首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.

Background

Circadian Locomotor Output Cycles Kaput (CLOCK), an essential element of the positive regulatory arm in the human biological clock, is involved in metabolic regulation. The aim was to investigate the behavioral (sleep duration, eating patterns and chronobiological characteristics) and hormonal (plasma ghrelin and leptin concentrations) factors which could explain the previously reported association between the CLOCK 3111T/C SNP and weight loss.

Methodology/Principal Findings

We recruited 1495 overweight/obese subjects (BMI: 25–40 kg/m2) of 20–65 y. who attended outpatient obesity clinics in Murcia, in southeastern Spain. We detected an association between the CLOCK 3111T/C SNP and weight loss, which was particularly evident after 12–14 weeks of treatment (P = 0.038). Specifically, carriers of the minor C allele were more resistant to weight loss than TT individuals (Mean±SEM) (8.71±0.59 kg vs 10.4±0.57 kg) C and TT respectively. In addition, our data show that minor C allele carriers had: 1. shorter sleep duration Mean ± SEM (7.0±0.05 vs 7.3±0.05) C and TT respectively (P = 0.039), 2. higher plasma ghrelin concentrations Mean ± SEM (pg/ml) (1108±49 vs 976±47)(P = 0.034); 3. delayed breakfast time; 4. evening preference and 5. less compliance with a Mediterranean Diet pattern, as compared with TT homozygotes.

Conclusions/Significance

Sleep reduction, changes in ghrelin values, alterations of eating behaviors and evening preference that characterized CLOCK 3111C carriers could be affecting weight loss. Our results support the hypothesis that the influence of the CLOCK gene may extend to a broad range of variables linked with human behaviors.  相似文献   

2.
The clock gene (CLOCK) is considered to be a good candidate gene for the pathophysiology of mood disorders, including bipolar disorder (BP) and major depressive disorder (MDD). rs1801260 (T3111C) has been detected at position 3111 in the CLOCK mRNA 3' untranslated region, and was reported to be associated with a substantial delay in preferred timing for activity and sleep in a human study. As for function, rs1801260 has been speculated to affect mRNA. Therefore, the authors investigated the association between the three tagging single-nucleotide polymorphisms (SNPs) (rs3736544, rs1801260, and rs3749474) in CLOCK and risk of BP (n=867) and MDD (n=139) compared to controls (n=889) in the Japanese population. In addition, we also performed an updated meta-analysis of nine published, genetic association studies investigating the relationship between rs1801260 and mood disorder risk, comprising 3321 mood disorders cases and 3574 controls. We did not detect any associations between tagging SNPs in CLOCK and BP or MDD in the allele, genotype, or haplotype analysis (global p(BP)=.605 and global p(MDD)=.211). Moreover, rs1801260 was also not associated with BP, MDD, or any mood disorders in the meta-analysis. In conclusion, these data suggest that CLOCK does not play a major role in the pathophysiology of mood disorders.  相似文献   

3.
Human genetic studies have implicated specific genes that constitute the molecular clock in the manifestation of bipolar disorder (BD). Among the clock genes involved in the control system of circadian rhythms, CLOCK 3111 T/C and Period3 (PER3) influence core psychopathological features of mood disorders, such as patterns of sleep, rest, and activity, diurnal preference, cognitive performances after sleep loss, age at the onset of the illness, and response to antidepressant treatment. Furthermore, several studies pointed out that bipolar symptomatology is associated with dysfunctions in white matter (WM) integrity, suggesting these structural alterations as a possible biomarker of the disorder. We hypothesise that CLOCK and PER3 polymorphisms could be potential factors affecting WM microstructure integrity in bipolar patients. The relationship between these clock genes and DTI measures of WM integrity in a sample of 140 (53 M; 87 F) patients affected by BD type I was studied. Tract-based spatial statistics analyses on DTI measures of WM integrity were performed for each clock gene polymorphism, between the genetic groups. We accounted for the effect of nuisance covariates known to influence WM microstructure: age, sex, lithium treatment, age at the onset of the illness, and the number of illness episodes. We found that compared to T homozygotes, CLOCK C carriers showed a widespread increase of the mean diffusivity in several WM tracts. Compared with PER35/5 homozygotes, PER34/4 homozygotes showed significantly increased radial diffusivity and reduced fractional anisotropy in several brain WM tracts. No significant difference was observed between heterozygotes and the other subgroups. Altogether, this pattern of results suggests WM disruption in CLOCK C carrier and in PER34 homozygotes. Sleep promotes myelination and oligodendrocyte precursor cell proliferation and associates with higher expression of genes coding for phospholipid synthesis and myelination in oligodendrocytes. These clock genes play a pivotal role in maintaining circadian rhythms and the sleep-wake cycle. Thus, it may be suggested that CLOCK rs1801260*C and PER34/4 influence myelination processes by regulating sleep quality and quantity.  相似文献   

