首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In the present study, we investigated the possible involvement of oxidative stress in ciprofloxacin-induced cytotoxicity against several reference bacteria including Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, and clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA). Oxidative stress was assessed by measurement of hydrogen peroxide generation using a FACScan flow cytometer. The antibacterial activity of ciprofloxacin was assessed using the disk diffusion method and by measuring the minimum inhibitory concentration (MIC). Ciprofloxacin induced a dose-dependent antibacterial activity against all bacteria where the highest tested concentration was 100 ug/ml. Results revealed that E. coli cells were highly sensitive to ciprofloxacin (MIC = 0.21 μg/mL ± 0.087), P. aeruginosa and S. aureus cells were intermediately sensitive (MIC = 5.40 μg/mL ± 0.14; MIC = 3.42 μg/mL ± 0.377, respectively), and MRSA cells were highly resistant (MIC = 16.76 μg/mL ± 2.1). Pretreatment of E. coli cells with either vitamin E or vitamin C has significantly protected cells against ciprofloxacin-induced cytotoxicity. These results indicate the possible antagonistic properties for vitamins C or E when they are used concurrently with ciprofloxacin.  相似文献   

2.
Aims: To examine the killing efficiency of UV KrCl excilamp against Gram‐positive and Gram‐negative bacteria. Methods and Results: Vegetative cells of Bacillus cereus, Bacillus subtilis, Escherichia coli O157:H7, Staphylococcus aureus and Streptococcus pyogenes at initial populations from 102 to 107 colony‐forming units (CFU) ml?1 were treated by KrCl excilamp in sterile Ringer’s solution with and without H2O2. The number of viable cells was determined using spread plating techniques and nutrient agar method with subsequent incubation at 28°C or 37°C for 24 h. At estimated populations of 102–105 CFU ml?1E. coli O157:H7 and Staph. aureus were the most sensitive and showed 100% disinfection within 15 s (29·2 mJ cm?2). Bacillus subtilis was more sensitive to UV treatment than B. cereus. The UV/H2O2 inactivation rate coefficients within this population range were two times higher than those observed for UV treatment alone. No effect of H2O2 was observed at 107 CFU ml?1 for Bacillus sp. and Strep. pyogenes. Conclusions: The narrow‐band UV radiation at 222 nm was effective in the rapid disinfection of bacteria in aqueous suspensions. Significance and Impact of the Study: KrCl excilamps represent UV sources which can be applied for disinfection of drinking water in advanced oxidation processes.  相似文献   

3.
Proteins and lipids maybe important targets of oxidation and this may alter their functions. We evaluated whether ceftazidima (CAZ), piperacillin (PIP), chloramphenicol (CMP), and ciprofloxacin (CIP) could oxidize the macromolecules in the three bacterial genera Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. There was an increase in lipid peroxidation observed in these three species. However, this was lower in the Gram negative bacteria than in S. aureus. A reduction of the carbonyl residue in S. aureus with ciprofloxacin was observed whereas in Gram negative bacteria the antibiotics increased the carbonyl residue with respect to the control. Although the strains suffered a rise in advanced oxidation protein products (AOPP) in the presence of ciprofloxacin, the S. aureus strain had a smaller increase of AOPP than the other strains. The results described in this article provide data about the susceptibility of the three bacterial genera to the oxidative stress induced by the antibiotics studied.  相似文献   

4.
Oxidative stress formed in Escherichia coli cells is known to bring about a complex induction of alternative DNA repair processes, including SOS, SoxRS, and heat-shock response (HSR). The modification by heat shock of the expression ofsfiA and soxS genes induced by oxidative agents H2O2, menadione and 4-nitroquinoline-1-oxide (4NQO) was studied for the first time. Quantitative parameters of gene expression were examined inE. coli strains with fused genes (promoters) sfiA::lacZ and soxS::lacZ.The expression of these genes induced by cell treatment with H2O2, but not menadione or 4NQO, was shown to decrease selectively after exposure to heat shock. Since genetic activity of menadione and 4NQO depends mainly on the formation of superoxide anion ,O¯ 2 it is assumed that the effect of selective inhibition by heat-shock of sfiA and soxS gene expression in experiments with H2O2 is connected with activity of DnaK heat shock protein, which, unlike other heat-shock proteins, cannot be induced by superoxide anion O¯ 2.  相似文献   

