首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and convenient flow‐injection chemiluminescence (FI‐CL) turn‐on assay for alkaline phosphatase (ALP) activity without any label and synthesis is developed. Cu2+ can catalyze the luminol–H2O2 CL reaction. Pyrophosphate (PPi) can chelate Cu2+ and therefore the Cu2+‐mediated luminol‐H2O2 CL reaction is inhibited. The addition of ALP can catalyze the hydrolysis of PPi into phosphate ions, Cu2+ is released and the chemiluminescence recovers. A detection limit of 1 mU/mL ALP is obtained.  相似文献   

2.
The chemiluminescence (CL) of lucigenin (Luc2+) can be enhanced by different alcohols in alkaline solution. The effect of different fatty alcohols on the CL of lucigenin was related to the carbon chain length and the number of hydroxyl groups. Glycerol provides the greatest enhancement. UV/Vis absorption spectra and fluorescence spectra showed that N‐methylacridone (NMA) was produced in the CL reaction in the presence of different alcohols. The peak of the CL spectrum was located at 470 nm in all cases, indicating that the luminophore was always the excited‐state NMA. The quenching of lucigenin CL by superoxide dismutase (SOD) and the electron spin resonance (ESR) results with the spin trap of 5,5‐dimethyl‐1‐pyrroline N‐oxide (DMPO) demonstrated that superoxide anions (O2?–) were generated from dissolved oxygen in the CL reaction and that glycerol and dihydroxyacetone (DHA) can promote O2?? production by the reduction of dissolved oxygen in alkaline solution. It was assumed that the enhancement provided by different alcohols was related to the solvent effect and reducing capacity. Glycerol and DHA can also reduce Luc2+ into lucigenin cation radicals (Luc?+), which react with O2?? to produce CL, and glycerol can slowly transform into DHA, which is oxidized quickly in alkaline solution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A novel phenomenon of dual chemiluminescence (CL) was observed for the KIO4–luminol–Mn2+ system in strong alkaline solutions using the stopped‐flow technique. Scavenging study of the reactive oxygen species (ROS) suggested that the two CL peaks originated from different CL pathways precipated by distinct ROS (O2? and ?OH for the first peak, mainly 1O2 for the second peak). Generation of these ROS at different time intervals from the reactions involving IO4?, O2, and Mn2+ and their subsequent reactions with luminol induced the intense CL emission. The relative intensity of the two CL peaks can be tuned over a wide range by varying the concentrations of Mn2?, luminol and KIO4. Because of the involvement of different ROS in each pathway, the two CL peaks could respond quite differently to various substances. Moreover, variation of the intensity ratio of the two CL peaks altered the relative proportions of the corresponding ROS, thereby changing their responses to a given substance. The dual CL emission acts like a pair of tunable probes and it is believed that this CL system has great potential in analytical applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The behaviors of 15 kinds of metal ions in the thiol‐capped CdTe quantum dots (QDs)–H2O2 chemiluminescence (CL) reaction were investigated in detail. The results showed that Ag+, Cu2+ and Hg2+ could inhibit CdTe QDs and H2O2 CL reaction. A novel CL method for the selective determination of Ag+, Cu2+ and Hg2+ was developed, based on their inhibition of the reaction of CdTe QDs and H2O2. Under the optimal conditions, good linear relationships were realized between the CL intensity and the logarithm of concentrations of Ag+, Cu2+ and Hg2+. The linear ranges were from 2.0 × 10?6 to 5.0 × 10?8 mol L?1 for Ag+, from 5.0 × 10?6 to 7.0 × 10?8 mol L?1 for Cu2+ and from 2.0 × 10?5 to 1.0 × 10?7 mol L?1 for Hg2+, respectively. The limits of detection (S/N = 3) were 3.0 × 10?8, 4.0 × 10?8 and 6.7 × 10?8 mol L?1 for Ag+, Cu2+ and Hg2+, respectively. A possible mechanism for the inhibition of CdTe QDs and H2O2 CL reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Chemiluminescence (CL) from the oxidation of luminol with potassium periodate in strong alkaline solutions was greatly enhanced by the combined effect of gallic acid, acetaldehyde and Mn2+. The CL spectra exhibited only