首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visible oscillating chemiluminescence (CL) of luminol–H2O2–KSCN–CuSO4 was studied using the organic base (2‐hydroxyethyl)trimethylammonium hydroxide. The effect of concentrations of luminol, H2O2, KSCN, CuSO4 and the base were investigated in a batch reactor. This report shows how the concentration of components involved in the oscillating CL system influenced the oscillation period, light amplitude and total time of light emission. The oscillating CL with different bases was also investigated. Results indicated that using 2‐HETMAOH causes regular oscillating CL with nearly the same oscillating period. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, oscillating chemiluminescence (CL), 1,10‐phenanthroline H2O2–KSCN–CuSO4–NaOH system, was studied in a batch reactor. The system described is a novel, slowly damped oscillating CL system, generated by coupling the well‐known Epstein–Orban, H2O2–KSCN–CuSO4–NaOH chemical oscillator reaction with the CL reaction involving the oxidation of 1,10‐phenanthroline by hydrogen peroxide, catalyzed by copper(II) in alkaline medium. In this system, the CL reaction acts as a detector or indicator system of the far‐from‐equilibrium dynamic system. Narrow and slightly asymmetric light pulses of 1.2 s half‐width are emitted at 440 nm with an emitted light time of 200–1000 s, induction period of 3.5–357 s and oscillation period of 28–304 s depending on the reagent concentrations. In this report the effect of the concentration variation of components involved in the oscillating CL system on the induction period, the oscillation period and amplitude was investigated and the parameters were plotted with respect to reagent concentrations. Copper concentration showed a significant effect on the oscillation period. The possible mechanism for the oscillating CL reaction was also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Oscillating chemical reactions are complex systems involving a large number of chemical species. In oscillating chemical reactions, some species, usually reaction intermediates, exhibit fluctuations in their concentration. In this report, a novel slowly‐damped oscillating chemiluminescence produced by the addition of thiosemicarbazide (TSC) to the oscillating system H2O2–KSCN–CuSO4–NaOH was investigated. Narrow and slightly asymmetric light pulses of 1.5 s half‐width are emitted at 440 nm, with an oscillation period of 22–363 s, an induction period of 9–397 s and an emitted light time of 700–1500 s, depending on reagent concentrations. In this study the dependence of the induction period and the oscillation period on the reagent concentrations was investigated and both parameters were plotted with respect to reagent concentrations. Copper concentration showed a significant effect on the oscillation period. A possible mechanism for the oscillating chemiluminescence reaction is discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
In the H2O2–SCN?–Cu2+–OH?–luminol oscillatory system of chemiluminescence, the effects of the ingredient concentrations, temperature, flow rate and complexing agent on the oscillatory dynamics were investigated in a continuous‐flow stirred tank reactor (CSTR). The dynamical structure of two peaks during a period was discussed in detail. By addition of EDTA to the oscillating system, the peak I height decreased sharply while the peak II height was little affected, and the period kept constant. This may be due to the fast reaction between Cu(II) and EDTA and the highly stable complex Cu(II)–EDTA. From the experimental study and mechanism analysis, the chemiluminescent peak I corresponds to Cu(II) → Cu(I) transformation and the peak II corresponds to the Cu(I) → Cu(II) transformation process. The key species involving in the two‐transformation process are inferred to be superoxide radical and hydroxyl radical. Copyright © 2010 John Wiley & Son, Ltd.  相似文献   

5.
