreviations B blue - FR far red - G green - R red - HIR high irradiance reaction - Pr and Pfr red and far red absorbing forms of phytochrome - R red  相似文献   

19.
Induction of flowering of etiolated Lemna paucicostata Hegelm. T-101, a short-day plant, was inhibited by far-red (FR) or blue light (BL) applied at the beginning of a 72-h inductive dark period which was followed by two short days. In either case the inhibition was reversed by a subsequent exposure of the plants to near-ultraviolet radiation (NUV), with a peak of effectiveness near 380 nm. Inhibition by BL or FR and its reversion by NUV are repeatable, i.e., NUV is acting in these photoresponses like red light although with much lower effectiveness. Thus, it is considered that NUV acts through phytochrome and no specific BL and NUV photoreceptor is involved in photocontrol of floral induction on this plant.Abbreviations BL blue light - FR far-red light - NUV near ultraviolet radiation - P red-absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - R red light  相似文献   

20.
J. E. Hughes  E. Wagner 《Planta》1987,172(1):131-138
The effects of far-red light given against a background of white light on the stem-extension kinetics of three-week-old, light-grown Chenopodium album seedlings were investigated. Under white light alone, the stems (cotyledon-to-apex) extended almost exactly logarithmically with time. Under these conditions the increase in log [stem length in mm] per hour was approx. 3.7·10-3, equivalent to about 1% per h during both skoto-and photoperiods. Supplementary far-red given throughout each photoperiod massively stimulated extension. The calculated logarithmic extension rate, however, slowly returned to that of the controls, following an initial large increase. This is predicted by a model in which far-red light linearly increases the extension rate of individual internodes which arise at an exponentially increasing rate. The behaviour of the model is also consistent with critical experiments in which far-red was given as a pre-treatment or transiently, as well as with other published data. Far-red stimulation of logarithmic extension rate in successive photoperiods was closely and linearly correlated with calculated phytochrome photoequilibrium. Daily short periods of supplementary far-red were especially potent in accelerating extension; the plants seemed least responsive at the end of the photoperiod.Abbreviations FR supplementary far-red light - I stem length (mm) - LSER logarithmic stem extension rate - Pfr far-red absorbing form of phytochrome - R:FR red:far-red fluence rate ratio - WL white light - c calculated phytochrome photoequilibrium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号