首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The luminol test for blood was carried out on a set of interior fittings and surfaces inside three different makes of modern motor car. The surfaces and fittings provided little interference with the test for blood, although there was some detectable chemiluminescence when the test was applied to blood-free material from a seatbelt, a boot-lining and a gear-knob. The case with which haemoglobin samples could be washed off interior car surfaces was also examined for seat fabrics, carpets, roof-linings and various other plastic interior surfaces. A standard wash with water alone was not very effective and removed only ca. 50% of the haemoglobin. A standard wash with soapy water or with a proprietary multipurpose car cleaner removed ca. 90% of the haemoglobin from the tested surface. The effect of high car interior temperatures on haemoglobin samples that were subsequently used in the luminol test was also examined. It was shown that the sensitivity of the luminol test was not decreased but was increased by the prior heating of a haemoglobin sample. This effect was attributed to the thermal conversion of haemoglobin to the more brighter catalyst for chemiluminescence, methaemoglobin. The enthalpy of this conversion in the solid state was found to be 14.1 kJ/mol.  相似文献   

2.
The luminol chemiluminescence reaction has, for some time, been used as a tool for the detection of haemoglobin at crime scenes. More recently, the luminol test has been suggested as a possible tool for estimating the post‐mortem interval (PMI) of skeletal remains. The preliminary results from the following study indicate that the chemiluminescent luminol test is a relatively easy and economical method for distinguishing between remains of medico‐legal (≤100 years) and historical (>100 years) interest. The femur was the preferred bone for PMI measurements using the luminol test, due to its robustness and relative resistance to diagenesis. Initial results suggest that bone that was historical in nature, produced a demonstrably weaker reaction than that of medico‐legal interest. These results suggest that the luminol test is a promising technique, albeit with some limitations, for the assessment of skeletal material that may be potentially of medico‐legal interest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The forensic luminol test has long been valued for its ability to detect trace amounts of blood that are invisible to the naked eye. This is the first quantitative study to determine the effect on the luminol test when an attempt is made to clean bloodstained tiles with a known interfering catalyst (bleach). Tiles covered with either wet or dry blood were tested, and either water or sodium hypochlorite solution (bleach) was used to clean the tiles. As expected, the chemiluminescence intensity produced when luminol was applied generally decreased with the number of times that a tile was cleaned with water, until the chemiluminescence was neither visible nor detectable. However, when the tiles were cleaned with bleach there was an initial drop in chemiluminescence intensity, followed by a rise to a consistently high value, visibly indistinguishable from that of blood. Examination of bleach drying time suggested that any interfering effect becomes negligible after 8 h.  相似文献   

4.
《Luminescence》2004,19(1):37-42
Luminol‐, isoluminol‐ or lucigenin‐enhanced chemiluminescence (CL) was used to measure the production of reactive oxygen species by rat blood leukocytes. Opsonized zymosan (OZ), phorbol‐12‐myristate‐13‐acetate (PMA), calcium ionophore A23187 (Ca‐I) or N‐formyl‐Met‐Leu‐Phe (fMLP) were used as activators. The CL signal of isolated blood leukocytes decreased in rank order of luminol > isoluminol > lucigenin. The kinetic pro?les of luminol‐ and isoluminol‐enhanced CL were similar upon stimulation by each activator tested. The remarkably higher luminol and isoluminol CL responses were obtained after OZ stimulation when compared with other activators. However, when lucigenin was used, the PMA‐ and OZ‐stimulated CL were comparable. The presence of plasma increased OZ‐activated CL because of the enhanced phagocytosis of OZ. This was demonstrated by determining the phagocytosis of the ?uorescent OZ using a ?ow cytometer. In contrast, the presence of plasma decreased PMA‐activated CL, due to the antioxidant properties of plasma as determined by the CL method. As far as whole blood is concerned, only OZ activated luminol‐enhanced CL was reliable. Blood volumes over 5 µL decreased CL activity due to the scavenging ability of erythrocytes. The results suggest that 0.5 µL whole blood is suf?cient for routine luminol‐enhanced CL analysis of whole blood oxidative burst in rats. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
《Luminescence》2004,19(2):94-115
This review concerns the use of hypochlorite, hypobromite and related oxidants (such as N‐bromosuccinimide and 1,3‐dibromo‐5,5‐dimethylhydantoin) as chemiluminescence reagents and includes references to 249 papers that were published prior to mid‐2003. Particular emphasis has been placed on proposed emitting species and the mechanisms of the light‐producing pathways. The analytical applications of this chemistry have been summarized in three tables: (1) quanti?cation of hypohalites and related compounds (including halides, which are initially oxidized); (2) enhancement or inhibition of luminol chemiluminescence; and (3) direct chemiluminescence reactions with hypohalite reagents. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Two different mechanisms of inhibition of chemiluminescence in the oxidation of luminol by sodium hypochlorite were found. Most substances investigated in these experiments acted by scavenging NaOCI. This mechanism was independent of the concentration of hydrogen peroxide and the incubation time between luminol and inhibitors. The most potent inhibitors were substances containing SH groups. Compounds with amino groups as a target for HOCI/OCI? to yield chloramines were much less effective inhibitors. Another mechanism of inhibition was found for catalase. It depended on the presence of hydrogen peroxide in the incubation medium and the incubation time between luminol and catalase. The enzyme inhibited the luminescence by removing H2O2 at molar concentrations much smaller than those found for all other inhibitors. Our results confirm the present models of the mechanism of generation of luminescence in luminol oxidation.  相似文献   