5.
Abstract

Potential effects of anthropogenic activities on different boreholes around Thulamela Municipality, South Africa, were evaluated by quantifying the bacteria indicators and physicochemical parameters during summer, autumn, and winter. The purpose was to determine whether the borehole water in this region is safe for domestic use across the seasons. The concentrations of physicochemical (Temperature, pH, electrical conductivity (EC), turbidity, and nitrate) and bacteriological (both Escherichia coli and Enterococcus faecalis) contaminants in the borehole water samples were determined using standard microbiology methods. The mean concentration of NO3 for most of the boreholes failed to comply with the recommended guidelines throughout the season. High microbial load of E. coli (2.0?×?101 – 4.6?×?103 CFU/100?ml) and E. faecalis (2.0?×?10° – 6.0?×?102 CFU/100?ml) was recorded in the wet season than in the dry season (0.0 – 7.0?×?102 and 0.0 – 1.0?×?101 CFU/100?ml, respectively). Sanitary inspection and water source classification showed that most boreholes are prone to chemical contaminants during summer and autumn due to rainfall and this correlates with the measured microbial contamination. The result is significantly important because water from these boreholes is used for domestic purposes without treatment and could pose major public health risks to the consumers.  相似文献   

6.
In the presence of hydrogen peroxide, the heme protein lactoperoxidase is able to oxidize thiocyanate and iodide to hypothiocyanite, reactive iodine species, and the inter(pseudo)halogen cyanogen iodide. The killing efficiency of these oxidants and of the lactoperoxidase-H2O2-SCN?/I? system was investigated on the bioluminescent Escherichia coli K12 strain that allows time-resolved determination of cell viability. Among the tested oxidants, cyanogen iodide was most efficient in killing E. coli, followed by reactive iodine species and hypothiocyanite. Thereby, the killing activity of the LPO-H2O2-SCN?/I? system was greatly enhanced in comparison to the sole application of iodide when I? was applied in two- to twenty-fold excess over SCN?. Further evidence for the contribution of cyanogen iodide in killing of E. coli was obtained by applying methionine. This amino acid disturbed the killing of E. coli mediated by reactive iodine species (partial inhibition) and cyanogen iodide (total inhibition), but not by hypothiocyanite. Changes in luminescence of E. coli cells correlate with measurements of colony forming units after incubation of cells with the LPO-H2O2-SCN?/I? system or with cyanogen iodide. Taken together, these results are important for the future optimization of the use of lactoperoxidase in biotechnological applications.  相似文献   

7.
The bacteriostatic potency of the cerium-humic acid complex was evaluated by experimental measurement of this complex interaction with E. coli, Bacillus pyocyaneus, Staphylococcus aureus, Leuconostoc and Streptococcus faecalis, and by comparison bacteriostatic effects with the cerium-citrate complex. The experimental results indicated that the cerium-humic acid complex strongly inhibited growth of all five bacterial strains, and its diameter of bacteriostatic circles were more than 30 mm. The minimal bacteria-inhibiting concentration were 1×10−3, 2×10−3 and 1×10−2 mol/L for E. coli and Bacillus pyocyaneus, Staphylococcus aureus, and Leuconostoc and Streptococcus faecalis individually, and the measured minimal bactericidal concentrations were 2×10−3 and 1×10−2 mol/L for Bacillus pyocyaneus, E. coli, and Leuconostoc. To kill Staphylococcus aureus and Streptococcus faecalis, the concentration had to be more than 1×10−2 mol/L. On the contrary, we found that cerium-citrate complex did not inhibit the growth of the above five bacteria, but stimulated bacterial growth. The completely different bacteriostatic results of two cerium complexes may hint that the association and chemical properties of the two complexes were different.  相似文献   

