首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A germ-free neonatal pig model was established to determine the effects of bacterial colonization by different species on small intestinal morphology and proinflammatory cytokine gene expression. Two experimental groups of 16 pigs were aseptically delivered by cesarian section and allocated into 4 gnotobiotic isolators. Pigs were either maintained germ-free (GF), or were orally inoculated with either a single strain of nonpathogenic Escherichia coli (EC) or Lactobacillus fermentum (LF) or conventionalized with adult porcine feces (CV). After 13 days tissue samples were collected at 5 regions corresponding to 5%, 25%, 50%, 75%, and 95% of the small intestine (SI) length. In Experiment 2, the GF isolator became contaminated with Staphylococcus epidermidis (SE). In general, intestinal responses to bacterial colonization were similar among GF, LF, and SE pigs, and intestinal responses in EC pigs were more similar to CV pigs. Responses to bacterial colonization were most pronounced in the distal SI regions (50%-95%), suggesting that nonmicrobial factors may be more important in the proximal SI. Relative to CV pigs, the distal intestines of GF, LF, and SE pigs were characterized by long villi, shallow crypts, increased relative intestinal mass, and decreased lamina propria cellularity, whereas SI morphology was intermediate in EC pigs. Relative expression of proinflammatory cytokines interleukin-1beta (IL-1beta ) and IL-6 generally increased distally in the SI and was highest in EC and CV pigs. We observed regional variation in SI morphology and proinflammatory cytokine expression, which differed with bacterial species. This study demonstrates that bacterial species differentially affect intestinal morphology and expression of proinflammatory cytokines and suggests that neonatal bacterial colonization patterns may have long-term effects on intestinal health and development.  相似文献   

2.
In the course of in vitro studies 3 Lactobacillus strains with pronounced antagonistic activity against some pathogenic and opportunistic bacteria (shigellae, enteropathogenic Escherichia, Proteus, staphylococci) were selected. In experiments on germ-free rats faint colonization by L. plantarum 37 was observed in the small intestine, as well as in the large intestine when low doses of these bacilli were introduced into the gastrointestinal tract of the animals. In vitro experiments demonstrated the decreased growth rate of this strain. The prophylactic administration of two eubiotic strains, L. plantarum 37 and L. fermentum 39, simultaneously with chloramphenicol to primates inhibited the growth of opportunistic bacteria, though L. fermentum 39 excessively suppressed the content of Escherichia coli in the enterobacterial population. The optimum biological effect was achieved with the therapeutic use of these three strains for the correction of dysbiotic disturbances caused by the administration of tetracycline in volunteers.  相似文献   

3.
Klebsiella pneumoniae is both an opportunistic pathogen and a commensal organism. We have previously reported that K. pneumoniae strain IA565 (KpIA565) is non-pathogenic in a murine model of acute pneumonia. In this study, KpIA565 was inoculated into wild-type mice and found to stably colonize and persist in the nasal cavity and gastrointestinal tract of mice for up to 3weeks post-inoculation. Intranasal inoculation of wild-type or germ-free mice with KpIA565 resulted in similar bacterial levels in the nasal cavity, suggesting KpIA565 nasal colonization is independent of normal nasal microbiota. In contrast, KpIA565 gastrointestinal tract colonization was significantly higher in germ-free mice than in wild-type mice, indicating that members of the endogenous microbiota regulate KpIA565 colonization. In the presence of non-specific dextran sodium sulfate-induced inflammation, KpIA565 gastrointestinal tract colonization was significantly higher when compared to non-DSS treated mice. Interestingly, KpIA565 colonization was unaffected by Citrobacter rodentium-induced gastrointestinal tract inflammation. However, gastrointestinal tract colonization with K. pneumoniae strain IA565 had no impact on the inflammatory histopathology in either colitis model. This study is the first to identify and describe mechanisms influencing the growth and behavior of a murine commensal strain of K. pneumoniae.  相似文献   