4.
Genetic variations in clock-relevant genes have been investigated in relation to sleep abnormalities, both in healthy populations and in mood-disorder patients with inconsistent results. Environmental influences may moderate associations between genes and phenotype. The authors examined the CLOCK 3111T/C polymorphism and several variants within the PER3 gene and their possible interaction with stressful life events in a group of female volunteers (n = 415). Gene-environment (G × E) interactions and gene main effects were investigated on depressive symptoms using the Beck Depression Inventory and on change of sleep patterns (Item 16). Results showed a G × E interaction on alteration of sleeping pattern: the 3111C homozygous genotype reported greater disruption in sleep pattern after the experience of stressful life events. Within the PER3 gene, one G × E interaction was observed with rs228642 on sleep change. These findings show that the 3111T/C polymorphism is not associated with depressive symptoms, but only with symptoms of sleep change in the case of prior stressful life experiences. The combination of a sensitive genotype (3111C/C) and environmental stress increases vulnerability to circadian rhythm disruption in females.  相似文献   

5.
The 3111 C/T single nucleotide polymorphism (SNP) in the CLOCK gene and the 825C/T SNP in the G-protein β3 subunit gene (GNB3) have been reported to influence diurnal preference. This study has attempted to characterize the association between the CLOCK gene and GNB3 polymorphisms and diurnal preference in healthy Korean college students. All subjects completed the 13-item Composite Scale for Morningness (CSM). The interaction between the 3111 C/T SNP in the CLOCK gene and the 825 C/T SNP in the GNB3 gene significantly influenced diurnal preference, according to the CSM Performance subscore (F=10.94, p=0.001). However, when the different polymorphisms of the two genes were analyzed independently, no direct correlations with diurnal preference were detected. The CLOCK gene 3111 C/T SNP and GNB3 gene 825 C/T SNP were found to manifest a gene-gene interaction that affects diurnal preference.  相似文献   

6.
Sleep patterns, frequently altered in depression, have been hypothesized to be under genetic control. The circadian locomotor output cycles kaput (CLOCK) T3111C variant has been studied in association with sleep disturbances in depressed patients. The aim of this study was to investigate possible effects of T3111C CLOCK on insomnia, daytime sleepiness, sleep quality, and depression severity in a sample of 100 major depressive disorder patients. Inclusion criteria were: major depressive disorder, drug-free for any antidepressant and/or benzodiazepines for at least four weeks previously to the study, and a minimum score of >17 on the Hamilton Rating Scale for Depression. The Morningness–Eveningness Questionnaire, Epworth Sleepiness Scale, Athens Insomnia Scale, and Pittsburgh Sleep Quality Index were applied. No significant difference was found concerning genotype or allele groups and Hamilton Rating Scale for Depression items or clusters. No difference was found between genotypes and comorbidity, chronotype distribution, Epworth Sleepiness Scale, Athens Insomnia Scale, or Pittsburgh Sleep Quality Index total scores. Overall, the present findings did not support the hypothesis of an effect of the T3111C CLOCK variant on sleep disturbances in major depressive disorder. Further analysis of clock machinery will clarify the contribution of clock genes to the maintenance of mental health. (Author correspondence: )  相似文献   