8.
Superoxide (O2?) is a primary agent of intracellular oxidative stress. Genetic studies in many organisms have confirmed that excess O2? disrupts metabolism, but to date only a small family of [4Fe‐4S] dehydratases have been identified as direct targets. This investigation reveals that in Escherichia coli O2? also poisons a broader cohort of non‐redox enzymes that employ ferrous iron atoms as catalytic cofactors. These enzymes were inactivated by O2? both in vitro and in vivo. Although the enzymes are known targets of hydrogen peroxide, the outcome with O2? differs substantially. When purified enzymes were damaged by O2? in vitro, activity could be completely restored by iron addition, indicating that the O2? treatment generated an apoprotein without damaging the protein polypeptide. Superoxide stress inside cells caused the progressive mismetallation of these enzymes with zinc, which confers little activity. When O2? stress was terminated, cells gradually restored activity by extracting zinc from the proteins. The overloading of cells with zinc caused mismetallation even without O2? stress. These results support a model in which O2? repeatedly excises iron from these enzymes, allowing zinc to compete with iron for remetallation of their apoprotein forms. This action substantially expands the physiological imprint of O2? stress.  相似文献   

9.
Treatment of aerobicEscherichia coli K 12 with nonlethal doses of near-ultraviolet (NUV) and H2O2 resulted in the same physiological response. In response to stress caused by these agents, an inhibition of growth, a decrease in intracellular K+ pool, and an increase in intracellular levels of protein and nonprotein thiols were observed. A possible role for glutathione in the process of adaptation ofE. coli culture to growth under the conditions of oxidative stress is discussed.  相似文献   

10.
Extraction of whole lobes of normal rat liver with dimethyl sulphoxide (DMSO) under N2 gives extracts which contain 5—10 μmol/l·O?2 (50-100 nmol·O?2 per 10 ml extract per 4 g liver; 1.25-2.50 nmol·O?2 per millilitre per gram liver). Evidence for ·O?2 in the extracts is given by: (1) electron spin resonance signals (ESR), (2) differential pulse polarography (DPP), (3) chemiluminescence (CL), and (4) nitroblue tetrazolium reduction (NBT). All tests yield results identical with those obtained with authentic ·O?2. Extraction of ·O?2 is enhanced by tetrabutyl ammonium ion, and is maximal at 1-3 min. These results raise the possibility that substantial amounts of ·O?2 are normally sequestered in protective membranous sites in vivo.  相似文献   

11.
Antibacterial characteristics of magnesium oxide powder   总被引:4,自引:0,他引:4  
The antibacterial activity of magnesium oxide (MgO) was studied. Inhibitory zones appeared around the MgO powder slurry put directly on nutrient agar plates seeded with Escherichia coli or Staphylococcus aureus. However, no zone was observed using a penicillin cup to avoid contact between the bacteria and the MgO powder. Moreover, the supernatant solution of the MgO powder slurry and a MgCl2 solution containing Mg2+ at a concentration of the solubility of MgO did not affect the growth of E. coli and S. aureus. Moreover, elevated shaking speed increased the death of E. coli in the slurry, indicating that the contact frequency between bacterial cells and MgO powders affected the antibacterial activity. It was considered that the contact between MgO powder and bacteria was important for the occurrence of its antibacterial activity. Since the generation of active oxygen, such as O2 , from the MgO powder slurry was detected by chemiluminescence analysis, an investigation was carried out to determine whether active oxygen generated from MgO powder slurry was related to its antibacterial activity. The changes in the antibiotic sensitivity in E. coli treated by MgO powder agreed with those by active oxygen treatment. These results suggested that the active oxygen generated from the MgO powder slurry was one of the primary factors in its antibacterial activity.  相似文献   

