首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Luminescence》2003,18(5):259-267
High‐valent oxo‐iron(IV) species are commonly proposed as the key intermediates in the catalytic mechanisms of iron enzymes. Water‐soluble iron(III) tetrakis‐5,10,15,20‐(N‐methyl‐4‐pyridyl)porphyrin (Fe(III)TMPyP) has been used as a model of heme‐enzyme to catalyse the hydrogen peroxide (H2O2) oxidation of various organic compounds. However, the mechanism of the reaction of Fe(III)TMPyP with H2O2 has not been fully established. In this study, we have explored the kinetic simulation of the reaction of Fe(III)TMPyP with H2O2 and of the catalytic reactivity of FeTMPyP in the luminescent peroxidation of luminol. According to the mechanism that has been established in this work, Fe(III)TMPyP is oxidized by H2O2 to produce (TMPyP)·+Fe(IV)=O (k1 = 4.5 × 104/mol/L/s) as a precursor of TMPyPFe(IV)=O. The intermediate, (TMPyP)·+Fe(IV)=O, represented nearly 2% of Fe(III)TMPyP but it does not accumulate in suf?cient concentration to be detected because its decay rate is too fast. Kinetic simulations showed that the proposed scheme is capable of reproducing the observed time courses of FeTMPyP in various oxidation states and the decay pro?les of the luminol chemiluminescence. It also shows that (TMPyP)·+Fe(IV)=O is 100 times more reactive than TMPyPFe(IV)=O in most of the reactions. These two species are responsible for the initial sharp and the sustained luminol emissions, respectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
A dysprosium‐zinc porphyrin, [DyZn(TPPS)H3O]n (1) (TPPS = tetra(4‐sulfonatophenyl)porphyrin), was prepared through solvothermal reactions and structurally characterized by single‐crystal X‐ray diffraction analyses. Complex 1 features a three‐dimensional (3‐D) porous open framework that is thermally stable up to 400 °C. Complex 1 displays a void space of 215 Å3, occupying 9.2% of the unit cell volume. The fluorescence spectra reveal that it shows an emission band in the red region. The fluorescence lifetime is 39 µsec and the quantum yield is 1.7%. The cyclic voltammetry (CV) measurement revealed one quasi‐reversible wave with E1/2 = 0.30 V. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A determination method for Co(II), Fe(II) and Cr(III) ions by luminol‐H2O2 system using chelating reagents is presented. A metal ion‐chelating ligand complex with a Co(II) ion and a chelating reagent like ethylenediaminetetraacetic acid (EDTA) produced highly enhanced chemiluminescence (CL) intensity as well as longer lifetime in the luminol‐H2O2 system compared to metals that exist as free ions. Whereas free Cu(II) and Pb(II) ions had a strong catalytic effect on the luminol‐H2O2 system, significantly, the complexes of Cu(II) and Pb(II) with chelating reagents lost their catalytic activity due to the chelating reagents acting as masking agents. Based on the observed phenomenon, it was possible to determine Co(II), Fe(II) and Cr(III) ions with enhanced sensitivity and selectivity using the chelating reagents of the luminol‐H2O2 system. The effects of ligand, H2O2 concentration, pH, buffer solution and concentrations of chelating reagents on CL intensity of the luminol‐H2O2 system were investigated and optimized for the determination of Co(II), Fe(II) and Cr(III) ions. Under optimized conditions, the calibration curve of metal ions was linear over the range of 2.0 × 10‐8 to 2.0 × 10‐5 M for Co(II), 1.0 × 10‐7 to 2.0 × 10‐5 M for Fe (II) and 2.0 × 10‐7 to 1.0 × 10‐4 M for Cr(III). Limits of detection (3σ/s) were 1.2 × 10‐8, 4.0 × 10‐8 and 1.2 × 10‐7 M for Co(II), Fe(II) and Cr(III), respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A novel ligand, 1‐(naphthalen‐2‐yl)‐2‐(phenylsulthio)ethanone was synthesized using a new method and its two europium (Eu) (III) complexes were synthesized. The compounds were characterized by elemental analysis, coordination titration analysis, molar conductivity, infrared, thermo gravimetric analyzer‐differential scanning calorimetry (TGA‐DSC), 1H NMR and UV spectra. The composition was suggested as EuL5 · (ClO4)3 · 2H2O and EuL4 · phen(ClO4)3 · 2H2O (L = C10H7COCH2SOC6H5). The fluorescence spectra showed that the Eu(III) displayed strong characteristic metal‐centered fluorescence in the solid state. The ternary rare earth complex showed stronger fluorescence intensity than the binary rare earth complex in such material. The strongest characteristic fluorescence emission intensity of the ternary system was 1.49 times as strong as that of the binary system. The phosphorescence spectra were also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A novel chemiluminescence (CL) method was developed for the determination of 10‐hydroxycamptothecin(HCPT) based on the CL reaction between [Ag(HIO6)2]5? and luminol in alkaline solution. CL emission of Ag(III) complex–luminol in alkaline medium was very different from that in acidic medium. A possible mechanism of enhanced CL emission was suggested. The enhanced effect of HCPT on CL emission of the [Ag(HIO6)2]5?