Systematic studies on phenol derivatives facilitates an explanation of the enhancement or inhibition of the luminol–H2O2–horseradish peroxidase system chemiluminescence. Factors that govern the enhancement are the one-electron reduction potentials of the phenoxy radicals (PhO/PhOH) vs. luminol radicals (L/LH) and the reaction rates of the phenol derivatives with the compounds of horseradish peroxidase (HRP-I and HRP-II). Only compounds with radicals with a similar or greater reduction potential than luminol at pH 8.5 (0.8 V) can act as enhancers. Radicals with reduction potentials lower than luminol behave in a different way, because they destroy luminol radicals and inhibit chemiluminescence. The relations between the reduction potential, reaction rates and the Hammett constant of the substituent in a phenol suggest that 4-substituted phenols with Hammett constants (σ) for their substituents similar or greater than 0.20 are enhancers of the luminol–H2O2–horseradish peroxidase chemiluminescence. In contrast, those phenols substituted in position 4 for substituents with Hammett constants (σ) lower than 0.20 are inhibitors of chemiluminescence. On the basis of these studies, the structure of possible new enhancers was predicted. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
Oxidative reactions can result in the formation of electronically excited species that undergo radiative decay depending on electronic transition from the excited state to the ground state with subsequent ultra‐weak photon emission (UPE). We investigated the UPE from the Fe2+–EDTA (ethylenediaminetetraacetic acid)–AA (ascorbic acid)–H2O2 (hydrogen peroxide) system with a multitube luminometer (Peltier‐cooled photon counter, spectral range 380–630 nm). The UPE, of 92.6 μmol/L Fe2+, 185.2 μmol/L EDTA, 472 μmol/L AA, 2.6 mmol/L H2O2, reached 1217 ± 118 relative light units during 2 min measurement and was about two times higher (P < 0.001) than the UPE of incomplete systems (Fe2+–AA–H2O2, Fe2+–EDTA–H2O2, AA–H2O2) and medium alone. Substitution of Fe2+ with Cr2+, Co2+, Mn2+ or Cu2+ as well as of EDTA with EGTA (ethylene glycol‐bis(β‐aminoethyl ether)‐N,N,N′,N′‐tetraacetic acid) or citrate powerfully inhibited UPE. Experiments with scavengers of reactive oxygen species (dimethyl sulfoxide, mannitol, sodium azide, superoxide dismutase) revealed the dependence of UPE only on hydroxyl radicals. Dimethyl sulfoxide at the concentration of 0.74 mmol/L inhibited UPE by 79 ± 4%. Plant phenolics (ferulic, chlorogenic and caffec acids) at the concentration of 870 μmol/L strongly enhanced UPE by 5‐, 13.9‐ and 46.8‐times (P < 0.001), respectively. It is suggested that augmentation of UPE from Fe2+–EDTA–AA–H2O2 system can be applied for detection of these phytochemicals.  相似文献   

7.
A simple and sensitive chemiluminescence (CL) method has been developed for the determination of ampicillin sodium at submicromolar levels. The method is based on the inhibitory effect of ampicillin sodium on the cupric oxide nanoparticles (CuO NPs)–luminol–H2O2 CL reaction. Experimental parameters affecting CL inhibition including concentrations of CuO NPs, luminol, H2O2 and NaOH were optimized. Under optimum conditions, the calibration plot was linear in the analyte concentration range 4.0 × 10‐7–4.0 × 10‐6 mol/L. The limit of detection was 2.6 × 10‐7 mol/L and the relative standard deviation (RSD) for six replicate determinations of 1 × 10‐6 mol/L ampicillin sodium was 4.71%. Also, X–ray diffraction (XRD) and transmission electron microscopy (TEM) analysis were employed to characterize the CuO NPs. The utility of the proposed method was demonstrated by determining ampicillin sodium in pharmaceutical preparation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A novel phenomenon of dual chemiluminescence (CL) was observed for the KIO4–luminol–Mn2+ system in strong alkaline solutions using the stopped‐flow technique. Scavenging study of the reactive oxygen species (ROS) suggested that the two CL peaks originated from different CL pathways precipated by distinct ROS (O2? and ?OH for the first peak, mainly 1O2 for the second peak). Generation of these ROS at different time intervals from the reactions involving IO4?, O2, and Mn2+ and their subsequent reactions with luminol induced the intense CL emission. The relative intensity of the two CL peaks can be tuned over a wide range by varying the concentrations of Mn2?, luminol and KIO4. Because of the involvement of different ROS in each pathway, the two CL peaks could respond quite differently to various substances. Moreover, variation of the intensity ratio of the two CL peaks altered the relative proportions of the corresponding ROS, thereby changing their responses to a given substance. The dual CL emission acts like a pair of tunable probes and it is believed that this CL system has great potential in analytical applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
2-Naphthyl acetate acts as a pro-enhancer of the luminol–H2O2–horseradish peroxidase reaction. Cholinesterase hydrolyses the bound acetyl group and produces 2-naphthol, and this compound is an enhancer of the chemiluminescent reaction. We studied the kinetics of chemiluminescent emission and the influence of 2-naphthyl acetate and cholinesterase enzyme concentration. The cholinesterase concentration versus chemiluminescence intensity maximum was linear for cholinesterase between 0 and 181 μU/mL, with a detection limit of 8 μU/mL and a relative standard deviation of 9.5% (n = 3), for a sample containing 90.67 μU/mL of cholinesterase.  相似文献   

10.
