首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Luminescence》2005,20(1):20-24
It was found that amoxycillin can react with potassium permanganate in an acidic medium to produce chemiluminescence, which is greatly enhanced by formaldehyde. The optimum conditions for this chemiluminescent reaction were studied in detail using a flow‐injection system. The experimental results indicate that, under optimum conditions, the chemiluminescence intensity is linearly related to the concentration of amoxycillin in the range 5.48 × 10?8–2.74 × 10?6 mol[sol ]L, with a detection limit (3σ) of 4.1 × 10?8 mol[sol ]L. The relative standard deviation was 1.0% at 1.1 × 10?6 mol[sol ]L amoxycillin (n = 11 measurements). This method has the advantages of high sensitivity, fast response and ease of operation. The method was successfully applied to the determination of amoxycillin in raw medicines and capsules. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The chemiluminescence (CL) reaction of acyclovir (ACV)–potassium permanganate, with formaldehyde as an enhancer, was investigated by the flow‐injection system, and a new method is reported for the determination of ACV on the basis of the reaction. The method is rapid, effective and simple for the determination of acyclovir in the range 0.2–80 mg/L, with a limit of detection of 0.06 mg/L (3 S:N), a relative standard deviation (RSD) of 3.7% for the determination of 1.0 mg/L acyclovir solution in 11 repeated measurements. The method has been applied to the determination of acyclovir in pharmaceuticals, with satisfactory results. The possible reaction mechanism is also discussed briefly. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
《Luminescence》2003,18(5):245-248
A sensitive ?ow injection chemiluminescence method is described for the determination of parathion pesticide, based upon its direct chemiluminescence reaction with luminol and hydrogen peroxide in the presence of non‐ionic surfactant polyethylene glycol 400. Under the selected experimental conditions, the concentration of parathion is proportional to the CL intensity in the range 0.02–1.0 mg/L. The detection limit was 0.008 mg/L and the relative standard deviation was 2.8% for 0.2 mg/L parathion solution (n = 11). This method was successfully applied to the determination of parathion residue in rice samples. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
A simple and sensitive chemiluminescence (CL) method has been developed for the determination of ampicillin sodium at submicromolar levels. The method is based on the inhibitory effect of ampicillin sodium on the cupric oxide nanoparticles (CuO NPs)–luminol–H2O2 CL reaction. Experimental parameters affecting CL inhibition including concentrations of CuO NPs, luminol, H2O2 and NaOH were optimized. Under optimum conditions, the calibration plot was linear in the analyte concentration range 4.0 × 10‐7–4.0 × 10‐6 mol/L. The limit of detection was 2.6 × 10‐7 mol/L and the relative standard deviation (RSD) for six replicate determinations of 1 × 10‐6 mol/L ampicillin sodium was 4.71%. Also, X–ray diffraction (XRD) and transmission electron microscopy (TEM) analysis were employed to characterize the CuO NPs. The utility of the proposed method was demonstrated by determining ampicillin sodium in pharmaceutical preparation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Yinhuan Li  Jiuru Lu 《Luminescence》2006,21(4):251-255
A new flow injection chemiluminescence (CL) method has been developed for the determination of six beta-lactam antibiotics, including amoxicillin, cefadroxil, cefoperazone sodium, cefazolin sodium, cefradine and ceftriaxone sodium. When the antibiotic was injected into a stream of KMnO4 with alkaline luminol, a strong CL signal was produced. The method allows the measurements of 0.1-50.0 mg/L amoxicillin, 0.1-80.0 mg/L cefadroxil, 1.0-30.0 mg/L cefoperazone sodium, 1.0-30.0 mg/L cefazolin sodium, 3.0-50.0 mg/L cefradine and 3.0-50.0 mg/L ceftriaxone sodium. The detection limits are 0.05 mg/L for amoxycillin, 0.05 mg/L for cefadroxil, 0.4 mg/L for cefoperazonum sodium, 0.4 mg/L for cefazolin sodium, 0.8 mg/L for cefradine and 0.8 mg/L for ceftriaxone sodium. The relative standard deviations in 11 repeated measurements are 0.6%, 0.8%, 1.5%, 1.2%, 0.4% and 0.3% for 3.0 mg/L amoxicillin, 1.0 mg/L cefadroxil, 10.0 mg/L cefoperazone sodium, 10.0 mg/L cefazolin sodium, 10.0 mg/L cefradine and 10.0 mg/L ceftriaxone sodium, respectively. The method was successfully applied to the determination of amoxicillin in pharmaceutical preparations. A possible CL reaction mechanism is also discussed.  相似文献   

