首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unlike zero‐inflated Poisson regression, marginalized zero‐inflated Poisson (MZIP) models for counts with excess zeros provide estimates with direct interpretations for the overall effects of covariates on the marginal mean. In the presence of missing covariates, MZIP and many other count data models are ordinarily fitted using complete case analysis methods due to lack of appropriate statistical methods and software. This article presents an estimation method for MZIP models with missing covariates. The method, which is applicable to other missing data problems, is illustrated and compared with complete case analysis by using simulations and dental data on the caries preventive effects of a school‐based fluoride mouthrinse program.  相似文献   

2.
This paper discusses a two‐state hidden Markov Poisson regression (MPR) model for analyzing longitudinal data of epileptic seizure counts, which allows for the rate of the Poisson process to depend on covariates through an exponential link function and to change according to the states of a two‐state Markov chain with its transition probabilities associated with covariates through a logit link function. This paper also considers a two‐state hidden Markov negative binomial regression (MNBR) model, as an alternative, by using the negative binomial instead of Poisson distribution in the proposed MPR model when there exists extra‐Poisson variation conditional on the states of the Markov chain. The two proposed models in this paper relax the stationary requirement of the Markov chain, allow for overdispersion relative to the usual Poisson regression model and for correlation between repeated observations. The proposed methodology provides a plausible analysis for the longitudinal data of epileptic seizure counts, and the MNBR model fits the data much better than the MPR model. Maximum likelihood estimation using the EM and quasi‐Newton algorithms is discussed. A Monte Carlo study for the proposed MPR model investigates the reliability of the estimation method, the choice of probabilities for the initial states of the Markov chain, and some finite sample behaviors of the maximum likelihood estimates, suggesting that (1) the estimation method is accurate and reliable as long as the total number of observations is reasonably large, and (2) the choice of probabilities for the initial states of the Markov process has little impact on the parameter estimates.  相似文献   

3.
Dimension reduction of high‐dimensional microbiome data facilitates subsequent analysis such as regression and clustering. Most existing reduction methods cannot fully accommodate the special features of the data such as count‐valued and excessive zero reads. We propose a zero‐inflated Poisson factor analysis model in this paper. The model assumes that microbiome read counts follow zero‐inflated Poisson distributions with library size as offset and Poisson rates negatively related to the inflated zero occurrences. The latent parameters of the model form a low‐rank matrix consisting of interpretable loadings and low‐dimensional scores that can be used for further analyses. We develop an efficient and robust expectation‐maximization algorithm for parameter estimation. We demonstrate the efficacy of the proposed method using comprehensive simulation studies. The application to the Oral Infections, Glucose Intolerance, and Insulin Resistance Study provides valuable insights into the relation between subgingival microbiome and periodontal disease.  相似文献   

4.
Analysis of longitudinal data with excessive zeros has gained increasing attention in recent years; however, current approaches to the analysis of longitudinal data with excessive zeros have primarily focused on balanced data. Dropouts are common in longitudinal studies; therefore, the analysis of the resulting unbalanced data is complicated by the missing mechanism. Our study is motivated by the analysis of longitudinal skin cancer count data presented by Greenberg, Baron, Stukel, Stevens, Mandel, Spencer, Elias, Lowe, Nierenberg, Bayrd, Vance, Freeman, Clendenning, Kwan, and the Skin Cancer Prevention Study Group[New England Journal of Medicine 323 , 789–795]. The data consist of a large number of zero responses (83% of the observations) as well as a substantial amount of dropout (about 52% of the observations). To account for both excessive zeros and dropout patterns, we propose a pattern‐mixture zero‐inflated model with compound Poisson random effects for the unbalanced longitudinal skin cancer data. We also incorporate an autoregressive of order 1 correlation structure in the model to capture longitudinal correlation of the count responses. A quasi‐likelihood approach has been developed in the estimation of our model. We illustrated the method with analysis of the longitudinal skin cancer data.  相似文献   

5.
In this paper, our aim is to analyze geographical and temporal variability of disease incidence when spatio‐temporal count data have excess zeros. To that end, we consider random effects in zero‐inflated Poisson models to investigate geographical and temporal patterns of disease incidence. Spatio‐temporal models that employ conditionally autoregressive smoothing across the spatial dimension and B‐spline smoothing over the temporal dimension are proposed. The analysis of these complex models is computationally difficult from the frequentist perspective. On the other hand, the advent of the Markov chain Monte Carlo algorithm has made the Bayesian analysis of complex models computationally convenient. Recently developed data cloning method provides a frequentist approach to mixed models that is also computationally convenient. We propose to use data cloning, which yields to maximum likelihood estimation, to conduct frequentist analysis of zero‐inflated spatio‐temporal modeling of disease incidence. One of the advantages of the data cloning approach is that the prediction and corresponding standard errors (or prediction intervals) of smoothing disease incidence over space and time is easily obtained. We illustrate our approach using a real dataset of monthly children asthma visits to hospital in the province of Manitoba, Canada, during the period April 2006 to March 2010. Performance of our approach is also evaluated through a simulation study.  相似文献   