4.
The digestive physiology of the germ-free animal has a number of characteristics (cecal hypertrophy, slower small intestine cell renewal, slower gastric emptying and intestinal transit) which distinguish it from that of the conventional animal. If the germ-free model is to be used to determine the role of gastrointestinal microflora in the nutrition of the conventional animal, it is essential to complete the study of these characteristics by data on digestive enzymes in the germ-free. The present paper analyzes these data. There is little information on salivary amylase and none on gastric proteolytic enzymes and intestinal peptidases. More complete data on exocrine pancreas enzymes and intestinal disaccharidases show that the digestive equipment is similar in germ-free and conventional animals. Bile salts, not considered as digestive enzymes, are qualitatively and quantitatively different, depending on the digestive tract bacterial environment. In general, the germ-free animal has some characteristics which should permit better utilization of the diet ingested. Measurements of apparent digestibility do not confirm this hypothesis since results obtained in germ-free and conventional animals of the same species are contradictory.  相似文献   

5.
This study was designed to investigate the effect of monoassociation of germ-free piglets with Escherichia coli strains on the development of intestinal brush-border enzyme activities. Piglets were delivered by hysterectomy, reared for seven days under germ-free conditions and fed milk formula diet. One group was maintained germ-free, the other four groups were monoassociated on day eight with one of four E. coli strains: non-pathogenic O86 or O83 and G58-1, or pathogenic 933D. The development of brush-border digestive enzyme functions in the small intestine was evaluated after 15 days. Germ-free controls exhibited slower developmental declines of lactase, gamma-glutamyltranspeptidase and alkaline phosphatase, and delayed increases of sucrase and glucoamylase compared to conventionally grown animals. Association of germ-free piglets with the non-pathogenic E. coli strains O86 and O83 resulted in increased enterocyte differentiation along the length of the small intestine, accompanied by declining activities of lactase, gamma-glutamyltranspeptidase and alkaline phosphatase, and elevated activities of maturational markers such as sucrase and glucoamylase. Maturational changes also occurred along the villus-crypt axis, as revealed by histochemical localization of aminopeptidase N on the villi tips in piglets colonized with E. coli O83. Interestingly, colonization with the pathogenic E. coli strain 933D stimulated changes in the main differentiation enzyme markers lactase, sucrase and glucoamylase to an extent comparable with those produced by the non-pathogenic and probiotic E. coli strains. In conclusion, germ-free piglets represent a valuable tool to study the consequences of colonization of the immature sterile gut with defined strains of bacteria.  相似文献   

6.
The adhesive properties and colonizing capacity of E. coli strain O83, isolated from feces of healthy humans and marked according to its resistance to rifampicin and nalidixic acid, were studied. In vivo experiments on germ-free rats revealed that these bacteria were capable of colonizing intestinal mucosa; colonization increased from the small to large intestine and E. coli cells were mainly concentrated in the intestinal lumen and in mucin. In vitro studies showed that this nonenteropathogenic E. coli strain possessed pronounced adhesive properties with respect to the colonic cells of germ-free rats; these properties were considerably less pronounced with respect to the enteric cells of the small intestine. The electron microscopic study of E. coli cells revealed the presence of fimbriae and fibrillae on their surface.  相似文献   

7.
The effect of an intestinal microflora consisting of selected microbial species on myoelectric activity of small intestine was studied using germ-free rat models, with recording before and after specific intestinal colonization, in the unanesthetized state. Intestinal transit, neuropeptides in blood (RIA), and neuromessengers in the intestinal wall were determined. Clostridium tabificum vp 04 promoted regular spike burst activity, shown by a reduction of the migrating myoelectric complex (MMC) period from 30.5 +/- 3.9 min in the germ-free state to 21.2 +/- 0.14 min (P < 0.01). Lactobacillus acidophilus A10 and Bifidobacterium bifidum B11 reduced the MMC period from 27.9 +/- 4.5 to 21.5 +/- 2.1 min (P < 0.02) and accelerated small intestinal transit (P < 0.05). Micrococcus luteus showed an inhibitory effect, with an MMC period of 35.9 +/- 9.3 min compared with 27.7 +/- 6.3 min in germ-free rats (P < 0.01). Inhibition was indicated also for Escherichia coli X7 gnotobiotic rats. No consistent changes in slow wave frequency were observed. The concentration of neuropeptide Y in blood decreased after introduction of conventional intestinal microflora, suggesting reduced inhibitory control. Intestinal bacteria promote or suppress the initiation and aboral migration of the MMC depending on the species involved. Bacteria with primitive fermenting metabolism (anaerobes) emerge as important promoters of regular spike burst activity in small intestine.  相似文献   