6.
A highly sensitive flow-injection chemiluminescence (FI-CL) method has been developed for the determination of dihydroxybenzene, based on the hydroxyl radical reaction. Hydroxyl radical (.OH) produced by the reaction of Fe(3+) and H(2)O(2) oxidize rhodamine 6G to produce weak CL. It was observed that catechol and hydroquinone greatly enhanced the weak CL reaction. However, the proposed CL system is not suitable for determination of resorcinol because the enhancement reaction is very slow. The proposed procedure has a linear range of 0.01-2 mg/L for catechol, with a detection limit of 0.006 mg/L, and 0.008-1 mg/L for hydroquinone, with a detection limit of 0.004 mg/L. The possible mechanism of the CL system is discussed.  相似文献   

7.
A post‐chemiluminescence (PCL) phenomenon was observed when chloramphenicol was injected into a mixture of luminol and potassium periodate after the chemiluminescence (CL) reaction of luminol–potassium periodate had finished. The possible reaction mechanism was proposed based on studies of the CL kinetic characteristics, the CL spectra, the fluorescence spectra and the UV‐vis absorption spectra of the related substances. Based on the PCL reaction, a rapid and sensitive method for the determination of chloramphenicol was established. The linear response range was 6.0 × 10?7–1.0 × 10?5 mol/L, with a correlation coefficient of 0.9986. The relative standard deviation (RSD) for 5.0 × 10?6 mol/L chloramphenicol was 2.3% (n = 11). The detection limit was 1.6 × 10?7 mol/L. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Forchlorfenuron is a low-toxic phenylurea plant growth regulator. Excessive intake of forchlorfenuron can lead to metabolic disorders of the matrix and be harmful to human health. The chemiluminescence intensity of the KIO4–K2CO3–Mn2+ reaction decreased in the presence of forchlorfenuron. Based on this result, a rapid and sensitive chemiluminescence method was established to determine forchlorfenuron by combining it with a batch injection static device. The injection speed, injection volume and reagent concentration of the forchlorfenuron–KIO4–K2CO3–Mn2+ chemiluminescence reaction were optimized. Under these optimized conditions, the linear range of the method was 1.0–200.0 μg/L, and the limit of detection was 0.29 μg/L (S/N = 3). The chemiluminescence method for the determination of forchlorfenuron could be completed in 10 s. The method was applied to detect the residual forchlorfenuron in dried fruit samples, and the results are consistent with high-performance liquid chromatography-mass spectrometry. This method has the advantages of high sensitivity, rapid response, less reagent consumption, and convenient operation. It will provide a new perspective for chemiluminescence for the rapid and sensitive determination of forchlorfenuron in various complex samples.  相似文献   

9.
《Luminescence》2002,17(3):165-167
A new flow injection chemiluminescence method is described for the determination of captopril. It is based on the enhancing effect of captopril on the chemiluminescence reaction of luminol with potassium ferricyanide in alkaline solution in the presence of potassium ferrocyanide. The method allows the determination of captopril over 0.1–40 µg/mL range, with a relative standard deviation (SD) of 1.0% for the determination of 0.5 µg/mL captopril solution in 11 repeated measurements. The method was satisfactorily applied to the determination of captopril in commercial captopril tablets. The possible reaction mechanism is also discussed briefly. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
A new microflow injection analysis (microFIA) system on a chip coupled with chemiluminescence (CL) for the non-enzymatic determination of uric acid is described. The microFIA system produced by using two transparent poly(methylmethacrylate) (PMMA) chips measured 50 x 40 x 5 mm, the microchannels, etched by CO2 laser, were 200 microm wide and 100 microm deep, and the volume of the reaction area (RA) was about 1.2 microL. The injection pump, with accurate time control, monitored all reagents, including the sample. The uric acid was sensed by the chemiluminescence reaction between luminol and ferricyanide. The linear range of the uric acid concentration was 0.8-30 mg/L and the detection limit was 0.5 mg/L (S/N = 3). The relative standard deviation was 4.42% for 5 mg/L uric acid (n = 8). The proposed method has been successfully applied to the non-separation determination of uric acid in human serum and urine.  相似文献   