7.
A water‐soluble sulphonato‐(salen)manganese(III) complex with excellent catalytic properties was synthesized and demonstrated to greatly enhance the chemiluminescence signal of the hydrogen peroxide ? luminol reaction. Coupled with flow‐injection technique, a simple and sensitive chemiluminescence method was first developed to detect hydroquinone based on the chemiluminescence system of the hydrogen peroxide–luminol–sulphonato‐(salen)manganese(III) complex. Under optimal conditions, the assay exhibited a wide linear range from 0.1 to 10 ng mL–1 with a detection limit of 0.05 ng mL–1 for hydroquinone. The method was applied successfully to detect hydroquinone in tap‐water and mineral‐water, with a sampling frequency of 120 times per hour. The relative standard deviation for determination of hydroquinone was less than 5.6%, and the recoveries ranged from 96.8 to 103.0%. The ultraviolet spectra, chemiluminescence spectra, and the reaction kinetics for the peroxide–luminol–sulphonato‐(salen)manganese(III) complex system were employed to study the possible chemiluminescence mechanism. The proposed chemiluminescence analysis technique is rapid and sensitive, with low cost, and could be easily extended and applied to other compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A combined system of chemiluminescence detection and high performance liquid chromatography (CL–HPLC) was developed to determine primary peroxidation products in biological tissues, such as phosphatidylcholine hydroperoxide (PCOOH). The CL–HPLC assay consists of separation of lipid classes with HPLC and detection of hydroperoxide-specific chemiluminescence. Hydroperoxides react with heme compounds to produce oxidants as suggested by our early studies on tissue low-level chemiluminescence in which singlet molecular oxygen is generated as one of the excited species in several biological systems involving free radical events. In the CL–HPLC method, a cytochrome c–luminol mixture was used as a hydroperoxide-specific luminescent reagent, and the quantification of hydroperoxide was performed by detecting chemiluminescence due to the luminol oxidation caused by the oxidant produced during the lipid hydroperoxides with heme. The detection limit of PCOOH was 10 pmole hydroperoxide–O2. PCOOH in normal human blood was found to be 10–500 pmol/ml plasma and significantly higher levels of PCOOH were observed in some hospitalized patients.  相似文献   

9.
A post‐chemiluminescence (PCL) phenomenon was observed when chloramphenicol was injected into a mixture of luminol and potassium periodate after the chemiluminescence (CL) reaction of luminol–potassium periodate had finished. The possible reaction mechanism was proposed based on studies of the CL kinetic characteristics, the CL spectra, the fluorescence spectra and the UV‐vis absorption spectra of the related substances. Based on the PCL reaction, a rapid and sensitive method for the determination of chloramphenicol was established. The linear response range was 6.0 × 10?7–1.0 × 10?5 mol/L, with a correlation coefficient of 0.9986. The relative standard deviation (RSD) for 5.0 × 10?6 mol/L chloramphenicol was 2.3% (n = 11). The detection limit was 1.6 × 10?7 mol/L. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
We explored the behaviour of a series of phenolic acids used as enhancers or inhibitors of luminol chemiluminescence by three different methods to determine if behaviour was associated with phenolic acid structure and redox character. All the phenolic acids inhibited chemiluminescence when hexacyanoferrate(III) was reacted with the phenolic acids before adding luminol. The redox character of these compounds was clearly related to structure. When hexacyanoferrate(III)-luminol-O2 chemiluminescence was initiated by phenolic acid-luminol mixtures some phenolic acids behaved as enhancers of chemiluminescence, and others as inhibitors. We propose a mechanism to explain these findings. We found direct relationships between the redox character of the phenolic acids and the enhancement or inhibition of the chemiluminescence of the luminol–H2O2–peroxidase system and we propose mechanism to explain these phenomena.  相似文献   