12.
The transferability of the tetracycline (TC) resistance gene tet(M) from marine bacteria to human enteric bacteria was examined by a filter-mating method. Vibrio spp., Lactococcus garvieae, Bacillus spp., Lactobacillus sp., and Paenibacillus sp. were used as donors, and Escherichia coli JM109 and Enterococcus faecalis JH2-2 were used as recipients. The combination of Vibrio spp. and E. coli resulted in 5/68 positive transconjugants with a transfer rate of 10−7 to 10−3; however, no transfer was observed with E. faecalis. In case of L. garvieae and E. faecalis, 6/6 positive transconjugants were obtained with a transfer rate of 10−6 to 10−5; however, no transfer was observed with E. coli. The tet(M) gene of Bacillus, Lactobacillus, and Paenibacillus were not transferred to either E. coli or E. faecalis. tet(M) transfer was confirmed in positive E. coli and E. faecalis transconjugants by polymerase chain reaction (PCR) and Southern hybridization. All the donor strains did not harbor plasmids, while they all harbored transposon Tn916. In the transconjugants, the transposon was not detected by PCR, suggesting the possible transfer of tet(M) from the marine bacterial chromosome to the recipient chromosome. This is the first report to show that tet(M) can be transferred from marine bacteria to human enteric bacteria in a species-specific manner.  相似文献   

13.
Negatively charged bacteria combined with positively charged alkaline dye rhodamine 6G (Rh6G) in NaH2PO4–Na2HPO4 buffer solution pH 7.4, by electrostatic interaction. The dyed bacteria exhibited a strong fluorescence peak at 552 nm and fluorescence intensity was directly linear to Escherichia coli (E. coli), Bacillus subtilis (B. subtilis) and Staphylococcus aureus (S. aureus) concentrations in the range of 7.06 × 104 to 3.53 × 107, 4.95 × 105 to 2.475 × 108 and 32.5 to 16250 colony forming unit/mL (cfu/mL) respectively, with detection limits of 3.2 × 104 cfu/mL E. coli, 2.3 × 105 cfu/mL B. subtilis and 16 cfu/mL S. aureus, respectively. Samples were cultured for 12 h, after which the linear detection range for E. coli was 2 to 88 cfu/mL. This simple, rapid and sensitive method was used for the analysis of water and drinking samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The purpose of the present study was to evaluate the risk of inducing bacterial resistance to disinfection treatment with photolysis of H2O2 and comparing this with existing antibacterial agents. We tested seven antibacterial agents, including amoxicillin, cefepime hydrochloride, erythromycin, ofloxacin, clindamycin hydrochloride, ciprofloxacin hydrochloride, and minocycline hydrochloride, as positive controls for validation of the assay protocol. For all of the agents tested, at least one of the four bacterial species (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Streptococcus salivarius) was resistant to these agents by repeated exposure to subinhibitory concentrations of the agents up to 10 times. In contrast, antibacterial activity against any of the bacterial species tested (S. aureus, E. faecalis, E. coli, S. salivarius, Pseudomonas aeruginosa, Streptococcus mutans, and Aggregatibacter actinomycetemcomitans) was not affected by repeated exposure to the disinfection treatment up to 40 times. This finding suggested that the risk of inducing bacterial resistance by disinfection treatment was low. The active ingredient of this disinfection treatment is hydroxyl radicals generated by photolysis of H2O2. Therefore, hydroxyl radicals interact with several cell structures and different metabolic pathways in microbial cells, probably resulting in a lack of development of bacterial resistance. In conclusion, disinfection treatment with photolysis of H2O2 appears to be a potential alternative for existing antimicrobial agents in terms of a low risk of inducing bacterial resistance.  相似文献   