11.
A new chemiluminescence (CL) reaction was observed when chloramphenicol solution was injected into the mixture after the end of the reaction of alkaline luminol and sodium periodate or sodium periodate was injected into the reaction mixture of chloramphenicol and alkaline luminol. This reaction is described as an order‐transform second‐chemiluminescence (OTSCL) reaction. The OTSCL method combined with a flow‐injection technique was applied to the determination of chloramphenicol. The optimum conditions for the order‐transform second‐chemiluminescence emission were investigated. A mechanism for OTSCL has been proposed on the basis of the chemiluminescence kinetic characteristics, the UV‐visible spectra and the chemiluminescent spectra. Under optimal experimental conditions, the CL response is proportional to the concentration of chloramphenicol over the range 5.0 × 10?7–5.0 × 10?5 mol/L with a correlation coefficient of 0.9969 and a detection limit of 6.0 × 10?8 mol/L (3σ). The relative standard deviation (RSD) for 11 repeated determinations of 5.0 × 10?6 mol/L chloramphenicol is 1.7%. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Yinhuan Li  Jiuru Lu 《Luminescence》2007,22(4):326-330
A simple, rapid, flow-injection chemiluminescence (CL) method is described for the determination of ibuprofen. A strong CL signal was detected when a mixture of the analyte and sulphite was injected into acidic KMnO(4). The CL signal is proportional to the concentration of ibuprofen in the range 0.1-10.0 mg/L. The detection limit is 0.02 mg/L ibuprofen, the relative standard deviation is 1.8% (0.5 mg/L ibuprofen; n = 11) and the sample measurement frequency is 120/h. The proposed method was successfully applied to the determination of ibuprofen in pharmaceutical preparations and in spiked urine samples. The mechanism of the CL reaction is also discussed.  相似文献   

13.
A new sensitized chemiluminescence method by acidic permanganate oxidation was developed for the sensitive determination of trazodone. A fluorescent dye as used rhodamine 6G to increase a chemiluminescence intensity. Under optimum conditions, the liner range of the calibration curve was obtained for 1–5000 nmol/L. The limit of detection was calculated from 3σ of a blank was 0.23 nmol/L. The coexistent ions and substances had no interference with the chemiluminescence measurement. The chemiluminescence spectra were measured to elucidate a possible mechanism for the system. The present method was satisfactorily used in the determination of the drugs in pharmaceutical samples and animal serums.  相似文献   