Highly sensitive detection of hepatitis C virus (HCV) in serum is a key method for diagnosing and classifying the extent of HCV infection. In this study, a p‐phenol derivative, 4‐(1,2,4‐triazol‐1‐yl)phenol (4‐TRP), was employed as an efficient enhancer of the luminol–hydrogen peroxide (H2O2)–horseradish peroxidase (HRP) chemiluminescence (CL) system for detection of HCV. Compared with a traditional enhancer, 4‐TRP strongly enhanced CL intensity with the effect of prolonging and stabilizing light emission. The developed CL system was applied to detecting HCV core antigen (HCV‐cAg) using a sandwich structure inside microwells. Our experimental results showed that there was good linear relationship between CL intensity and HCV‐cAg concentration in the 0.6–3.6 pg/mL range (R = 0.99). The intra‐ and inter‐assay coefficients of variation were 4.5–5.8% and 5.0–7.3%, respectively. In addition, sensitive determination of HCV‐cAg in serum samples using the luminol–H2O2–HRP–4‐TRP CL system was also feasible in clinical settings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The chemiluminescence of the luminol–H2O2–horseradish peroxidase system is increased by fluorescein. Fluorescein produces an enhancement of the luminol chemiluminescence similar to that of phenolphthalein, by an energy transfer process from luminol to fluorescein. The maximum intesity and the total chemiluminescence emission (between 380 and 580 nm) of luminol with fluorescein was more than three times greater than without fluorescein; however, the emission duration was shorter. The emission spectra in the presence of fluorescein had two maxima (425 and 535 nm) and the enhancement was dependent on pH and fluorescein concentration. A mechanism is proposed to explain these effects. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
CoFe2O4 nanoparticles (NPs) could stimulate the weak chemiluminescence (CL) system of luminol and AgNO3, resulting in a strong CL emission. The UV–visible spectra, X‐ray photoelectron spectra and TEM images of the investigated system revealed that AgNO3 was reduced by luminol to Ag in the presence of CoFe2O4 NPs and the formed Ag covered the surface of CoFe2O4 NPs, resulting in CoFe2O4–Ag core–shell nanoparticles. Investigation of the CL reaction kinetics demonstrated that the reaction among luminol, AgNO3 and CoFe2O4 NPs was fast at the beginning and slowed down later. The CL spectra of the luminol ? AgNO3 ? CoFe2O4 NPs system indicated that the luminophor was still an electronically excited 3‐aminophthalate anion. A CL mechanism has been postulated. When the CoFe2O4 NPs were injected into the mixture of luminol and AgNO3, they catalyzed the reduction of AgNO3 by luminol to produce luminol radicals and Ag, which immediately covered the CoFe2O4 NPs to form CoFe2O4–Ag core–shell nanoparticles, and the luminol radicals reacted with the dissolved oxygen, leading to a strong CL emission. With the continuous deposition of Ag on the surface of CoFe2O4 NPs, the catalytic activity of the core–shell nanoparticles was inhibited and a decrease in CL intensity was observed and also a slow growth of shell on the nanoparticles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A simple, sensitive cupric oxide nanoparticles (CuO NPs) enhanced chemiluminescence (CL) method was developed for the measurement of β‐lactam antibiotics, including amoxicillin and cefazolin sodium. The method was based on suppression of the CuO NPs–luminol–H2O2 CL reaction by β‐lactam antibiotics. Experimental parameters that influenced the inhibitory effect of the antibiotic drugs on the CL system, such as NaOH (mol/L), luminol (µmol/L), H2O2 (mol/L) and CuO NPs (mg/L) concentrations, were optimized. Calibration graphs were linear and had dynamic ranges of 1.0 × 10–6 to 8.0 × 10–6 mol/L and 3.0 × 10–5 to 5.0 × 10–3 mol/L for amoxicillin and cefazolin sodium, respectively, with corresponding detection limits of 7.9 × 10–7 mol/L and 1.8 × 10–5 mol/L. The relative standard deviations of five replicate measurements of 5.0 × 10–6 amoxicillin and 5 × 10–4 cefazolin sodium were 5.43 and 5.01%, respectively. The synthesized CuO NPs were characterized by X‐ray diffraction (XRD) and transmission electronmicroscopy (TEM). The developed approach was exploited successfully to measure antibiotics in pharmaceutical preparations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
《Luminescence》2003,18(5):259-267
