首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microorganism Escherichia coli is commonly used for recombinant protein production. Despite several advantageous characteristics like fast growth and high protein yields, its inability to easily secrete recombinant proteins into the extracellular medium remains a drawback for industrial production processes. To overcome this limitation, a multitude of approaches to enhance the extracellular yield and the secretion efficiency of recombinant proteins have been developed in recent years. Here, a comprehensive overview of secretion mechanisms for recombinant proteins from E. coli is given and divided into three main sections. First, the structure of the E. coli cell envelope and the known natural secretion systems are described. Second, the use and optimization of different one‐ or two‐step secretion systems for recombinant protein production, as well as further permeabilization methods are discussed. Finally, the often‐overlooked role of cell lysis in secretion studies and its analysis are addressed. So far, effective approaches for increasing the extracellular protein concentration to more than 10 g/L and almost 100% secretion efficiency exist, however, the large range of optimization methods and their combinations suggests that the potential for secretory protein production from E. coli has not yet been fully realized.  相似文献   

2.
A goal in recombinant protein production using Chinese hamster ovary (CHO) cells is to achieve both high specific productivity and high cell density. Addition of glucose to the culture media is necessary to maintain both cell growth and viability. We varied the glucose concentration in the media from 5 to 16 g/L and found that although specific productivity of CHO‐DG44 cells increased with the glucose level, the integrated viable cell density decreased. To examine the biological basis of these results, we conducted a discovery proteomic study of CHO‐DG44 cells grown under batch conditions in normal (5 g/L) or high (15 g/L) glucose over 3, 6, and 9 days. Approximately 5,000 proteins were confidently identified against an mRNA‐based CHO‐DG44 specific proteome database, with 2,800 proteins quantified with at least two peptides. A self‐organizing map algorithm was used to deconvolute temporal expression profiles of quantitated proteins. Functional analysis of altered proteins suggested that differences in growth between the two glucose levels resulted from changes in crosstalk between glucose metabolism, recombinant protein expression, and cell death, providing an overall picture of the responses to high glucose environment. The high glucose environment may enhance recombinant dihydrofolate reductase in CHO cells by up‐regulating NCK1 and down‐regulating PRKRA, and may lower integrated viable cell density by activating mitochondrial‐ and endoplasmic reticulum‐mediated cell death pathways by up‐regulating HtrA2 and calpains. These proteins are suggested as potential targets for bioengineering to enhance recombinant protein production. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1026–1038, 2015  相似文献   

3.
Elastin‐like polypeptide (ELP) fusions have been designed to allow large‐scale, nonchromatographic purification of many soluble proteins by using the inverse transition cycling (ITC) method; however, the sensitivity of the aqueous lower critical solubility phase transition temperature (Tt) of ELPs to the addition of cosolutes, including detergents, may be a potential hindrance in purification of proteins with surface hydrophobicity in such a manner. To identify detergents that are known to solubilize such proteins (e.g., membrane proteins) and that have little effect on the Tt of the ELP, we screened a number of detergents with respect to their effects on the Tt and secondary structures of a model ELP (denoted here as ELP180). We found that mild detergents (e.g., n‐dodecyl‐β‐D ‐maltoside, Triton‐X100, and 3‐[(3‐cholamidopropyl) dimethylamino]‐1‐propanesulfonate) do not alter the phase transition behavior or structure (as probed by circular dichroism) of ELP180. This result is in contrast to previous studies that showed a strong effect of other detergents (e.g., sodium dodecylsulfate) on the Tt of ELPs. Our results clearly indicate that mild detergents do not preclude ITC‐based separation of ELPs, and thus that ELP fusions may prove to be useful in the purification of detergent‐solubilized recombinant hydrophobic proteins, including membrane proteins, which are otherwise notoriously difficult to extract and purify by conventional separation methods (e.g., chromatography). © 2012 Wiley Periodicals, Inc.  相似文献   