15.
Abstract

The lungs of asthmatic patients are exposed to oxidative stress due to the generation of reactive oxygen and nitrogen species as a consequence of chronic airway inflammation. Increased concentrations of NO?, H2O2 and 8-isoprostane have been measured in exhaled breath and induced sputum of asthmatic patients. O2??, NO?, and halides interact to form highly reactive species such as peroxynitrite and HOBr, which in turn cause nitration and bromination of protein tyrosine residues. Oxidative stress may also reduce glutathione levels and cause inactivation of antioxidant enzymes such as superoxide dismutase, with a consequent increase in apoptosis, shedding of airway epithelial cells and airway remodelling. The oxidant/antioxidant equilibrium in asthmatic patients may be further perturbed by low dietary intakes of the antioxidant vitamins C and E, selenium and flavonoids, with a consequent lowering of the concentrations of these and other non-dietary antioxidants such as bilirubin and albumin in plasma and airway epithelial lining fluid. Although supplementation with vitamins C and E appears to offer protection against the adverse effects of ozone, recent randomised, placebo-controlled trials of vitamin C or E supplements for patients with mild asthma have not shown significant benefits over standard therapy. However, genetic variation in glutathione S-transferase may influence the susceptibility of asthmatic individuals to oxidative stress and the extent to which they are likely to benefit from antioxidant supplementation. Long-term prospective trials are required to determine whether modification of dietary intake will benefit asthma patients and reduce the socio-economic burden of asthma in the community.  相似文献   

16.
The Escherichia coli gene katE, which is driven by the promoter of the Rubisco small subunit gene of tomato, rbcS3C, was introduced into a tomato (Lycopersicon esculentum Mill.) by Agrobacterium tumefaciens‐mediated transformation. Catalase activity in progeny from transgenic plants was approximately three‐fold higher than that in wild‐type plants. Leaf discs from transgenic plants remained green at 24 h after treatment with 1 µm paraquat under moderate light intensity, whereas leaf discs from wild‐type plants showed severe bleaching after the same treatment. Moreover, ion leakage from transgenic leaf discs was significantly less than that from wild‐type leaf discs at 24 h after treatment with 1 µm paraquat and 10 mm H2O2, respectively, under moderate light intensity. To evaluate the efficiency of the E. coli catalase to protect the whole transgenic plant from the oxidative stress, transgenic and wild‐type plants were sprayed with 100 µm paraquat and exposed to high light illumination (800 µmol m?2 s?1). After 24 h, the leaves of the transgenic plants were less damaged than the leaves of the wild‐type plants. The catalase activity and the photosynthesis activity (indicated by the Fv/Fm ratio) were less affected by paraquat treatment in leaves of transgenic plants, whereas the activities of the chloroplastic ascorbate peroxidase isoenzymes and the ascorbate content decreased in both lines. In addition, the transgenic plants showed increased tolerance to the oxidative damage (decrease of the CO2 fixation and photosystem II activity and increase of the lipid peroxidation) caused by drought stress or chilling stress (4 °C) under high light intensity (1000 µmol m?2 s?1). These results indicate that the expression of the catalase in chloroplasts has a positive effect on the protection of the transgenic plants from the photo‐oxidative stress invoked by paraquat treatment, drought stress and chilling stress.  相似文献   

17.
The effect of a bacteriocin of Enterococcus on the oxidative metabolism of sensitive bacteria was investigated through the detection of oxidative stress by chemiluminescence (CL). The bacteriocin named EntB was purified to study the action on Staphylococcus aureus isolated from cosmetic. Chromatographic separation of EntB indicated different states of oligomerization with molecular weights multiple of 12,000Da monomeric form. The monomer purified by ion exchange was studied in its capacity to affect the oxidative metabolism of S. aureus, which showed increase of anion superoxide (O(2)(-)) when incubated with EntB. This effect was compared to the action of EntB on leukocytes as an assay of toxicity. EntB did not generate significant oxidative stress in leukocytes. Pyoverdin, a leukotoxic pigment of Pseudomonas fluorescens, was taken as reference, and it was found that this pigment caused similar oxidative stress to EntB in S. aureus; however, pyoverdin generated high production of anion superoxide (O(2)(-)) in leukocytes, while EntB did not increase the level of O(2)(-).  相似文献   