High‐valent oxo‐iron(IV) species are commonly proposed as the key intermediates in the catalytic mechanisms of iron enzymes. Water‐soluble iron(III) tetrakis‐5,10,15,20‐(N‐methyl‐4‐pyridyl)porphyrin (Fe(III)TMPyP) has been used as a model of heme‐enzyme to catalyse the hydrogen peroxide (H2O2) oxidation of various organic compounds. However, the mechanism of the reaction of Fe(III)TMPyP with H2O2 has not been fully established. In this study, we have explored the kinetic simulation of the reaction of Fe(III)TMPyP with H2O2 and of the catalytic reactivity of FeTMPyP in the luminescent peroxidation of luminol. According to the mechanism that has been established in this work, Fe(III)TMPyP is oxidized by H2O2 to produce (TMPyP)·+Fe(IV)=O (k1 = 4.5 × 104/mol/L/s) as a precursor of TMPyPFe(IV)=O. The intermediate, (TMPyP)·+Fe(IV)=O, represented nearly 2% of Fe(III)TMPyP but it does not accumulate in suf?cient concentration to be detected because its decay rate is too fast. Kinetic simulations showed that the proposed scheme is capable of reproducing the observed time courses of FeTMPyP in various oxidation states and the decay pro?les of the luminol chemiluminescence. It also shows that (TMPyP)·+Fe(IV)=O is 100 times more reactive than TMPyPFe(IV)=O in most of the reactions. These two species are responsible for the initial sharp and the sustained luminol emissions, respectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
《Luminescence》2003,18(3):162-172
The reaction of iron(III) tetrakis‐5,10,15,20‐(N‐methyl‐4‐pyridyl)porphyrin (Fe(III)TMPyP) with hydrogen peroxide (H2O2) and the catalytic activity of the reaction intermediates on the luminescent peroxidation of luminol in aqueous solution were studied by using a double‐mixing stopped‐flow system. The observed luminescence intensities showed biphasic decay depending on the conditions. The initial flashlight decayed within <1 s followed by a sustained emission for more than 30 s. Computer deconvolution of the time‐resolved absorption spectra under the same conditions revealed that the initial flashlight appeared during the formation of the oxo–iron(IV) porphyrin, TMPyPFe(IV) = O, which is responsible for the sustained emission. The absorption spectra 0.0–0.5 s did not reproduce well by a simple combination of the two spectra of Fe(III)TMPyP and TMPyPFe(IV) = O, indicating that transient species was formed at the initial stage. Addition of uric acid (UA) caused a significant delay in the initiation of the luminol emission as well as in the formation of the TMPyPFe(IV) = O. Both of them were completely diminished in the presence of UA equimolar with H2O2, while mannitol had no effect at all. The delay of the light emission as well as the appearance of TMPyPFe(IV) = O was directly proportional to the [UA]0 but other kinetic profiles were not changed significantly. Based on these observations and the kinetic analysis, we confirmed the involvement of the oxo–iron(IV) porphyrin radical cation, (TMPyP)·+Fe(IV) = O, as an obligatory intermediate in the rate‐determining step of the overall reaction, Fe(III)TMPyP + H2O2 → TMPyPFe(IV) = O, with a rate constant of k = 4.3 × 104/mol/L/s. The rate constants for the reaction between the (TMPyP)·+Fe(IV) = O and luminol, and between the TMPyPFe(IV) = O and luminol were estimated to be 3.6 × 106/mol/L/s and 1.31 × 104/mol/L/s, respectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
N‐Acetyl‐L‐cysteine (NAC) can inhibit the luminol–H2O2, reaction, which is catalyzed by silver nanoparticles. Based on this phenomenon a new method was developed for NAC determination. Under optimum conditions, a linear relationship between chemiluminescence intensity and NAC concentration was found in the range 0.034–0.98 µg/mL. The detection limit was 0.010 µg/mL (S/N =3), and the relative standard deviation (RSD) was <5% for 0.480 µg/mL NAC (n =5). This simple, sensitive and inexpensive method has been applied to measure the concentration of NAC in pharmaceutical tablets. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
S,N co‐doped carbon quantum dots (N,S‐CQDs) with super high quantum yield (79%) were prepared by the hydrothermal method and characterized by transmission electron microscopy, photoluminescence, UV–Vis spectroscopy and Fourier transformed infrared spectroscopy. N,S‐CQDs can enhance the chemiluminescence intensity of a luminol–H2O2 system. The possible mechanism of the luminol–H2O2–(N,S‐CQDs) was illustrated by using chemiluminescence, photoluminescence and ultraviolet analysis. Ranitidine can quench the chemiluminescence intensity of a luminol–H2O2–N,S‐CQDs system. So, a novel flow‐injection chemiluminescence method was designed to determine ranitidine within a linear range of 0.5–50 μg ml?1 and a detection limit of 0.12 μg ml?1. The method shows promising application prospects.  相似文献   

18.