7.
The 3111 C/T single nucleotide polymorphism (SNP) in the CLOCK gene and the 825C/T SNP in the G‐protein β3 subunit gene (GNB3) have been reported to influence diurnal preference. This study has attempted to characterize the association between the CLOCK gene and GNB3 polymorphisms and diurnal preference in healthy Korean college students. All subjects completed the 13‐item Composite Scale for Morningness (CSM). The interaction between the 3111 C/T SNP in the CLOCK gene and the 825 C/T SNP in the GNB3 gene significantly influenced diurnal preference, according to the CSM Performance subscore (F=10.94, p=0.001). However, when the different polymorphisms of the two genes were analyzed independently, no direct correlations with diurnal preference were detected. The CLOCK gene 3111 C/T SNP and GNB3 gene 825 C/T SNP were found to manifest a gene‐gene interaction that affects diurnal preference.  相似文献   

8.
Genetic variations in clock-relevant genes have been investigated in relation to sleep abnormalities, both in healthy populations and in mood-disorder patients with inconsistent results. Environmental influences may moderate associations between genes and phenotype. The authors examined the CLOCK 3111T/C polymorphism and several variants within the PER3 gene and their possible interaction with stressful life events in a group of female volunteers (n?=?415). Gene-environment (G?×?E) interactions and gene main effects were investigated on depressive symptoms using the Beck Depression Inventory and on change of sleep patterns (Item 16). Results showed a G?×?E interaction on alteration of sleeping pattern: the 3111C homozygous genotype reported greater disruption in sleep pattern after the experience of stressful life events. Within the PER3 gene, one G?×?E interaction was observed with rs228642 on sleep change. These findings show that the 3111T/C polymorphism is not associated with depressive symptoms, but only with symptoms of sleep change in the case of prior stressful life experiences. The combination of a sensitive genotype (3111C/C) and environmental stress increases vulnerability to circadian rhythm disruption in females. (Author correspondence: )  相似文献   

9.
It has been hypothesized that abnormalities in the molecular clock underlie the development of mood disorders, in the direction of higher prevalence in individuals with a reduced flexibility to adapt to important regulations of mood in response to changes in seasons, stress levels, sleep schedules, and time zones. In particular, a T/C change (rs1801260) at the 3111 position of the circadian locomotor output cycles kaput (CLOCK) gene has been explored in psychiatry disorders. This meta-analysis has been undertaken to investigate the association between rs1801260 and both mood disorders and depression severity, shedding light on previous controversial results and providing better power to detect smaller effect sizes. PubMed and ISI databases were searched for studies focused on the association between rs1801260 and mood disorders spectrum. Quality of studies was assessed. We found no association between CLOCK genotypes and mood disorders, even when we separately investigated ethnical homogeneous or unipolar disorder studies. No association was found regarding severity of depression either. The methodological quality of the studies has been found to be medium-high. Our meta-analysis shows no association between rs1801260 and mood disorders (as a complete phenotype) or depression severity and points out the necessity of further research in order to better understand the underlying biological machinery of circadian dysfunction in subjects affected by mood disorders. (Author correspondence: )  相似文献   

10.
Genetic association studies of the CLOCK 3111C/T polymorphism and diurnal preference have yielded conflicting results since the first report that the 3111C allele was associated with eveningness. The goal of the present study was to investigate the association of this polymorphism with diurnal preference and circadian physiology in a group of 179 individuals, by comparing the frequency of the 3111C allele to diurnal preference, habitual sleep timing, circadian phase markers, and circadian period. We did not find a significant association between this allele and morningness/eveningness or any circadian marker.  相似文献   

11.
A Clock polymorphism T to C situated in the 3' untranslated region (3'-UTR) has been associated with human diurnal preference. At first, Clock 3111C had been reported as a marker for evening preference. However these data are controversial, and data both corroborating and denying them have been reported. This study hypothesizes that differences in Clock genotypes could be observed if extreme morning-type subjects were compared with extreme evening-type subjects, and the T3111C and T257G polymorphisms were studied. The possible relationship between both polymorphisms and delayed sleep phase syndrome (DSPS) was also investigated. An interesting and almost complete linkage disequilibrium between the polymorphisms T257G in the 5' UTR region and the T3111C in the 3' UTR region of the Clock gene is described. Almost always, a G in position 257 corresponds to a C in position 3111, and a T in position 257 corresponds to a T in position 3111. The possibility of an interaction of these two regions in the Clock messenger RNA structure that could affect gene expression was analyzed using computer software. The analyses did not reveal an interaction between those two regions, and it is unlikely that this full allele correspondence affects Clock gene expression. These results show that there is no association between either polymorphism T3111C or T257G in the Clock gene with diurnal preference or delayed sleep phase syndrome (DSPS). These controversial data could result from the possible effects of latitude and clock genes interaction on circadian phenotypes.  相似文献   