18.
Polyamines such as spermidine and spermine are primordial polycations that are ubiquitously present in the three domains of life. We have found that Gram‐positive bacteria Staphylococcus aureus and Enterococcus faecalis have lost either all or most polyamine biosynthetic genes, respectively, and are devoid of any polyamine when grown in polyamine‐free media. In contrast to bacteria such as Pseudomonas aeruginosa, Campylobacter jejuni and Agrobacterium tumefaciens, which absolutely require polyamines for growth, S. aureus and E. faecalis grow normally over multiple subcultures in the absence of polyamines. Furthermore, S. aureus and E. faecalis form biofilms normally without polyamines, and exogenous polyamines do not stimulate growth or biofilm formation. High levels of external polyamines, including norspermidine, eventually inhibit biofilm formation through inhibition of planktonic growth. We show that spermidine/spermine N‐acetyltransferase (SSAT) homologues encoded by S. aureus USA300 and E. faecalis acetylate spermidine, spermine and norspermidine, that spermine is the more preferred substrate, and that E. faecalis SSAT is almost as efficient as human SSAT with spermine as substrate. The polyamine auxotrophy, polyamine‐independent growth and biofilm formation, and presence of functional polyamine N‐acetyltransferases in S. aureus and E. faecalis represent a new paradigm for bacterial polyamine biology.  相似文献   

19.

Numerous reports suggest the involvement of oxidative stress in cadmium toxicity, but the nature of the reactive species and the mechanism of Cd-induced oxidative damage are not clear. In this study, E. coli mutants were used to investigate mechanisms of Cd toxicity. Effects of Cd on metabolic activity, production of superoxide radical by the respiratory chain, and induction of enzymes controlled by the soxRS regulon were investigated. In E. coli, the soxRS regulon controls defense against O2·and univalent oxidants. Suppression of metabolic activity, inability of E. coli to adapt to new environment, and slow cell division were among the manifestations of Cd toxicity. Cd increased production of O2· by the electron transport chain and prevented the induction of soxRS-controlled protective enzymes, even when the regulon was induced by the redox-cycling agent, paraquat. The effect was not limited to soxRS-dependent proteins and can be attributed to previously reported suppression of protein synthesis by Cd. Increased production of superoxide, combined with inability to express protective enzymes and to replace damaged proteins by de novo protein synthesis, seems to be the main reason for growth stasis and cell death in Cd poisoning.

  相似文献   

20.
This study was conducted to identify an indicator organism(s) in evaluating the pathogen-reducing capacity of biogas plants. Fresh cow manure containing 104 to 105 colony forming unit (CFU) per milliliter of Escherichia coli and Enterococcus faecalis along with an inoculated Clostridium perfringens strain were exposed to 37°C for 15 days, 55°C for 48 h, and 70°C for 24 h. C. perfringens was the most heat-resistant organism followed by E. faecalis, while E. coli was the most heat-sensitive organism. E. coli was reduced below detection limit at all temperatures with log10 reductions of 4.94 (10 s), 4.37 (40 min), and 2.6 (5 days) at 70°C, 55°C, and 37°C, respectively. Maximum log10 reductions for E. faecalis were 1.77 at 70°C (1 day), 1.7 at 55°C (2 days) and 3.13 at 37°C (15 days). For C. perfringens, maximum log10 reduction at 37°C was 1.35 log10 units (15 days) compared to less than 1 unit at 55 and 70°C. Modeling results showed that E. faecalis and C. perfringens had higher amount of heat-resistant fraction than E. coli. Thus, E. faecalis and C. perfringens can be used as indicator organisms to evaluate pathogen-reducing capacity in biogas plants at high temperatures of 55°C and 70°C while at 37°C E. coli could also be included as indicator organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号