8.
The effect of Saccharomyces boulardii on the immune system was evaluated, comparing germ-free Swiss/NIH mice monoassociated with the probiotic with germ-free mice. Saccharomyces boulardii colonized the gut of germ-free mice and survived the gastrointestinal conditions. An increase in sIgA production, both total and anti-S. boulardii, was observed in the intestinal contents of monoassociated mice when compared with germ-free controls. The number of Kupffer cells was significantly higher in monoassociated mice than in germ-free controls. In S. boulardii-monoassociated mice, clearance of Escherichia coli B41 was higher than in germ-free controls. TNF-alpha, IFN-gamma and IL-12 serum levels were higher at earlier time points in monoassociated mice when compared with germ-free mice. These results show that the yeast S. boulardii modulates the host immune responses. This effect may be of interest for improving the resistance to enteropathogenic bacterial infections.  相似文献   

9.
This study was aimed to evaluate the role of commensal Gram-negative bacterium Bacteroides ovatus in murine model of chronic intestinal inflammation. The attempt to induce chronic colitis was done in Bacteroides ovatus-monoassociated, germ-free and conventional mice either in immunocompetent (BALB/c) mice or in mice with severe combined immunodeficiency (SCID), using 2.5 % dextran-sodium sulfate (DSS) in drinking water (7 days DSS, 7 days water, 7 days DSS). Conventional mice developed chronic colitis. Some of germ-free BALB/c and the majority of germ-free SCID mice did not survive the long-term treatment with DSS due to massive bleeding into the intestinal lumen. However, monocolonization of germ-free mice of both strains with Bacteroides ovatus prior to long-term treatment with DSS protected mice from bleeding, development of intestinal inflammation and precocious death. We observed that though DSS-treated Bacteroides ovatus-colonized SCID mice showed minor morphological changes in colon tissue, jejunal brush-border enzyme activities such as gamma-glutamyltranspeptidase, lactase and alkaline phosphatase were significantly reduced in comparison with DSS-untreated Bacteroides ovatus-colonized mice. This modulation of the enterocyte gamma-glutamyltranspeptidase localized to the brush border membrane has been described for the first time. This enzyme is known to reflect an imbalance between pro-oxidant and anti-oxidant mechanisms, which could be involved in protective effects of colonization of germ-free mice with Bacteroides ovatus against DSS injury.  相似文献   

10.
Lin WH  Yu B  Jang SH  Tsen HY 《Anaerobe》2007,13(3-4):107-113
Systematic procedures were used to evaluate the probiotic properties of Lactobacillus fermentum (L. fermentum) strains isolated from swine and poultry. The major properties included their capabilities to adhere to the intestinal epithelium of swine and poultry, the inhibition on pathogenic bacteria, and their tolerance to the gastric juice and bile salts. Results showed that L. fermentum strains from poultry digestive tract showed better adherence to the swine intestine and chicken crop epithelial cells as compared to those strains from the swine origin. In addition, six strains from poultry and one strain from swine showed adhesion specificity to their own intestinal epithelium. Four poultry isolates and one swine isolate were able to adhere to the epithelial cells from both swine and chicken. For gastric juice and bile tolerance, most of the strains isolated from swine or poultry were acid tolerant but less strains were bile intolerant. The spent culture supernatant (SCS) of these L. fermentum strains showed antagonistic effect against the indicator bacteria, such as Escherichia coli, Salmonella spp., Shigella sonnei and some enterotoxigenic Staphylococcus aureus. From the above studies, some L. fermentum strains isolated from poultry were found to have the probiotic properties required for use in animal feed supplement. This study suggested that poultry digestive tract may serve as potential source for the isolation of probiotic lactic acid bacteria.  相似文献   

11.
Germ-free animal models have demonstrated that commensal bacterial colonization of the intestine induces B cell differentiation and activation. Whether colonization with particular bacterial species or groups is associated with B cell development during early childhood is not known. In a prospective newborn/infant cohort including 65 Swedish children, we examined the numbers and proportions of CD20(+), CD5(+), and CD27(+) B cells in blood samples obtained at several time points during the first 3 y of life using flow cytometry. Fecal samples were collected and cultured quantitatively for major facultative and anaerobic bacteria at 1, 2, 4, and 8 wk of life. We found that the numbers of CD20(+) B cells and CD5(+)CD20(+) B cells reached their highest levels at 4 mo, whereas CD20(+) B cells expressing the memory marker CD27 were most numerous at 18 and 36 mo of age. Using multivariate analysis, we show that early colonization with Escherichia coli and bifidobacteria were associated with higher numbers of CD20(+) B cells that expressed the memory marker CD27 at 4 and 18 mo of age. In contrast, we were unable to demonstrate any relation between bacterial colonization pattern and numbers of CD20(+) or CD5(+)CD20(+) B cells. These results suggest that the intestinal bacterial colonization pattern may affect the B cell maturation also in humans, and that an early gut microbiota including E. coli and bifidobacteria might promote this maturation.  相似文献   