one emission band at 425 nm, indicating 3‐aminophthalate as the emitting species. Various scavengers for superoxide anion, hydroxyl radical and singlet oxygen quenched the CL emission very efficiently (74–100%), suggesting the possible involvement of these reactive oxygen species (ROS) in the CL reactions. It is postulated that oxidation of gallic acid and acetaldehyde by periodate catalyzed by Mn2+ generates these ROS, which then react with luminol to enhance the CL emission. We also found that the enhanced CL emission was strongly inhibited by catecholamines, probably because of their effective scavenging of ROS. Based on this observation, a simple, rapid and sensitive new CL method was developed for the determination of catecholamines. The detection limits (3σ) for dopamine, l‐ dopa, norepinephrine and epinephrine were 0.63, 1.37, 0.56 and 14.3 nmol/L, respectively. The linear range was 1–10 nmol/L; relative standard deviations were 0.71–1.34% for 0.1 µmol/mL catecholamines. This CL method was applied to the determination of catecholamines in pharmaceutical injections with satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A flow injection chemiluminescence (FI–CL) method was developed for the determination of cyanide (CN) based on the recovered CL signal by Cu2+ inhibiting a glutathione (GSH)‐capped CdTe quantum dot (QD) and hydrogen peroxide system. In an alkaline medium, strong CL signals were observed from the reaction of CdTe QDs and H2O2, and addition of Cu2+ could cause significant CL inhibition of the CdTe QDs–H2O2 system. In the presence of CN, Cu2+ can be removed from the surface of CdTe QDs via the formation of particularly stable [Cu(CN)n](n‐1)– species, and the CL signal of the CdTe QDs–H2O2 system was efficiently recovered. Thus, the CL signals of CdTe QDs–H2O2 system were turned off and turned on by the addition of Cu2+ and CN, respectively. Further, the results showed that among the tested ions, only CN could recover the CL signal, which suggested that the CdTe QDs–H2O2–Cu2+ CL system had highly selectivity for CN. Under optimum conditions, the CL intensity and the concentration of CN show a good linear relationship in the range 0.0–650.0 ng/mL (R2 = 0.9996). The limit of detection for CN was 6.0 ng/mL (3σ). This method has been applied to detect CN in river water and industrial wastewater with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A new chemiluminescence (CL) reaction between luminol and diperiodatoargentate {K2 [Ag (H2IO6) (OH) 2]} was observed in alkaline medium. The CL intensity could be greatly enhanced by amikacin sulfate. Therefore a new CL method for the determination of amikacin sulfate was built by combining with flow injection technology. A possible mechanism of the CL reaction was proposed via the investigation of the CL kinetic characteristics, the CL spectrum and the UV absorption spectra of some related substance. The concentration range of linear response was 5.1 × 10?8 to 5.1 × 10?6 mol L?1 with a detection limit of 1.9 × 10?8 mol L?1 (3σ). The proposed method had good reproducibility with a relative standard deviation of 2.8% (n = 7) for 5.1 × 10?7 mol L?1 of amikacin sulfate. It was successfully applied to determine amikacin sulfate in serum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A simple and sensitive DNA‐stablized gold nanoparticle (AuNP)‐based chemiluminescent (CL) probe for detecting mercury ion (Hg2+) in aqueous solution has been developed. The CL strategy relies upon the catalytic activity of unmodified AuNPs on the luminol–H2O2 CL reaction, and the interaction of unmodified AuNPs with DNA. The unmodified AuNPs can effectively differentiate unstructured and folded DNA. The DNA desorbs from AuNPs in the presence of Hg2+, leading to the increase in CL signal. By rationally varying the number of thymine in single‐strand oligonucleotides, the detection range could be tuned. Employing single‐strand oligonucleotides with 14 thymine in the detecting system, a sensitive linear range for Hg2+ ions from 5.0 × 10–10 to 1.0 × 10–7 mol/L and a detection limit of 2.1 × 10–10 mol/L are obtained. Changing the number of thymine to 10 and 6, it leads to a narrow detection range but a high sensitivity. Besides, DNA‐based CL nanoprobes exhibit