4.
In general, fed‐batch processes are applied for recombinant protein production with Escherichia coli (E. coli). However, state of the art methods for identifying suitable reaction conditions suffer from severe drawbacks, i.e. direct transfer of process information from parallel batch studies is often defective and sequential fed‐batch studies are time‐consuming and cost‐intensive. In this study, continuously operated stirred‐tank reactors on a milliliter scale were applied to identify suitable reaction conditions for fed‐batch processes. Isopropyl β‐d ‐1‐thiogalactopyranoside (IPTG) induction strategies were varied in parallel‐operated stirred‐tank bioreactors to study the effects on the continuous production of the recombinant protein photoactivatable mCherry (PAmCherry) with E. coli. Best‐performing induction strategies were transferred from the continuous processes on a milliliter scale to liter scale fed‐batch processes. Inducing recombinant protein expression by dynamically increasing the IPTG concentration to 100 µM led to an increase in the product concentration of 21% (8.4 g L?1) compared to an implemented high‐performance production process with the most frequently applied induction strategy by a single addition of 1000 µM IPGT. Thus, identifying feasible reaction conditions for fed‐batch processes in parallel continuous studies on a milliliter scale was shown to be a powerful, novel method to accelerate bioprocess design in a cost‐reducing manner. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1426–1435, 2016  相似文献   

5.
Escherichia coli is one of the most used host microorganism for the production of recombinant products, such as heterologous proteins and plasmids. However, genetic, physiological and environmental factors influence the plasmid replication and cloned gene expression in a highly complex way. To control and optimize the recombinant expression system performance, it is very important to understand this complexity. Therefore, the development of rapid, highly sensitive and economic analytical methodologies, which enable the simultaneous characterization of the heterologous product synthesis and physiologic cell behavior under a variety of culture conditions, is highly desirable. For that, the metabolic profile of recombinant E. coli cultures producing the pVAX‐lacZ plasmid model was analyzed by rapid, economic and high‐throughput Fourier Transform Mid‐Infrared (FT‐MIR) spectroscopy. The main goal of the present work is to show as the simultaneous multivariate data analysis by principal component analysis (PCA) and direct spectral analysis could represent a very interesting tool to monitor E. coli culture processes and acquire relevant information according to current quality regulatory guidelines. While PCA allowed capturing the energetic metabolic state of the cell, e.g. by identifying different C‐sources consumption phases, direct FT‐MIR spectral analysis allowed obtaining valuable biochemical and metabolic information along the cell culture, e.g. lipids, RNA, protein synthesis and turnover metabolism. The information achieved by spectral multivariate data and direct spectral analyses complement each other and may contribute to understand the complex interrelationships between the recombinant cell metabolism and the bioprocess environment towards more economic and robust processes design according to Quality by Design framework. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:285–298, 2017  相似文献   

6.
The gram‐negative bacterium Escherichia coli offers a mean for rapid, high yield, and economical production of recombinant proteins. However, high‐level production of functional eukaryotic proteins in E. coli may not be a routine matter, sometimes it is quite challenging. Techniques to optimize heterologous protein overproduction in E. coli have been explored for host strain selection, plasmid copy numbers, promoter selection, mRNA stability, and codon usage, significantly enhancing the yields of the foreign eukaryotic proteins. We have been working on optimizations of bacterial expression conditions and media with a focus on achieving very high cell density for high‐level production of eukaryotic proteins. Two high‐cell‐density bacterial expression methods have been explored, including an autoinduction introduced by Studier (Protein Expr Purif 2005;41:207–234) recently and a high‐cell‐density IPTG‐induction method described in this study, to achieve a cell‐density OD600 of 10–20 in the normal laboratory setting using a regular incubator shaker. Several practical protocols have been implemented with these high‐cell‐density expression methods to ensure a very high yield of recombinant protein production. With our methods and protocols, we routinely obtain 14–25 mg of NMR triple‐labeled proteins and 17–34 mg of unlabeled proteins from a 50‐mL cell culture for all seven proteins we tested. Such a high protein yield used the same DNA constructs, bacterial strains, and a regular incubator shaker and no fermentor is necessary. More importantly, these methods allow us to consistently obtain such a high yield of recombinant proteins using E. coli expression.  相似文献   