14.
A rapid and sensitive flow‐injection chemiluminescence (FI–CL) method is described for the determination of diazepam based on its reaction with N‐bromosuccinimide (NBS) in alkaline medium in the presence of dichlorofluorescein (DCF) as an effective energy‐transfer agent. Under optimum conditions, the proposed method allowed the measurement of diazepam over the range of 2.0 × 10?6 to 2.0 × 10?4 mol/L with a detection limit of 5.0 × 10?7 mol/L. The relative standard deviation for 11 parallel measurements of 2.0 × 10?5 mol/L diazepam was 2.1%. The method was applied satisfactorily for the determination of diazepam in pharmaceutical preparations, and the results agree well with those obtained by spectrophotometry. The use of the proposed system for the determination of diazepam in urine and plasma samples was also tested. The possible mechanism of the chemiluminescence reaction is discussed briefly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A novel flow injection chemiluminescence method is proposed for determination of cholesterol in this paper. The cholesterol oxidase was immobilized onto sol–gel and prepared as an enzymatic reaction column. The determination of cholesterol was performed by quantitative determination of hydrogen peroxide produced from an enzymatic reaction. The luminol–H2O2–metal chelate diperiodatocuprate(III) system ensured that the method was highly sensitive and selective. Free cholesterol was determined over the range 5.0 × 10–8 mol/L–5.0 × 10–7 mol/L, with a limit of detection (3σ) of 1.9 × 10–8 mol/L. The relative standard deviation (RSD) for 2.5 × 10–7 mol/L was 2.7% (n = 7). The proposed method offered the advantages of sensitivity, selectivity, simplicity and rapidity for free cholesterol determination, and was successfully applied to the direct determination of free cholesterol in serum. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A novel and highly sensitive chemiluminescence (CL) method for the determination of ethanol was developed based on the CdS quantum dots (QDs)–permanganate system. It was found that KMnO4 could directly oxidize CdS QDs in acidic media resulting in relatively high CL emission. A possible mechanism was proposed for this reaction based on UV/Vis absorption, fluorescence and the generated CL emission spectra. However, it was observed that ethanol had a remarkable inhibition effect on this system. This effect was exploited in the determination of ethanol within the concentration range 12–300 µg/L, with detection at 4.3 µg/L. In order to evaluate the capability of presented method, it was satisfactorily utilized in the determination of alcohol in real samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Cai Z  Zhang X  Lu DF  Gan JN 《Luminescence》2012,27(4):256-261
A novel chemiluminescence (CL) system was established for the determinations of daidzein in pharmaceutical preparations and to assess its ability to scavenge hydroxyl radicals. It was shown that a strong CL signal generated when eosin Y was mixed with Fenton reagent was decreased significantly when daidzein was added to the reaction system due to partial scavenging of the hydroxyl radicals in the solution. The extent of decrease in the CL intensity had a good stoichiometric relationship with the daidzein concentration. Based on this, we developed a new method for the determination of daidzein, using a flow‐injection chemiluminescence (FI–CL) technique. Under the optimal conditions, the linear range of daidzein concentration was 8.0 × 10–8–3.0 × 10–6 mol/L (R = 0.9982), with a detection limit of 9.0 × 10–9 mol/L (S:N = 3), and the RSD was 5.8% for 1.0 × 10–6 mol/L daidzein (n = 11). This method was successfully used in the determination of daidzein in tablets and for evaluation of the hydroxyl radical‐scavenging capacity of daidzein. The possible reaction mechanism of the CL system is discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
《Luminescence》2003,18(3):125-130
A new flow injection chemiluminescent method has been developed for the determination of procaine hydrochloride, based on the inhibition of the chemiluminescence reaction of luminol–hydrogen peroxide by procaine hydrochloride. The influence of several surfactants and β‐cyclodextrin on the chemiluminescence intensity were studied. It was found that β‐cyclodextrin enhanced the decrease in chemiluminescence intensity. The method is simple, convenient and sensitive, with a detection limit (3 σ) of 0.08 µg/mL. The decreased chemiluminescence intensity is linear, with the concentration of procaine hydrochloride in the range 0.2–100.0 µg/mL and 100.0–400.0 µg/mL. The relative standard deviation for 10 repeated measurements were 4.5% and 3.4% for 1.0 and 20.0 µg/mL procaine hydrochloride, respectively. The method has been successfully applied to the determination of procaine hydrochloride in injection solutions of this drug. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Jianxiu Du  Jiuru Lu 《Luminescence》2004,19(6):328-332
The post-chemiluminescence phenomenon arising from the permanganate-luminol reaction induced by hydrazine and isoniazid was investigated. When hydrazine or isoniazid was injected into the mixture after the end of the reaction of permanganate with alkaline luminol, a new chemiluminescence (CL) reaction was initiated and strong CL signal was detected. A possible CL mechanism is suggested, based upon the studies of the kinetic characteristics of the CL reaction, the UV-visible spectra, the CL spectra and some other experiments. The present reactions allow the determination of 0.1-10.0 mg/L hydrazine and 0.02-1.0 mg/L isoniazid, with detection limits of 0.03 mg/L and 0.006 mg/L, respectively. The method was applied to the determination of isoniazid in pharmaceutical preparations.  相似文献   

20.
Siyu Chen  Fang Zhao 《Luminescence》2012,27(4):279-284
A simple, rapid and precise flow‐injection–chemiluminescence (FI–CL) method is presented for the determination of tenoxicam in pharmaceutical preparations and biological samples. The method is based on the weak chemiluminescence signal arising from the reaction of cerium(IV) in a nitric acid medium with sodium hyposulphite being significantly increased by tenoxicam in the presence of sodium dodecyl benzene sulphonate. Several experimental parameters affecting the CL reaction were examined and optimized systematically. Under the optimum conditions, the CL intensity was proportional to the concentration of tenoxicam in the range 7.0 × 10–11–5.0 × 10–8 g/mL. The detection limit was 2.3 × 10–11 g/mL tenoxicam and the relative standard deviation (RSD) was 2.1% for 1.0 × 10–9 g/mL tenoxicam solution (n = 11). The proposed method was applied to the determination of tenoxicam in pharmaceutical preparations, serum and human urine, with satisfactory results. The possible mechanism of the chemiluminescence reaction is also briefly discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号