a remarkable selectivity for Hg2+ ions over a variety of competing metal ions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A novel chemiluminescence (CL) method was developed for the determination of cefazolin sodium based on the CL reaction between the [Cu(HIO6)2]5‐Cu(III) complex and luminol in alkaline solution. Results showed that CL emission of Cu(III) complex–luminol in alkaline medium was significantly different from that in acidic medium. A possible mechanism of the enhanced effect of cefazolin on CL emission of the [Cu(HIO6)2]5‐‐ luminol system was proposed. The effect of the reaction conditions on CL emissions was examined. Under optimized conditions, a good linear relationship was obtained between CL intensity and concentrations of cefazolin sodium in the range of 2.0 x 10‐8 to 2.0 x 10‐6 g/mL with a correlation coefficient of R2 = 0.9978. The limit of detection was 4.58 x 10‐9 g/mL. The proposed method was applied for the determination of cefazolin sodium in real samples with recoveries of 82.0‐109% with an RSD of 0.7‐2.1%. The proposed method was successfully used for the determination of cefazolin sodium in injectable powder preparations and human urine with satisfactory results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A novel chemiluminescence (CL) method was developed for the determination of 10‐hydroxycamptothecin(HCPT) based on the CL reaction between [Ag(HIO6)2]5? and luminol in alkaline solution. CL emission of Ag(III) complex–luminol in alkaline medium was very different from that in acidic medium. A possible mechanism of enhanced CL emission was suggested. The enhanced effect of HCPT on CL emission of the [Ag(HIO6)2]5?–luminol system was found. The enhanced degree of CL emission was proportional to HCPT concentration. The effect of the reaction conditions on CL emission was examined. Under optimal conditions, the limit of detection was 6.5 × 10?9 g mL?1. The proposed method was applied for the determination of HCPT in real samples with the recoveries of 93.2–109% with the RSD of 1.7–3.3%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

The PyPuPu triplexes consisting of CG*G triads are stabilized by alkaline earth cations (Ca2+, Mg2+) and transition metal cations (Mn2+, Co2+, Ni2+, Zn2+, Cd2+), while similar triplexes including TA*A triads are stabilized only by transition metal cations. We hypothesize that such a differential triplex stabilization by divalent metal cations can be the consequence of their coordination to the N7 of the third strand purines with concomitant polarization effects on the bases resulting in unequal Hoogsteen-type hydrogen bond enhancement.  相似文献   

12.
A simple and highly selective on‐chip Ru(bpy)32+–oxidant chemiluminescence (CL) approach for estimation of a diuretic drug, hydrochlorothiazide (HCZ), in biological fluids was realized in the presence of other fixed‐dose combination drugs by manipulating simultaneously the method of active species (Ru(bpy)33+) production and type of carrier buffer with pH used for the CL reaction. Chemical oxidation processes involved in the Ru(bpy)32+–Ce(IV) CL system have been successfully miniaturised in this study using a microfabricated device to generate Ru(bpy)33+ instantaneously. The proposed system was then screened using HCZ and other drugs in the presence of various buffers and pH to explore the difference in CL emission. Ammonium formate buffer (0.15 M) at pH 4.5 exhibited excellent selectivity towards HCZ when Ru(bpy)33+ was produced by chemical oxidation using Ce(IV). The newly developed conditions do not involve any kind of prior separation or isolation procedure to remove other combination therapy drugs in formulation and biological samples. The method under fully optimised conditions exhibited wide linearity over the concentration range 0.5–1000 ng ml?1 and low detection and quantification limits of 0.13 and 0.47 ng ml?1 respectively for HCZ. Acceptable levels of recoveries were obtained for HCZ from human plasma using the proposed method (98.9–100.8%) in the presence of other antihypertensive combination therapy drugs. This study postulates that such miniaturised devices may find applications especially for on‐site analysis, such as doping control examinations.  相似文献   

13.