7.
In biotechnology, endotoxin (LPS) removal from recombinant proteins is a critical and challenging step in the preparation of injectable therapeutics, as endotoxin is a natural component of bacterial expression systems widely used to manufacture therapeutic proteins. The viability of large‐scale industrial production of recombinant biomolecules of pharmaceutical interest significantly depends on the separation and purification techniques used. The aim of this work was to evaluate the use of aqueous two‐phase micellar system (ATPMS) for endotoxin removal from preparations containing recombinant proteins of pharmaceutical interest, such as green fluorescent protein (GFPuv). Partition assays were carried out initially using pure LPS, and afterwards in the presence of E. coli cell lysate. The ATPMS technology proved to be effective in GFPuv recovery, preferentially into the micelle‐poor phase (KGFPuv < 1.00), and LPS removal into the micelle‐rich phase (%REMLPS > 98.00%). Therefore, this system can be exploited as the first step for purification in biotechnology processes for removal of higher LPS concentrations. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

8.
Crude proteins and pigments were extracted from different microalgae strains, both marine and freshwater. The effectiveness of enzymatic pre‐treatment prior to protein extraction was evaluated and compared to conventional techniques, including ultrasonication and high‐pressure water extraction. Enzymatic pre‐treatment was chosen as it could be carried out at mild shear conditions and does not subject the proteins to high temperatures, as with the ultrasonication approach. Using enzymatic pre‐treatment, the extracted proteins yields of all tested microalgae strains were approximately 0.7 mg per mg of dry cell weight. These values were comparable to those achieved using a commercial lytic kit. Ultrasonication was not very effective for proteins extraction from Chlorella sp., and the extracted proteins yields did not exceed 0.4 mg per mg of dry cell weight. For other strains, similar yields were achieved by both treatment methods. The time‐course effect of enzymatic incubation on the proteins extraction efficiency was more evident using laccase compared to lysozyme, which suggested that the former enzyme has a slower rate of cell disruption. The crude extracted proteins were fractionated using an ion exchange resin and were analyzed by the electrophoresis technique. They were further tested for their antioxidant activity, the highest of which was about 60% from Nannochloropsis sp. The total phenolic contents in the selected strains were also determined, with Chlorella sp. showing the highest content reaching 17 mg/g. Lysozyme was also found to enhance the extraction of pigments, with Chlorella sp. showing the highest pigments contents of 16.02, 4.59 and 5.22 mg/g of chlorophyll a, chlorophyll b and total carotenoids, respectively.  相似文献   

9.
An efficient rapid protein expression system is crucial to support early drug development. Transient gene expression is an effective route, and to facilitate the use of the same host cells as for subsequent stable cell line development, we have created a high‐yielding Chinese hamster ovary (CHO) transient expression system. Suspension‐adapted CHO‐K1 host cells were engineered to express the gene encoding Epstein‐Barr virus (EBV) nuclear antigen‐1 (EBNA‐1) with and without the coexpression of the gene for glutamine synthetase (GS). Analysis of the transfectants indicated that coexpression of EBNA‐1 and GS enhanced transient expression of a recombinant antibody from a plasmid carrying an OriP DNA element compared to EBNA‐1‐only transfectants. This was confirmed with the retransfection of an EBNA‐1‐only cell line with a GS gene. The retransfected cell lines showed an increase in transient expression when compared with that of the EBNA‐1‐only parent. The transient expression process for the best CHO transient cell line was further developed to enhance protein expression and improve scalability by optimizing the transfection conditions and the cell culture process. This resulted in a scalable CHO transient expression system that is capable of expressing 2 g/L of recombinant proteins such as antibodies. This system can now rapidly provide gram amounts of recombinant antibody to supply preclinical development studies that has comparable product quality to antibody produced from a stably transfected CHO cell line. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:132–141, 2014  相似文献   