12.
The 3111T/C single nucleotide polymorphism (SNP) of Circadian Locomotor Output Cycles Kaput (CLOCK) gene reportedly affects gastric motility before breakfast. It is of interest to know whether this SNP can affect the motility during the daytime. We investigated the association between the CLOCK 3111T/C SNP and several gastric motility parameters during the time period from 8:00 to 20:00 in 34 young women with scheduled meals. There were similar daytime fluctuations in gastric motility before and after the meals between the major (T/T) and minor (T/C) allele carriers. The CLOCK SNP may affect daytime gastric motility less than food stimulation.  相似文献   

13.
In the Drosophila circadian clock, the CLOCK/CYCLE complex activates the period and timeless genes that negatively feedback on CLOCK/CYCLE activity. The 24-h pace of this cycle depends on the stability of the clock proteins. RING-domain E3 ubiquitin ligases have been shown to destabilize PERIOD or TIMELESS. Here we identify a clock function for the circadian trip (ctrip) gene, which encodes a HECT-domain E3 ubiquitin ligase. ctrip expression in the brain is mostly restricted to clock neurons and its downregulation leads to long-period activity rhythms in constant darkness. This altered behaviour is associated with high CLOCK levels and persistence of phosphorylated PERIOD during the subjective day. The control of CLOCK protein levels does not require PERIOD. Thus, CTRIP seems to regulate the pace of the oscillator by controlling the stability of both the activator and the repressor of the feedback loop.  相似文献   

14.
15.
Timeless与生物钟基因   总被引:3,自引:0,他引:3  
综述了timeless基因的发现、多态性和重要功能。timeless是最先被发现的两个生物钟基因之一。生物钟的昼夜节律由PER、TIM、CLOCK和CYCLE4个生物钟齿轮组成的正负反馈回路进行调节。其中TIM可以受光因子调控,它还可以与PER形成异二聚体,通过正负调控方式调节果蝇的昼夜节律行为。  相似文献   

16.
A Clock polymorphism T to C situated in the 3′ untranslated region (3′‐UTR) has been associated with human diurnal preference. At first, Clock 3111C had been reported as a marker for evening preference. However these data are controversial, and data both corroborating and denying them have been reported. This study hypothesizes that differences in Clock genotypes could be observed if extreme morning‐type subjects were compared with extreme evening‐type subjects, and the T3111C and T257G polymorphisms were studied. The possible relationship between both polymorphisms and delayed sleep phase syndrome (DSPS) was also investigated. An interesting and almost complete linkage disequilibrium between the polymorphisms T257G in the 5′ UTR region and the T3111C in the 3′ UTR region of the Clock gene is described. Almost always, a G in position 257 corresponds to a C in position 3111, and a T in position 257 corresponds to a T in position 3111. The possibility of an interaction of these two regions in the Clock messenger RNA structure that could affect gene expression was analyzed using computer software. The analyses did not reveal an interaction between those two regions, and it is unlikely that this full allele correspondence affects Clock gene expression. These results show that there is no association between either polymorphism T3111C or T257G in the Clock gene with diurnal preference or delayed sleep phase syndrome (DSPS). These controversial data could result from the possible effects of latitude and clock genes interaction on circadian phenotypes.  相似文献   