11.
《Analytical biochemistry》1986,158(1):201-210
We tested the effects of generally used chemiluminescence inhibitors on an example of luminol chemiluminescence elicited by xanthine oxidase/hypoxanthine system, and attempted to assess their capabilities in discovering the reaction pathways leading to chemiluminescence. Luminol itself is a xanthine oxidase inhibitor and its concentration affects the reaction mechanism. Maximal chemiluminescence response was observed at luminol concentration inhibiting urate production. Chemiluminescence was totally inhibited by superoxide dismutase, the inhibition by catalase depended on luminol concentration. Ferricytochrome c, a detector of superoxide, either stimulated or inhibited chemiluminescence in a concentration-dependent manner. Chemiluminescence was highly stimulated by peroxidases. A pronounced inhibition of chemiluminescence was caused by chelators; 1 mm desferal and 0.01 mm diethyldithiocarbamate. It is suggested that measurement of luminol chemiluminescence is not a suitable method for discrimination among individual reactive oxygen species and their quantitative determination in biological systems.  相似文献   

12.
Chloramine derivatives of amino acids induce chemiluminescence of a luminol solution. The chemiluminescence is more prolonged than the emission of luminol produced by hypochlorite. Persistent chemiluminescence also appears under the action of hypochlorite on a mixture of luminol and amino acids. It is assumed that the chemiluminescence of luminol in suspensions of stimulated phagocytes may be associated with its oxidation by chloramines.  相似文献   

13.
The chemiluminescence of the luminol–H2O2–horseradish peroxidase system is increased by fluorescein. Fluorescein produces an enhancement of the luminol chemiluminescence similar to that of phenolphthalein, by an energy transfer process from luminol to fluorescein. The maximum intesity and the total chemiluminescence emission (between 380 and 580 nm) of luminol with fluorescein was more than three times greater than without fluorescein; however, the emission duration was shorter. The emission spectra in the presence of fluorescein had two maxima (425 and 535 nm) and the enhancement was dependent on pH and fluorescein concentration. A mechanism is proposed to explain these effects. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
The review presents a survey of published findings concerning the mechanism of luminol-dependent chemiluminescence in biological systems. The potential of various oxygen species (superoxide anion, hydrogen peroxide, hydroxyl radical) to react with luminol is discussed. The ability of commonly used enzymes (superoxide dismutase, catalase), inhibitors, and oxygen radical scavengers to discriminate between individual oxygen species is assessed together with the potential of a variety of substances encountered in biological systems to interfere in luminol-dependent chemiluminescence reactions. It is concluded that luminol-dependent chemiluminescence gives at present very little ability to discriminate between individual oxygen or radical species. Furthermore, luminol-dependent chemiluminescence used in biological systems is extremely prone to many interferences, which are very difficult to control.  相似文献   

15.
The chemiluminescent oxidation of luminol and an isoluminol cortisol conjugate (ABICOR) by hydrogen peroxide has been studied in cetyltrimethylammonium bromide (CTAB) reversed micelles in octane-chloroform (1 : 1). The maximum chemiluminescence intensity of both compounds is dependent on the initial concentrations of the H2O2 and substrates, the pH value of the micelle polar phase and the H2O/CTAB ratio. The optimum pH ranged from 8.5 to 9.5. Under comparable conditions, the chemiluminescence intensity for luminol was 15-fold higher than for the ABI-COR conjugate. A mechanism of oxidation of the substrates in reversed micelles is proposed and the possible mechanisms of inhibition by the substrate and oxidant is discussed.  相似文献   