10.
An array of genetic screens and selections has been developed for reporting protein folding and solubility in the cytoplasm of living cells. However, there are currently no analogous folding assays for the bacterial periplasm, despite the significance of this compartment for the expression of recombinant proteins, especially those requiring important posttranslational modifications (e.g., disulfide bond formation). Here, we describe an engineered genetic selection for monitoring protein folding in the periplasmic compartment of Escherichia coli cells. In this approach, target proteins are sandwiched between an N‐terminal signal recognition particle (SRP)‐dependent signal peptide and a C‐terminal selectable marker, TEM‐1 β‐lactamase. The resulting chimeras are localized to the periplasmic space via the cotranslational SRP pathway. Using a panel of native and heterologous proteins, we demonstrate that the folding efficiency of various target proteins correlates directly with in vivo β‐lactamase activity and thus resistance to ampicillin. We also show that this reporter is useful for the discovery of extrinsic periplasmic factors (e.g., chaperones) that affect protein folding and for obtaining folding‐enhanced proteins via directed evolution. Collectively, these data demonstrate that our periplasmic folding reporter is a powerful tool for screening and engineering protein folding in a manner that does not require any structural or functional information about the target protein.  相似文献   

11.
Pichia pastoris has become one of the major microorganisms for the production of proteins in recent years. This development was mainly driven by the readily available genetic tools and the ease of high‐cell density cultivations using methanol (or methanol/glycerol mixtures) as inducer and carbon source. To overcome the observed limitations of methanol use such as high heat development, cell lysis, and explosion hazard, we here revisited the possibility to produce proteins with P. pastoris using glucose as sole carbon source. Using a recombinant P. pastoris strain in glucose limited fed‐batch cultivations, very high‐cell densities were reached (more than 200 gCDW L?1) resulting in a recombinant protein titer of about 6.5 g L?1. To investigate the impact of recombinant protein production and high‐cell density fermentation on the metabolism of P. pastoris, we used 13C‐tracer‐based metabolic flux analysis in batch and fed‐batch experiments. At a controlled growth rate of 0.12 h?1 in fed‐batch experiments an increased TCA cycle flux of 1.1 mmol g?1 h?1 compared to 0.7 mmol g?1 h?1 for the recombinant and reference strains, respectively, suggest a limited but significant flux rerouting of carbon and energy resources. This change in flux is most likely causal to protein synthesis. In summary, the results highlight the potential of glucose as carbon and energy source, enabling high biomass concentrations and protein titers. The insights into the operation of metabolism during recombinant protein production might guide strain design and fermentation development. Biotechnol. Bioeng. 2010;107: 357–368. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S‐transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine‐containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7‐triazacyclononane (tacn). The use of this tag‐tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli‐expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP‐1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI‐TOF MS analysis of the cleaved products from the DAP‐1 digestion of the recombinant N‐terminally tagged proteins confirmed the complete removal of the tag within 4‐12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn‐based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli‐expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Insect cells are useful for the high‐yield production of recombinant proteins including chemokines and membrane proteins. In this study, we developed an insect cell‐based system for incorporating non‐natural amino acids into proteins at specific sites. Three types of promoter systems were constructed, and their efficiencies were compared for the expression of the prokaryotic amber suppressor tRNATyr in Drosophila melanogaster Schneider 2 cells. When paired with a variant of Escherichia coli tyrosyl‐tRNA synthetase specific for 3‐iodo‐L ‐tyrosine, the suppressor tRNA transcribed from the U6 promoter most efficiently incorporated the amino acid into proteins in the cells. The transient and stable introductions of these prokaryotic molecules into the insect cells were then compared in terms of the yield of proteins containing non‐natural amino acids, and the “transient” method generated a sevenfold higher yield. By this method, 4‐azido‐L ‐phenylalanine was incorporated into human interleukin‐8 at a specific site. The yield of the azido‐containing IL‐8 was 1 μg/1 mL cell culture, and the recombinant protein was successfully labeled with a fluorescent probe by the Staudinger–Bertozzi reaction.  相似文献   