12.
Effects of the Human Intestinal Flora on Germ-free Mice   总被引:6,自引:2,他引:4  
The effects of complete human intestinal flora and of intestinal anaerobes on germ-free mice were studied. The gross composition of the flora of mice was similar to that of the flora with which the animals had been contaminated and appeared to be stable provided that the animals were kept isolated. The complete flora and the anaerobes reduced caecal weight to normal values and induced an antagonistic effect against Escherichia coli. In contrast to the complete flora, the anaerobes were not invasive in immunosuppressed mice and induced colonization resistance and antagonism against Pseudomonas aeruginosa.  相似文献   

13.
Citrobacter rodentium belongs to a family of human and animal enteric pathogens that includes the clinically significant enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC). These pathogens exploit attaching and effacing (A/E) lesions to colonize the host gastrointestinal tract. However, both EHEC and EPEC are poorly pathogenic in mice. In contrast, C. rodentium, which is genetically highly related to E. coli, relies on A/E lesion formation as an essential step in both colonization and infection of the murine mucosa, providing an excellent in vivo model. In this study we have used bioluminescence imaging (BLI) to investigate the organ specificity and dynamics of colonization of mice by LB-grown and mouse-passaged C. rodentium in situ and in real time. We have demonstrated the appearance of a 'hyperinfectious' state after passage of C. rodentium through the murine gastrointestinal tract. The 'hyperinfectious' state was found to dramatically reduce the dose required to infect secondary individuals, and also influenced the tissue distribution of colonizing bacteria, removing the requirement for primary colonization of the caecal patch. In addition, the 'hyperinfectious' phenotype was found to be transient with one overnight passage in rich medium sufficient to return C. rodentium to 'culture' infectivity.  相似文献   

14.
Candida organisms commonly colonize the human gastrointestinal tract as a component of the resident microbiota. Their presence is generally benign. Recent studies, however, show that high level Candida colonization is associated with several diseases of the gastrointestinal tract. Further, results from animal models argue that Candida colonization delays healing of inflammatory lesions and that inflammation promotes colonization. These effects may create a vicious cycle in which low-level inflammation promotes fungal colonization and fungal colonization promotes further inflammation. Both inflammatory bowel disease and gastrointestinal Candida colonization are associated with elevated levels of the pro-inflammatory cytokine IL-17. Therefore, effects on IL-17 levels may underlie the ability of Candida colonization to enhance inflammation. Because Candida is a frequent colonizer, these effects have the potential to impact many people.  相似文献   

15.
Lactobacillus fermentum was present in small numbers in the caecum and colon of only one of 16 rabbits. Studies aimed at elucidating the factors affecting the colonization of lactobacilli in rabbit gut were thus performed. These studies included investigation of the effect of gastric juice and bile salts on the viability of lactobacilli, assay of the survival rates of lactobacilli in the gastrointestinal tracts of the rabbits with or without ileum cannulation and measurement of the adhesive capability of lactobacilli to the rabbit intestinal epithelial cells. Results showed that, although some lactobacilli were resistant to the rather low pH levels of rabbit gastric juice, lack of adhesive capability may prevent them from colonizing in the intestinal tract. Therefore, if lactobacilli are to be used as probiotics for rabbit, factors that affect their viability and ability to colonize should be considered.  相似文献   

16.
To obtain a suitable species-specific microflora for a new rat SPF-unit, germ-free WAG/Rij rats were associated with a flora derived originally from selectively decontaminated Cpb: WU (Wistar) rats. Caecal and ileal contents of these rats had been cultured anaerobically (37 degrees C) for 7 days and harvested. This cultured flora was given to germ-free Cpb: SE (Swiss) mice, which were kept in an isolator system and acted as a source of the flora to associate germ-free Wag/Rij rats. In these associated rats, several parameters indicative of the 'quality' of the intestinal microflora were investigated and compared to those in rats with a mouse derived anaerobic microflora. Parameters included relative caecal weight, colonization resistance and the concentration of faecal bile acids. The cultured rat-derived microflora normalized the observed intestinal parameters better than the mouse derived microflora, and provided better colonization resistance. We conclude that culturing of intestinal contents of selectively decontaminated animals can be a useful way to obtain a species-specific donor-microflora which can be used to start new SPF units.  相似文献   