–luminol system was found. The enhanced degree of CL emission was proportional to HCPT concentration. The effect of the reaction conditions on CL emission was examined. Under optimal conditions, the limit of detection was 6.5 × 10?9 g mL?1. The proposed method was applied for the determination of HCPT in real samples with the recoveries of 93.2–109% with the RSD of 1.7–3.3%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Preparation of the water-soluble, kinetically labile, high-spin iron(II) tetrakis(4-sulfonatophenyl)porphyrin, Fe(II)TPPS4−, has been realized in neutral or weakly acidic solutions containing acetate buffer. The buffer played a double role in these systems: it was used for both adjusting pH and, via formation of an acetato complex, trapping trace amounts of iron(III) ions, which would convert the iron(II) porphyrins to the corresponding iron(III) species. Fe(II)TPPS4− proved to be stable in these solutions even after saturation with air or oxygen. In the absence of acetate ions, however, iron(II) ions play a catalytic role in the formation of iron(III) porphyrins. While the kinetically inert iron(III) porphyrin, Fe(III)TPPS3−, is a regular one with no emission and photoredox properties, the corresponding iron(II) porphyrin displays photoinduced features which are typical of sitting-atop complexes (redshifted Soret absorption and blueshifted emission and Q absorption bands, photoinduced porphyrin ligand-to-metal charge transfer, LMCT, reaction). In the photolysis of Fe(II)TPPS4− the LMCT process is followed by detachment of the reduced metal center and an irreversible ring-opening of the porphyrin ligand, resulting in the degradation of the complex. Possible oxygen-binding ability of Fe(II)TPPS4− (as a heme model) has been studied as well. Density functional theory calculations revealed that in solutions with high acetate concentration there is very little chance for iron(II) porpyrin to bind and release O2, deviating from heme in a hydrophobic microenvironment in hemoglobin. In the presence of an iron(III)-trapping additive that is much less strongly coordinated to the iron(II) center than the acetate ion, Fe(II)TPPS4− may function as a heme model.  相似文献   

7.
Based on the inhibition effect of transferrin (Tf) on the reaction of the luminol–hydrogen peroxide (H2O2) chemiluminescence (CL) system, catalysed by meso‐tetra‐(3‐methoxyl‐4‐hydroxyl) phenyl manganese porphyrin (MnP) as a mimetic enzyme of peroxides, a sensitive flow‐injection CL method has been developed for the determination of Tf in an alkaline medium. The CL reaction was carefully investigated by examining the variations of reaction conditions. Under optimum conditions, the linear range for the determination of transferrin was 0.04–20.0 μg/mL and the detection limit was 1.62 ng/mL. This proposed method was sensitive, convenient and simple, and has been successfully applied to the determination of transferrin in a serum sample. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
5,10,15,20-Tetra-(N-methyl-3-pyridyl)porphyrin (TMPyP3) is a DNA-binding derivative of porphyrins. A comparative study of the binding of this ligand to biologically significant DNA structures was performed. For this purpose, the interactions of TMPyP3 with the antiparallel telomeric G-quadruplex d(TTAGGG)4, oligonucleotide dTTAGGGTTAGAG(TTAGGG)2 (not forming a quadruplex structure), double-stranded d(AC)8 · d(GT)8, and single-stranded d(AC)8 and d(GT)8 DNA molecules have been studied. Analysis of absorption isotherms has demonstrated that the binding constants and the number of binding sites for the complexes TMPyP3: DNA increase in the following order: d(AC)8 < d(GT)8 < d(AC)8 · d(GT)8 = d(TTAGGG)4 < dTTAGGGTTAGAG(TTAGGG)2. It has been for the first time demonstrated that the constant for TMPyP3 binding to unfolded dTTAGGGTTAGAG(TTAGGG)2 strand (1.3 × 107 M−1) is approximately threefold higher than for the G-quadruplex d(TTAGGG)4 (4.7 × 106 M−1). Binding of two TMPyP3 molecules to d(TTAGGG)4 decreases the thermostability of G-quadruplex (ΔTm = −8°C). Circular dichroism spectra of the TMPyP3 complexes with d(TTAGGG)4 suggest that the ligand partially unfolds the G-quadruplex structure. Structural destabilization of the telomeric G-quadruplex by TMPyP3 can explain the relatively low activity of this ligand as a telomerase inhibitor and a low cytotoxicity for cultured tumor cells.  相似文献   

9.