14.
There are many proteomic applications that require large collections of purified protein, but parallel production of large numbers of different proteins remains a very challenging task. To help meet the needs of the scientific community, we have developed a human protein production pipeline. Using high‐throughput (HT) methods, we transferred the genes of 31 full‐length proteins into three expression vectors, and expressed the collection as N‐terminal HaloTag fusion proteins in Escherichia coli and two commercial cell‐free (CF) systems, wheat germ extract (WGE) and HeLa cell extract (HCE). Expression was assessed by labeling the fusion proteins specifically and covalently with a fluorescent HaloTag ligand and detecting its fluorescence on a LabChip® GX microfluidic capillary gel electrophoresis instrument. This automated, HT assay provided both qualitative and quantitative assessment of recombinant protein. E. coli was only capable of expressing 20% of the test collection in the supernatant fraction with ≥20 μg yields, whereas CF systems had ≥83% success rates. We purified expressed proteins using an automated HaloTag purification method. We purified 20, 33, and 42% of the test collection from E. coli, WGE, and HCE, respectively, with yields ≥1 μg and ≥90% purity. Based on these observations, we have developed a triage strategy for producing full‐length human proteins in these three expression systems.  相似文献   

15.
Summary The electrophoretic and immunological techniques typically used to detect potentially useful biopharmaceutical proteins are sensitive with detection limits in the nanogram range. However, quantitation of a recombinant protein can be cumbersome and involve large numbers of samples throughout process optimization schemes. Although electrophoretic methods (i.e., SDS-PAGE and Western blots) now avail themselves to quantitation by densitometry, these techniques are time consuming because of the lack of appropriate automated systems. Biological activity assays, when available, often require relatively pure material and are not suitable for analyzing and quantitating impure or semi-purified samples, typical of the fermentation milieu. The optimization of several rDNA-derived protein systems from both prokaryotic and eukaryotic hosts has been completed using PCFIA, a rapid, sensitive system with high throughput. The development of Particle Concentration Fluorescence Immunoassay (CFIA) procedures for several of these rDNA-derived proteins of interest as potential biopharmaceuticals (e.g., -1-antitrypsin, tPA, soluble CD4, and a malaria vaccine candidate) are discussed.  相似文献   

16.
Stem cells have been the focus of an intense research due to their potential in Regenerative Medicine, drug discovery, toxicology studies, as well as for fundamental studies on developmental biology and human disease mechanisms. To fully accomplish this potential, the successful application of separation processes for the isolation and purification of stem cells and stem cell‐derived cells is a crucial issue. Although separation methods have been used over the past decades for the isolation and enrichment of hematopoietic stem/progenitor cells for transplantation in hemato‐oncological settings, recent achievements in the stem cell field have created new challenges including the need for novel scalable separation processes with a higher resolution and more cost‐effective. Important examples are the need for high‐resolution methods for the separation of heterogeneous populations of multipotent adult stem cells to study their differential biological features and clinical utility, as well as for the depletion of tumorigenic cells after pluripotent stem cell differentiation. Focusing on these challenges, this review presents a critical assessment of separation processes that have been used in the stem cell field, as well as their current and potential applications. The techniques are grouped according to the fundamental principles that govern cell separation, which are defined by the main physical, biophysical, and affinity properties of cells. A special emphasis is given to novel and promising approaches such as affinity‐based methods that take advantage of the use of new ligands (e.g., aptamers, lectins), as well as to novel biophysical‐based methods requiring no cell labeling and integrated with microscale technologies. Biotechnol. Bioeng. 2012; 109: 2699–2709. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Antimicrobial peptides (AMPs) could evolve into new therapeutic lead molecules against multi‐resistant bacteria. As insects are a rich source of AMP, the identification and characterization of insect‐derived AMPs is particularly emphasized. One challenge of bringing these molecules into market, e.g., as a drug, is to develop a cost‐efficient large‐scale production process. Due to the fact that a direct AMP isolation from insects is not economical and that chemical synthesis is recommended for peptide sizes below 40 amino acids, a viable option is heterologous AMP production. Therefore, previous knowledge concerning the expression of larger proteins can be adapted, but due to the AMP nature (e.g., small size, bactericide) additional challenges have to be faced during up and downstream processing. Nonetheless the bottleneck for large‐scale AMP production is the same as for proteins; mainly the downstream process. This review introduces opportunities for insect‐derived AMP production, like the choice of the expression system (based on previously derived data), depending on the AMP nature, as well as new purification strategies like elastin‐like peptide/intein based purification strategies. All of these aspects are discussed with regard to large‐scale processes and costs. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:1–11, 2015  相似文献   