A novel flow‐injection chemiluminescence (FI‐CL) method is described for the determination of 2‐methoxyestradiol (2‐ME). The method is based on the inhibitory effect of 2‐ME on the CL reaction of luminol and potassium ferricyanide in alkaline solution. Under optimal conditions, net CL intensity was proportional to 2‐ME concentration in synthetic and mouse plasma samples. Corresponding linear regression equations were 8.0 x 10‐9‐1.0 x 10‐7g/mL for synthetic samples and 2.0 x 10‐9‐1.0 x 10‐7g/mL for plasma samples. Detection limit for synthetic samples and limits for quantification of plasma samples were 8.4 x 10‐10g/mL (3σ) for synthetic samples and 4.0 x 10‐9g/mL for mouse samples. A complete analysis was performed for 60 s, including washing and sampling, resulting in a throughput of ≈ 60/h. The proposed method was applied for the determination of 2‐ME in synthetic and mouse plasma samples. Percentage recoveries were 101.0‐102.8% and 98.0‐105.0%, respectively. A possible mechanism responsible for CL reaction is proposed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Stopped‐flow time courses for chemiluminescence (CL) of the KIO4‐luminol‐Mn2+system showed an instantaneous jump in initial signal followed by two distinct bands. A kinetic model of the form with ten adjustable parameters was proposed to account for CL intensity (I) versus time (t) profiles. The three terms in the model represent the three CL bands. Each band was comprised of a rise part and an exponential decay corresponding to the formation and deactivation of the CL emitter. CL bands could have originated from different CL pathways with the participation of reactive species such as O2?, ?OH and 1O2 generated in the reactions involving IO4?, O2 and Mn2+. Subsequent reactions of these reactive species with luminol induced CL emissions. Simulation parameters together with peak positions and intensities of the three CL bands were found to vary in different manners by changing conditions such as reagent concentration, pH and temperature. The temperature‐dependence of the rate constants yielded activation energies of 73.2 ± 2.8, 70.1 ± 2.4 and 67.2 ± 1.2 kJ?mol‐1 for the three decay processes. Moreover, different substances exhibited a significant influence on the three CL bands and their simulation parameters. The numerous parameters and characteristics of CL emissions could serve as multiple probes for detecting analytes, making this system promising for potential analytical applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A highly sensitive and simple method for identifying sulpiride in pharmaceutical formulations and biological fluids is presented. The method is based on increased chemiluminescence (CL) intensity of a luminol–H2O2 system in response to the addition of Cr (III) under alkaline conditions. The CL intensity of the luminol–H2O2–Cr (III) system was greatly enhanced by the addition of sulpiride and the CL intensity was proportional to the concentration of sulpiride in a sample solution. Various parameters affecting the CL intensity were systematically investigated and optimized for determination of the sulpiride in a sample. Under the optimum conditions, the CL intensity was proportional to the concentration of sulpiride in the range of 0.068–4.0 µg/mL, with a good correlation coefficient of 0.997. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 8.50 × 10‐6 µg/mL and 2.83 × 10‐5 µg/mL, respectively. The method presented here produced good reproducibility with a relative standard deviation (RSD) of 2.70% (n = 7). The effects of common excipients and metal ions were studied for their interference effect. The method was validated statistically through recovery studies and successfully applied for the determination of sulpiride in pure form, pharmaceutical preparations and spiked human plasma samples. The percentage recoveries were found to range from 99.10 to 100.05% for pure form, 98.12 to 100.18% for pharmaceutical preparations and 97.9 to 101.4% for spiked human plasma. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In the present work, the effects of molecular mass aliphatic dicarboxylic acids on the HSO5–Co2+ chemiluminescence (CL) system were investigated. It was found that the aliphatic dicarboxylic acids could enhance the CL of the HSO5–Co2+ system. Moreover, the CL intensities improved regularly with increasing carbon chain length of the dicarboxylic acids. To investigate the CL enhancement mechanism, dynamic profiles, CL spectroscopy, ESR spectrum and the effects of various free radical scavengers on the CL system were employed. The results indicated that the enhancement of the CL should be attributed to the formation of peroxo‐diacid, which finally decomposed to the original dicarboxylic acid and singlet oxygen. The mechanism of the HSO5–Co2+‐dicarboxylic acid CL system was then proposed. Copyright © 2010 John Wiley & Sons, Ltd. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The cavity in a porphyrin can accommodate metal ions through electron donor–acceptor (EDA) interaction in acetonitrile media without any specially designed fabrication with the porphyrin subunit. Alkali metal ion forms a complex with meso‐tetraphenylporphyrin (TP) in 2:1 stoichiometry, while the bivalent Mg2+ ion follows a 1:1 stoichiometry. A fluorescence interaction study indicated that TP can behave like a chemosensor for these ions present in the blood electrolytes. Specifically, for the alkali metal ions intensity‐based sensing was observed, due to inhibition of photoinduced electron transfer (PET), entailing enhancement of fluorescence intensity, and for the alkaline‐earth Mg2+ a mixed quenching was observed. Na+ and K+ ions can be differentiated depending upon the extent of fluorescence enhancement. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Based on the catalytic activity of hemin, an efficient biocatalyst, an indirect capillary electrophoresis–chemiluminescence (CE‐CL) detection method for phenols using a hemin–luminol–hydrogen peroxide system was developed. Through a series of static injection experiments, hemin was found to perform best in a neutral solution rather than an acidic or alkaline medium. Although halide ions such as Br? and F? could further enhance the CL signal catalyzed by hemin, it is difficult to apply these conditions to this CE‐CL detection system because of the self‐polymerization of hemin, as it hinders the CE process. The addition of concentrated ammonium hydroxide to an aqueous/dimethyl sulfoxide solution of hemin–luminol afforded a stable CE‐CL baseline. The indirect CE‐CL detection of five phenols using this method gave the following limits of detections: 4.8 × 10?8 mol/L (o‐sec‐butylphenol), 4.9 × 10?8 mol/L (o‐cresol), 5.4 × 10?8 mol/L (m‐cresol), 5.3 × 10?8 mol/L (2,4‐dichlorophenol) and 7.1 × 10?8 mol/L (phenol). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Na Li  Shubiao Ni 《Luminescence》2014,29(8):1130-1134
The use of noble metal nanoparticles (NPs) as reductants in chemiluminescence (CL) has been reported only rarely owing to their high oxidation potentials. Interestingly, nucleophiles could dramatically lower the oxidation potential of Ag NPs, such that in the presence of nucleophiles Ag NPS could be used as reductants to induce the CL emission of luminol, an important CL reagent widely used in forensic analysis for the detection of trace amounts of blood. Although nucleophiles are indispensible in Ag NP‐luminol CL, only inorganic nucleophiles such as Cl, Br, I and S2O32‐ have been shown to be efficient. The effects of organic nucleophiles on CL remain unexplored. In this study, 20 standard amino acids were evaluated as novel organic nucleophiles in Ag NP‐luminol CL. Histidine, lysine and arginine could initiate CL emission; the others could not. It is proposed that the different behaviors of 20 standard amino acids in the CL reactions derive from the interface chemistry between Ag NPs and these amino acids. UV/vis absorption spectra were studied to validate the interface chemistry. In addition, imidazole and histidine were chosen as a model pair to compare the behavior of the monodentate nucleophile with that of the corresponding multidentate nucleophile in Ag NP‐luminol CL. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A new method using chemiluminescence (CL) detection has been developed for the simple determination of ketotifen fumarate (KF). The method is based on the catalytic effect of KF in the CL reaction of tris(1,10 phenanthroline)ruthenium(II), Ru(phen)32+, with Ce(IV) in sulfuric acid medium. The CL response was detected using a lab‐made chemiluminometer. Effects of chemical variables were investigated and under optimum conditions, the CL intensity was proportional to the concentration of the drug over the range 0.34‐34.00 µg mL?1 KF. The limit of detection (S/N=3) was 0.09 µg mL?1. Effects of common ingredients were investigated and the method was applied successfully for determining KF in pharmaceutical formulations and human plasma. The percent of relative standard deviation (n=11) at level of 3.4 µg mL?1 of KF was 4.6% and the minimum sampling rate was 70 samples per hour. The possible CL mechanism is proposed based on the kinetic characteristic of the CL reaction, CL spectrum, UV‐Vis and phosphorescence spectra. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号