17.
This review focuses on diarrhea caused by toxins released by enterotoxigenic Escherichia coli. These bacteria are known to produce toxins that have adverse effects on the intestinal tissue in Man and animals. E. coli is contracted through the ingestion of water or food contaminated by this bacterium. Generally, E. coli colonizes the intestinal mucosa where it multiplies and causes damage to the target cells or interferes with the homeostasis that prevails in the gastrointestinal tract. Enteropathogens such as E. coli are only able to exhibit their effects after colonization of the intestinal mucosa from where they release their toxins. These bacteria mainly affect chloride ions secretion through second messenger pathways resulting in secretory diarrhea. In this review, the association of bacteria with the gastrointestinal tract as pathogens and the resulting effects on the various systems of the intestine, including the nervous system and mediators leading to secretion and diarrhea are examined.  相似文献   

18.
The human commensal Bacteroides fragilis binds intestinal mucin   总被引:1,自引:0,他引:1  
Huang JY  Lee SM  Mazmanian SK 《Anaerobe》2011,17(4):137-141
The mammalian gastrointestinal tract harbors a vast microbial ecosystem, known as the microbiota, which benefits host biology. Bacteroides fragilis is an important anaerobic gut commensal of humans that prevents and cures intestinal inflammation. We wished to elucidate aspects of gut colonization employed by B. fragilis. Fluorescence in situ hybridization was performed on colonic tissue sections from B. fragilis and Escherichia coli dual-colonized gnotobiotic mice. Epifluorescence imaging reveals that both E. coli and B. fragilis are found in the lumen of the colon, but only B. fragilis is found in the mucosal layer. This observation suggests that physical association with intestinal mucus could be a possible mechanism of gut colonization by B. fragilis. We investigated this potential interaction using an in vitro mucus binding assay and show here that B. fragilis binds to murine colonic mucus. We further demonstrate that B. fragilis specifically and quantitatively binds to highly purified mucins (the major constituent in intestinal mucus) using flow cytometry analysis of fluorescently labeled purified murine and porcine mucins. These results suggest that interactions between B. fragilis and intestinal mucin may play a critical role during host-bacterial symbiosis.  相似文献   

19.
Klebsiella pneumoniae is an important opportunistic pathogen and a frequent cause of nosocomial infections. K. pneumoniae infections can occur at nearly any body site; however, urinary tract infections and infections of the respiratory tract predominate. Infections are frequently preceded by gastrointestinal colonization, and the gastrointestinal tract is believed to be the most important reservoir for transmission of the bacteria. In contrast to many other bacterial pathogens, K. pneumoniae is ubiquitous in nature. Several studies have described Klebsiella isolates of environmental origin to be nearly identical to clinical isolates with respect to several phenotypic properties. However, the pathogenic potential of environmental K. pneumoniae isolates is essentially unknown. We have evaluated the virulence of K. pneumoniae strains of environmental and clinical origin directly in animal models, i.e. in urinary tract infection and intestinal colonization models. Furthermore, the ability to adhere to and invade human epithelial cell lines was examined. Although strain-to-strain differences were observed in the individual infection models, overall, strains of environmental origin were found to be as virulent as strains of clinical origin. The ubiquity of K. pneumoniae in nature and the general ability of K. pneumoniae strains to infect susceptible hosts might explain the high frequency of opportunistic infections caused by this species.  相似文献   

20.
alpha-galactooligosaccharides (alpha-GOS) found in legumes such as soybeans can cause gastrointestinal disorders since mammals lack alpha-galactosidase (alpha-Gal) in the small intestine which is necessary for their hydrolysis. Lactobacillus fermentum CRL 722 is a lactic acid bacterium (LAB) capable of degrading alpha-GOS due to its elevated alpha-Gal activity. When conventional rats were fed live L. fermentum CRL 722 or cell-free extracts of this strain, a short-lived alpha-Gal activity was detected in the upper gastrointestinal tract. The safety of this LAB was also assessed. L. fermentum CRL 722 could thus be used as a vehicle to safely confer alpha-Gal in the small intestine of monogastric animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号