During the progression of osteoarthritis, dysregulation of extracellular matrix (ECM) anabolism, abnormal generation of reactive oxygen species, and proteolytic enzymes have been shown to accelerate the degradation process of cartilage. The purpose of the current study was to investigate the functional role of bromodomain‐containing protein 4 (BRD4) in hydrogen peroxide (H2O2)–stimulated chondrocyte injury and delineate the underlying molecular mechanisms. We observed that the expression BRD4 was markedly elevated in rat chondrocytes after H2O2 stimulation. Additionally, inhibition of BRD4 using small interfering RNA or JQ1 (a selective potent chemical inhibitor) led to repression of H2O2‐induced oxidative stress, as revealed by a decrease in the reactive oxygen species production accompanied by a decreased malondialdehyde content, along with increased activities of antioxidant markers superoxide dismutase, catalase, and glutathione peroxidase on exposure of chondrocytes to H2O2. Meanwhile, depletion of BRD4 led to repress the oxidative stress–induced apoptosis of chondrocytes triggered by H2O2 accompanied by an increase in the expression of anti‐apoptotic Bcl‐2 and a decrease in the expression of pro‐apoptotic Bax and caspase 3 as well as attenuated caspase 3 activity. Moreover, knockdown of BRD4 or treatment with JQ1 markedly attenuated ECM deposition, reflected in a marked upregulation of proteoglycans collagen type II and aggrecan as well as downregulation of ECM–degrading enzymes matrix metalloproteinase 13 and A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS‐5). More importantly, inhibition of BRD4‐activated NF‐E2–related factor 2 (Nrf2)–heme oxygenase‐1 signaling. Mechanistically, the protective effect of BRD4 inhibition on H2O2‐stimulated apoptosis and cartilage matrix degeneration was markedly abrogated by Nrf2 depletion. Altogether, we concluded that the protective effect of BRD4 inhibition against oxidative stress–mediated apoptosis and cartilage matrix degeneration occurred through Nrf2–heme oxygenase‐1 signaling, implying that BRD4 inhibition may be a more effective therapeutic strategy against osteoarthritis.  相似文献   

19.
The oxidation reaction of H2O2 with KIO4 can produce chemiluminescence (CL) in the presence of the surfactant Tween40 and the CL intensity of the CL system KIO4–H2O2–Tween40 can be strikingly enhanced after injection of tannic acid. On this basis, a flow injection method with CL detection was established for the determination of tannic acid. The method is simple, rapid and effective to determine tannic acid in the range of 7.0 × 10?9 to 1.0 × 10?5 mol/L with a determination limit of 2.3 × 10?9 mol/L. The relative standard deviation is 2.6% for the determination of 5.0 × 10?6 mol/L tannic acid (n = 11). The method has been applied to determine the content of tannic acid in industrial wastewater with satisfactory results. It is believed that the CL reaction formed singlet oxygen 1O2* and the emission was from an excited oxygen molecular pair O2(1Δg)O2(1?g) in the KIO4–H2O2–Tween40 reaction. Tween40 played an important role in enhancing stabilization of the excited oxygen molecular pair O2(1Δg)O2(1?g) and in increasing CL intensity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Lu Han  Ying Li  Aiping Fan 《Luminescence》2018,33(4):751-758
Peroxidase is a commonly used catalyst in luminol–H2O2 chemiluminescence (CL) reactions. Natural peroxidase has a sophisticated separation process, short shelf life and unstable activity, therefore it is important to develop peroxidases that have both high catalytic activity and good stability as alternatives to the natural enzyme. Gold nanoclusters (Au NCs) are an alternative peroxidase with catalytic activity in the luminol–H2O2 CL reaction. In the present study, ethanediamine was modified on the surface of Au NCs forming cationic Au NCs. The zeta potential of the cationic Au NCs maintained its positive charge when the pH of the solution was between 4 and 9. The cationic Au NCs showed higher catalytic activity in the luminol–H2O2 CL reaction than did unmodified Au NCs. A mechanism study showed that the better performance of cationic Au NCs may be attributed to the generation of 1O2 on the surface of cationic Au NCs and a positive surface charge, for better affinity to luminol. Cationic Au NC, acting as a peroxidase mimic, has much better stability than horseradish peroxidase over a wide range of temperatures. We believe that cationic Au NCs may be useful as an artificial peroxidase for a wide range of potential applications in CL and bioanalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号