An electron-rich iron(III) porphyrin complex (meso-tetramesitylporphinato)iron(III) chloride [Fe(TMP)Cl], was found to catalyze the epoxidation of olefins by aqueous 30% H2O2 when the reaction was carried out in the presence of 5-chloro-1-methylimidazole (5-Cl-1-MeIm) in aprotic solvent. Epoxides were the predominant products with trace amounts of allylic oxidation products, indicating that Fenton-type oxidation reactions were not involved in the olefin epoxidation reactions. cis-Stilbene was stereospecifically oxidized to cis-stilbene oxide without giving isomerized trans-stilbene oxide product, demonstrating that neither hydroperoxy radical (HOO·) nor oxoiron(IV) porphyrin [(TMP)FeIV=O] was responsible for the olefin epoxidations. We also found that the reactivities of other iron(III) porphyrin complexes such as (meso-tetrakis(2,6-dichlorophenyl)porphinato)iron(III) chloride [Fe(TDCPP)Cl], (meso-tetrakis(2,6-difluorophenyl)porphinato)iron(III) chloride [Fe(TDFPP)Cl], and (meso-tetrakis(pentafluorophenyl)porphinato)iron(III) chloride [Fe(TPFPP)Cl] were significantly affected by the presence of the imidazole in the epoxidation of olefins by H2O2. These iron porphyrin complexes did not yield cyclohexene oxide in the epoxidation of cyclohexene by H2O2 in the absence of 5-Cl-1-MeIm in aprotic solvent; however, addition of 5-Cl-1-MeIm to the reaction solutions gave high yields of cyclohexene oxide with the formation of trace amounts of allylic oxidation products. We proposed, on the basis of the results of mechanistic studies, that the role of the imidazole is to decelerate the O–O bond cleavage of an iron(III) hydroperoxide porphyrin (or H2O2–iron(III) porphyrin adduct) and that the intermediate transfers its oxygen to olefins prior to the O–O bond cleavage.  相似文献   

10.
The equilibrium behavior of cationic iron(III) meso-tetrakis(4-N-methyl-pyridiniumyl) porphyrin, Fe(III)TMPyP, in aqueous solution was studied as a function of pH by optical absorption, EPR and (1)H NMR spectroscopies. The presence of several Fe(III)TMPyP species in solution was unequivocally demonstrated: monomeric porphyrin species (a monoaqueous five-coordinated complex, a diaaqueous six-coordinated complex and a monoaqueous-hydroxo six-coordinated complex), a micro-oxo dimer and a bis-hydroxo complex. The addition of salt to the porphyrin solution leads to a simplification of the equilibrium as a function of pH. In this case, only three species were observed in solution: a monomeric porphyrin species, a micro-oxo dimer and a bis-hydroxo complex. Optical absorption, EPR and (1)H NMR spectra contributed to the characterization of these species. Four critical pH values (pK) for Fe(III)TMPyP were obtained in pure buffer and only three pK values were observed in the presence of NaCl. The addition of salt favors the presence of the dimeric species in solution and simplifies the equilibrium in the acidic pH range.  相似文献   

11.
Chemiluminescence (CL) of the rhodamine 6‐G‐diperiodatonickelate (IV) (Rh6‐G‐Ni(IV) complex) in the presence of Brij‐35 was examined in an alkaline medium and implemented using flow‐injection analysis to analyze Mn(II) in natural waters. Brij‐35 was identified as the surfactant of choice that enhanced CL intensity by about 62% of the reaction. The calibration curves were linear in the range 1.7 × 10?3 – 0.2 (0.9990, n = 7) and 8.0 × 10?4 – 0.1 μg ml?1 (0.9990, n = 7) with limits of detection (LODs) (S:N = 3) of 5.0 × 10?4 and 2.4 × 10?4 μg ml?1 without and with using an in‐line 8‐hydroxyquinoline (8‐HQ) resin mini‐column, respectively. The sample throughput and relative standard deviation were 200 h?1 and 1.7–2.2% in the range studied respectively. Mn(II) concentrations in certified reference materials and natural water samples was successfully determined. A brief discussion about the possible CL reaction mechanism is also given. In addition, analysis of V(III), Cr(III) and Fe(II) was also performed without and with using an in‐line 8–HQ column and selective elution of each metal ion was achieved by adjusting the pH of the sample carrier stream with aqueous HCl solution.  相似文献   

12.