17.
Epistasis (gene-gene interaction) is a ubiquitous component of the genetic architecture of complex traits such as susceptibility to common human diseases. Given the strong negative correlation between circulating adiponectin and resistin levels, the potential intermolecular epistatic interactions between ADIPOQ (SNP+45T > G, SNP+276G > T, SNP+639T > C and SNP+1212A > G) and RETN (SNP-420C > G and SNP+299G > A) gene polymorphisms in the genetic risk underlying type 2 diabetes (T2DM) and metabolic syndrome (MS) were assessed. The potential mutual influence of the ADIPOQ and RETN genes on their adipokine levels was also examined. The rare homozygous genotype (risk alleles) of SNP-420C > G at the RETN locus tended to be co-inherited together with the common homozygous genotypes (protective alleles) of SNP+639T > C and SNP+1212A > G at the ADIPOQ locus. Despite the close structural relationship between the ADIPOQ and RETN genes, there was no evidence of an intermolecular epistatic interaction between these genes. There was also no reciprocal effect of the ADIPOQ and RETN genes on their adipokine levels, i.e., ADIPOQ did not affect resistin levels nor did RETN affect adiponectin levels. The possible influence of the ADIPOQ gene on RETN expression warrants further investigation.  相似文献   

18.
Summary B and T lymphocyte attenuator (BTLA) is an immuno-inhibitory receptor with the ability to deliver inhibitory signal for suppressing lymphocyte activation. To test the potential association of the human BTLA gene with the development of rheumatoid arthritis (RA), a genetic case-control association study was conducted, by using a single nucleotide polymorphism (SNP), C+800T SNP, in the exon 5 of the human BTLA gene for genotyping 93 RA patients and 294 normal control individuals. The results showed that there is statistically significant difference in the genotype distributions between RA and control groups (p = 0.022). When compared with the heterozygous genotype (C/T genotype), the homozygous genotype (C/C or T/T genotype) appears to confer the increased risk of the RA susceptibility with the odds ratio of 1.88 (p = 0.015). These data indicate the significant association between the C+800T SNP in the BTLA gene with the RA susceptibility.  相似文献   

19.
A comparative analysis of melatonin circadian rhythms in Caucasian (incoming population) and Asian (indigenous population) menopausal women with/without sleep disorders depending on the genotype of Clock 3111T/C gene polymorphism was realized.The melatonin level in the saliva was determined four times a day (6:00–7:00, 12:00–13:00, 18:00–19:00, 23:00–00:00 h). The Caucasian women—carriers of the TT-genotype with insomnia as compared to control group—had a higher morning melatonin level and a lower night melatonin level. The Asian women with TT-genotype and insomnia had a lower levels of melatonin as compared to control at daytime, evening and night. A significantly higher melatonin level in the early morning hours was detected in the Caucasian women—carriers of the TT-genotype with insomnia as compared to group womencarriers of the minor 3111C-allele. There were no statistically significant differences in the circadian rhythms of melatonin in the Asian women depending on the genotype of the Clock 3111T/C polymorphism. An assumption with respect to the protective role of the minor allele 3111C in the development of insomnia associated with the displacement of melatonin circadian rhythms in the representatives of the incoming population was made.  相似文献   

20.
ABSTRACT: BACKGROUND: microRNAs (miRNAs) are shown to be involved in the regulation of circadian clock. However, it remains largely unknown whether miRNAs can regulate the core clock genes (Clock and Bmal1). RESULTS: In this study, we found that mir-142-3p directly targeted the 3'UTR of human BMAL1 and mouse Bmal1. The over-expression (in 293ET and NIH3T3 cells) and knockdown (in U87MG cells) of mir-142-3p reduced and up-regulated the Bmal1/BMAL1 mRNA and protein levels, respectively. Moreover, the expression level of mir-142-3p oscillated in serum-shocked NIH3T3 cells and the results of ChIP and luciferase reporter assays suggested that the expression of mir-142-3p was directly controlled by CLOCK/BMAL1 heterodimers in NIH3T3 cells. CONCLUSIONS: Our study demonstrates that mir-142-3p can directly target the 3'UTR of Bmal1. In addition, the expression of mir-142-3p is controlled by CLOCK/BMAL1 heterodimers, suggesting a potential negative feedback loop consisting of the miRNAs and the core clock genes. These findings open new perspective for studying the molecular mechanism of circadian clock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号