16.
《Luminescence》2003,18(5):249-253
We established a peroxynitrite–luminol chemiluminescence system for detecting peroxynitrite in cell culture solution exposed to carbon disulphide (CS2). Three factors, including exposure time to ozone (Factor A), volume of peroxynitrite (ONOO?) solution (Factor B) and luminol concentrations (Factor C) at three levels were selected and the combinations were in accordance with orthogonal design L9 (34). Peroxynitrite was generated from the reaction of ozone and 0.01 mol/L sodium azide (NaN3) dissolved in carbonic acid buffer solution (pH 11), and it was reacted with luminol to yield chemiluminescence. The peak value, peak time and kinetic curve of the light emission were observed. The selected combination conditions were 50 s ozone, 800 µL peroxynitrite and 0.001 mol/L luminol solution. Cell culture solution with CS2 enhanced the emission intensity of chemiluminescence (F = 8.38, p = 0.018) and shortened the peak time to chemiluminescence (F = 139.00, p = 0.0001). The data demonstrated that this luminol chemiluminescence system is suitable for detecting peroxynitrite in cell culture solutions for evaluating the effect of CS2 on endothelial cells. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
It was demonstrated that N-chlorphenylalanine and other chloramines strengthen sharply chemiluminescence in the polymorphonuclear leukocytes (PML)-luminol system without special activation of cells. The intensity of chemiluminescence is higher than the intensity of luminol solution emission induced by N-chlorphenylalanine. But it was nearly equal to chemiluminescence intensity of a mixture of luminol, N-chlorphenylalanine and 20-30 nM H2O2. The increase in chemiluminescence in the PML-luminol system in the presence of N-chlorphenylalanine is not related to PML activation but is the result of direct oxidation of luminol by N-chlorphenylalanine. Chloramine derivatives of amino acids and taurine at final concentrations of 0.01-0.1 mM do not suppress luminol chemiluminescence in suspension of PML stimulated by phorbol-12-myristate-13-acetate. At the same time, hypochlorite inhibits sharply luminol emission induced by stimulated cells.  相似文献   

18.
High-pressure helium reduces the latex-induced activated chemiluminescence of diluted human blood. This effect is more noticeable, when lucigenin rather than luminol is used as the activator of chemiluminescence. The effect lessens in the presence of Mg2+ but not Ca2+. The data suggest the association of this effect with actin polymerization in leucocytes phagocytosing the latex particles.  相似文献   

19.
Luminol-dependent chemiluminescence and thiol group oxidation of glutathione and human serum albumin were measured in order to demonstrate whether the inhibition of polymorphonuclear leukocyte chemiluminescence by albumin was attributable to thiol group oxidation. We have shown that:
  • 1 thiol groups on glutathione and albumin are oxidized by PMNL stimulated by soluble and phagocytic stimuli;
  • 2 thiol group oxidation in albumin and glutathione did not correlate with the inhibitory effects of these substances on luminol-dependent chemiluminescence with respect to time course, magnitude, effects of known scavengers or extracellular activity. It was therefore concluded that thiol group oxidation was not the cause of albumin inhibition of luminol-dependent chemiluminescence;
  • 3 a metastable oxidant was identified after PMNL activation which was capable of oxidizing thiol groups but unable to elicit chemiluminescence form luminol.
  相似文献   

20.
Assays of peroxy compounds are commonly performed after chromatographic separation of analysed mixtures. In high‐performance liquid chromatography (HPLC), solvent reservoirs are sparged by helium or inline vacuum‐degassed in order to control the compressibility of the solvents for efficient pumping. In this study, we investigated the influence of degassing the reaction solution on the light output of the hemin‐catalyzed luminol oxidation by various oxidants. We found that, when t‐butyl hydroperoxide, hydrogen peroxide, n‐butyl hydroperoxide, iodosobenzene and iodobenzene diacetate were used as oxidants, the luminol chemiluminescence was lowered by 50–70% compared with an equilibrated and degassed solution. The opposite effect was observed when dibenzoyl peroxide and 3‐chloroperoxybenzoic acid were used as oxidants, as the chemiluminescence increased by approximately 20–30%. The reduced chemiluminescence was explained based on the known role of dioxygen in luminol chemiluminescence. The enhancement of chemiluminescence was rationalized by suggesting an alternative mechanism of luminol oxidation valid for peroxyacids and diacyl peroxides in which the reaction of a peroxyacid anion with the diazaquinone led to light emission with a higher quantum yield than the usual path, which is suppressed by the removal of dioxygen from the reaction solution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号