18.
We describe a miniaturized fluid array device for high‐throughput cell‐free protein synthesis (CFPS), aiming to match the throughput and scale of gene discovery. Current practice of using E. coli cells for production of recombinant proteins is difficult and cost‐prohibitive to implement in a high‐throughput format. As more and more new genes are being identified, there is a considerable need to have high‐throughput methods to produce a large number of proteins for studying structures and functions of the corresponding genes. The device consists of 96 units and each unit is for expression of one protein; thus up to 96 proteins can be produced simultaneously. The function of the fluid array was demonstrated by expression of a variety of proteins, with more than two orders of magnitude reduction in reagent consumption compared with a commercially available CFPS instrument. The protein expression yield in the device was up to 87 times higher for β‐glucoronidase than that in a conventional microplate. The concentration of β‐galactosidase expressed in the device was determined at 5.5 μg/μL. The feasibility of using the device for drug screening was demonstrated by measuring the inhibitory effects of mock drug compounds on synthesized β‐lactamase without the need for harvesting proteins, which enabled us to reduce the analysis time from days to hours. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

19.
A segregated mathematical model was developed for the analysis and interpretation of cultivation data of growth of the recombinant yeast Saccharomyces cerevisiae on multiple substrates (glucose, maltose, pyruvate, ethanol, acetate, and galactose). The model accounts for substrate consumption, plasmid stability, and production level of a model protein, a modified nucleocapsid protein of the Puumala virus. Recombinant nucleocapsid proteins from different Hantaviruses have previously been demonstrated as suitable antigens for diagnostics as well as for sero‐epidemiological studies. The model is based on a system of 10 nonlinear ordinary differential equations and accounts for the influence of various factors, e.g., selective pressure for enhancing plasmid stability by formaldehyde or the toxic effects of the intracellular accumulation of the heterologous protein on cell growth and product yield. The model allows the growth of two populations of cells to be simulated: plasmid‐bearing and plasmid‐free yeast cells, which have lost the plasmid during cultivation. Based on the model, sensitivity studies in respect to parameter changes were performed. These enabled, for example, the evaluation of the impact of an increase in the initial concentration of nutrients and growth factors (e.g., vitamins, microelements, etc.) on the biomass yield and the heterologous protein production level. As expected, the productivity of the heterologous protein in S. cerevisiae is closely correlated with plasmid stability. The 25 free model parameters, including the yield coefficients for different growth stages and dynamic constants, were estimated by nonlinear techniques, and the model was validated against a data set not used for parameter estimation. The simulation results were found to be in good agreement with the experimental data.  相似文献   

20.
For efficient production of recombinant proteins by mammalian cells in a bioreactor, optimal growth rates are required and represent the most important process parameter. We present the first successful attempt to monitor the growth behavior and cell cycle state of a mammalian production relevant cell line under bioreactor cultivation conditions up to 1.2 l, utilizing a fluorescent read‐out without the need of additional staining or marking. For this purpose, we developed two new production relevant cell line derivatives (CHO‐K1 FUCCI CM & CHO‐K1 FUCCI CN) and corresponding analytical methods. The approach is easily scalable, applicable to mammalian recombinant protein production cell lines, and it allows for real‐time monitoring using appropriate fluorescence probes. It is based on the Ubiquitination‐based Cell Cycle Indicator (FUCCI) system developed by Miyawaki et al. CHO‐K1 was chosen as a model cell line due to its close relationship to several production cell lines.1 We defined a new process parameter ired, a quantitative and numerically robust representation of the cell cycle distribution, and demonstrate it to be linearly correlated with the cell cycle state and inversely related to the real time growth rate. Detection of growth rate limitations is possible earlier than using cell‐count‐based approaches. Analytics were compatible with bulk fluorescence methods, using a plate reader as well as a flow cytometer. For future real time applications in industry scale bioreactors we recommend the use of on‐line or at‐line fluorescence probes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1408–1417, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号