A novel chemiluminescence (CL) method was developed for the determination of cefazolin sodium based on the CL reaction between the [Cu(HIO6)2]5‐Cu(III) complex and luminol in alkaline solution. Results showed that CL emission of Cu(III) complex–luminol in alkaline medium was significantly different from that in acidic medium. A possible mechanism of the enhanced effect of cefazolin on CL emission of the [Cu(HIO6)2]5‐‐ luminol system was proposed. The effect of the reaction conditions on CL emissions was examined. Under optimized conditions, a good linear relationship was obtained between CL intensity and concentrations of cefazolin sodium in the range of 2.0 x 10‐8 to 2.0 x 10‐6 g/mL with a correlation coefficient of R2 = 0.9978. The limit of detection was 4.58 x 10‐9 g/mL. The proposed method was applied for the determination of cefazolin sodium in real samples with recoveries of 82.0‐109% with an RSD of 0.7‐2.1%. The proposed method was successfully used for the determination of cefazolin sodium in injectable powder preparations and human urine with satisfactory results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Aluminium oxide (Al2O3) has widely been used for catalysts, insulators, and composite materials for diverse applications. Herein, we demonstrated if γ‐Al2O3 was useful as a luminescence support material for europium (Eu) (III) activator ion. The hydrothermal method and post‐thermal treatment at 800°C were employed to synthesize Eu(III)‐doped γ‐Al2O3 nanofibre structures. Luminescence characteristics of Eu(III) ions in Al2O3 matrix were fully understood by taking 2D and 3D‐photoluminescence imaging profiles. Various sharp emissions between 580 to 720 nm were assigned to the 5D07FJ (J = 0, 1, 2, 3, 4) transitions of Eu(III) activators. On the basis of X‐ray diffraction crystallography, Auger elemental mapping and the asymmetry ratio, Eu(III) ions were found to be well doped into the γ‐Al2O3 matrix at a low (1 mol%) doping level. A broad emission at 460 nm was substantially increased upon higher (2 mol%) Eu(III) doping due to defect creation. The first 3D photoluminescence imaging profiles highlight detailed understanding of emission characteristics of Eu(III) ions in Al oxide‐based phosphor materials and their potential applications.  相似文献   

15.
A novel ternary complex, Tb2L4·L′·(ClO4)6·8H2O, has been synthesized using bis(benzylsulfinyl)methane as the first ligand L and 2,2′‐dipyridyl as the second ligand L′. The ternary complex was characterized by element analysis, molar conductivity, coordination titration analysis, infrared, thermogravimetric‐differential scanning calorimetric and ultraviolet spectra. The results indicated that the composition of the complex was Tb2L4·L′·(ClO4)6·8H2O (L = C6H5CH2SOCH2SOCH2C6H5; L′ = Dipy). Fourier transform infrared results revealed that the perchlorate group was bonded with the Tb(III) ion by the oxygen atom, and the coordination was bidentate. The fluorescent spectra illustrated that the complex displayed characteristic fluorescence in the solid state. After the introduction of the second ligand, 2,2‐dipyridyl, the relative emission intensity and fluorescence lifetime of the ternary complex Tb2L4·L′·(ClO4)6·8H2O were enhanced compared to the binary complex TbL2.5(ClO4)3·3H2O. This indicated that the presence of both organic ligand bis(benzylsulfinyl)methane and the second ligand 2,2‐dipyridyl could sensitize the fluorescence intensity of Tb(III) ion, and introduction of the 2,2‐dipyridyl group resulted in an enhancement of the fluorescence of the Tb(III) ternary rare earth complex. The strongest characteristic fluorescence emission intensity of the ternary complex was 9.36 times that of the binary complex. The phosphorescence spectra and fluorescence lifetime of the complex were also measured. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A new system for the determination of nucleic acid by rare earth metallic porphyrin of [tetra‐(3‐methoxy‐4‐hydroxyphenyl)]–Tb3+ [T(3‐MO‐4HP)–Tb3+] porphyrin as fluorescence spectral probe has been developed in this paper. Nucleic acid can enhance the fluorescence intensity of the T(3‐MO‐4HP)–Tb3+ porphyrin in the presence of bis(2‐ethylhexyl)sulfosuccinate sodium salt(AOT) micelle. In pH 8.00 Tris–HCl buffer solution, under optimum conditions, the enhanced fluorescence intensity is in proportion to the concentration of nucleic acids in the range of 0.05–3.00 µg mL?1 for calf thymus DNA (ct DNA) and 0.03–4.80 µg mL?1 for fish sperm DNA(fs DNA). Their detection limits are 0.03 and 0.01 µg mL?1, respectively. In addition, the binding interaction mechanism between T(3‐MO‐4HP)–Tb3+ porphyrin and ct DNA is also investigated by resonance scattering and fluorescence spectra. The maximum binding number is calculated by molar ratio method. The new system can be used for the determination of nucleic acid in pig liver, yielding satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Oxidation of essentially pure intermediate-spin iron(III) porphyrinates such as ruffled Fe(TiPrP)ClO4 and saddled Fe(OETPP)ClO4 produces the corresponding six-coordinate iron(III) porphyrin(por) radical cations [Fe(Por)(ClO4)2], where TiPrP and OETPP are dianions of 5,10,15,20-tetraisopropylporphyrin and 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin, respectively.Spin-spin interactions in these complexes are very much different; while ruffled [Fe(TiPrP)(ClO4)2] exhibits no antiferromagnetic coupling, saddled [Fe(OETPP)(ClO4)2] does exhibit it. The difference in magnetic behaviors has been explained in terms of the deformation mode and electron configuration of these complexes.  相似文献   

18.
Using 2,4,6‐tris‐(2‐pyridyl)‐s‐triazine (TPTZ) as a neutral ligand, and p‐hydroxybenzoic acid, terephthalic acid and nitrate as anion ligands, five novel europium complexes have been synthesized. These complexes were characterized using elemental analysis, rare earth coordination titrations, UV/vis absorption spectroscopy and infrared spectroscopy. Luminescence spectra, luminescence lifetime and quantum efficiency were investigated and the mechanism discussed in depth. The results show that the complexes have excellent emission intensities, long emission lifetimes and high quantum efficiencies. The superior luminescent properties of the complexes may be because the triplet energy level of the ligands matches well with the lowest excitation state energy level of Eu3+. Moreover, changing the ratio of the ligands and metal ions leads to different luminescent properties. Among the complexes, Eu2(TPTZ)2(C8H4O4)(NO3)4(C2H5OH)·H2O shows the strongest luminescence intensity, longest emission lifetime and highest quantum efficiency. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This study describes the quenching effects of p‐aminobenzenesulfonic acid (p‐ABSA) based on electrochemiluminescence (ECL) of the tris (2,2‐bipyridyl)‐ruthenium(II)(Ru(bpy)32+)/tri‐n‐propylamine (TPrA) system in aqueous solution. Quenching behaviours were observed with a 200‐fold excess of p‐ABSA over Ru(bpy)32+. In the presence of 0.1 M TPrA, the Stern‐Volmer constant (KSV) of ECL quenching was as high as 1.39 × 104 M‐1 for p‐ABSA. The logarithmic plot of inhibited ECL versus concentration of p‐ABSA was linear over the range of 6.0 × 10‐6 ‐3.0 × 10‐4 mol/L. The corresponding limit of detection was 1.2 × 10‐6 mol/L for p‐ABSA (S/N = 3). The mechanism of quenching is believed to involve an energy transfer from the excited‐state luminophore to a dimer of p‐ABSA and the adsorption of free radicals of p‐ABSA at the electrode surface that impeded the oxidation of the Ru(bpy)32+/TPrA system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A novel luminescence, enhancement phenomenon in the europium(III)–dopamine–sodium dodecylbenzene sulfonate system was observed when lanthanum(III) was added. Based on this, a sensitive co‐luminescence method was established for the determination of dopamine. The luminescence signal for the europium (III)–lanthanum(III)–dopamine–sodium dodecylbenzene sulfonate system was monitored at λex = 300 nm, λem =618 nm and pH 8.3. Under optimized conditions, the enhanced luminescence signal responded linearly to the concentration of dopamine in the range 1.0 × 10–10–5.0 × 10–7 mol/L with a correlation coefficient of 0.9993 (n = 11). The detection limit (3σ) was 2.7 × 10–11 mol/L and the relative standard deviation for 11 parallel measurements of 3.0 × 10–8 mol/L dopamine was 1.9%. The presented method was successfully applied for the estimation of dopamine in samples of pharmaceutical preparations, human serum and urine. The possible luminescence enhancement mechanism of the system is discussed briefly. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号