6.
Over the past decade, there has been much methodological development for the estimation of abundance and related demographic parameters using mark‐resight data. Often viewed as a less‐invasive and less‐expensive alternative to conventional mark recapture, mark‐resight methods jointly model marked individual encounters and counts of unmarked individuals, and recent extensions accommodate common challenges associated with imperfect detection. When these challenges include both individual detection heterogeneity and an unknown marked sample size, we demonstrate several deficiencies associated with the most widely used mark‐resight models currently implemented in the popular capture‐recapture freeware Program MARK. We propose a composite likelihood solution based on a zero‐inflated Poisson log‐normal model and find the performance of this new estimator to be superior in terms of bias and confidence interval coverage. Under Pollock's robust design, we also extend the models to accommodate individual‐level random effects across sampling occasions as a potentially more realistic alternative to models that assume independence. As a motivating example, we revisit a previous analysis of mark‐resight data for the New Zealand Robin (Petroica australis) and compare inferences from the proposed estimators. For the all‐too‐common situation where encounter rates are low, individual detection heterogeneity is non‐negligible, and the number of marked individuals is unknown, we recommend practitioners use the zero‐inflated Poisson log‐normal mark‐resight estimator as now implemented in Program MARK.  相似文献   

7.
We analyze a real data set pertaining to reindeer fecal pellet‐group counts obtained from a survey conducted in a forest area in northern Sweden. In the data set, over 70% of counts are zeros, and there is high spatial correlation. We use conditionally autoregressive random effects for modeling of spatial correlation in a Poisson generalized linear mixed model (GLMM), quasi‐Poisson hierarchical generalized linear model (HGLM), zero‐inflated Poisson (ZIP), and hurdle models. The quasi‐Poisson HGLM allows for both under‐ and overdispersion with excessive zeros, while the ZIP and hurdle models allow only for overdispersion. In analyzing the real data set, we see that the quasi‐Poisson HGLMs can perform better than the other commonly used models, for example, ordinary Poisson HGLMs, spatial ZIP, and spatial hurdle models, and that the underdispersed Poisson HGLMs with spatial correlation fit the reindeer data best. We develop R codes for fitting these models using a unified algorithm for the HGLMs. Spatial count response with an extremely high proportion of zeros, and underdispersion can be successfully modeled using the quasi‐Poisson HGLM with spatial random effects.  相似文献   

8.
Zero‐truncated data arises in various disciplines where counts are observed but the zero count category cannot be observed during sampling. Maximum likelihood estimation can be used to model these data; however, due to its nonstandard form it cannot be easily implemented using well‐known software packages, and additional programming is often required. Motivated by the Rao–Blackwell theorem, we develop a weighted partial likelihood approach to estimate model parameters for zero‐truncated binomial and Poisson data. The resulting estimating function is equivalent to a weighted score function for standard count data models, and allows for applying readily available software. We evaluate the efficiency for this new approach and show that it performs almost as well as maximum likelihood estimation. The weighted partial likelihood approach is then extended to regression modelling and variable selection. We examine the performance of the proposed methods through simulation and present two case studies using real data.  相似文献   

9.
This paper is concerned with the analysis of zero‐inflated count data when time of exposure varies. It proposes a modified zero‐inflated count data model where the probability of an extra zero is derived from an underlying duration model with Weibull hazard rate. The new model is compared to the standard Poisson model with logit zero inflation in an application to the effect of treatment with thiotepa on the number of new bladder tumors.  相似文献   

10.
Summary We investigate the use of a partial likelihood for estimation of the parameters of interest in spatio‐temporal point‐process models. We identify an important distinction between spatially discrete and spatially continuous models. We focus our attention on the spatially continuous case, which has not previously been considered. We use an inhomogeneous Poisson process and an infectious disease process, for which maximum‐likelihood estimation is tractable, to assess the relative efficiency of partial versus full likelihood, and to illustrate the relative ease of implementation of the former. We apply the partial‐likelihood method to a study of the nesting pattern of common terns in the Ebro Delta Natural Park, Spain.  相似文献   

11.
In follow‐up studies, the disease event time can be subject to left truncation and right censoring. Furthermore, medical advancements have made it possible for patients to be cured of certain types of diseases. In this article, we consider a semiparametric mixture cure model for the regression analysis of left‐truncated and right‐censored data. The model combines a logistic regression for the probability of event occurrence with the class of transformation models for the time of occurrence. We investigate two techniques for estimating model parameters. The first approach is based on martingale estimating equations (EEs). The second approach is based on the conditional likelihood function given truncation variables. The asymptotic properties of both proposed estimators are established. Simulation studies indicate that the conditional maximum‐likelihood estimator (cMLE) performs well while the estimator based on EEs is very unstable even though it is shown to be consistent. This is a special and intriguing phenomenon for the EE approach under cure model. We provide insights into this issue and find that the EE approach can be improved significantly by assigning appropriate weights to the censored observations in the EEs. This finding is useful in overcoming the instability of the EE approach in some more complicated situations, where the likelihood approach is not feasible. We illustrate the proposed estimation procedures by analyzing the age at onset of the occiput‐wall distance event for patients with ankylosing spondylitis.  相似文献   

12.
When analyzing Poisson count data sometimes a high frequency of extra zeros is observed. The Zero‐Inflated Poisson (ZIP) model is a popular approach to handle zero‐inflation. In this paper we generalize the ZIP model and its regression counterpart to accommodate the extent of individual exposure. Empirical evidence drawn from an occupational injury data set confirms that the incorporation of exposure information can exert a substantial impact on the model fit. Tests for zero‐inflation are also considered. Their finite sample properties are examined in a Monte Carlo study.  相似文献   

13.
Recurrent events data are commonly encountered in medical studies. In many applications, only the number of events during the follow‐up period rather than the recurrent event times is available. Two important challenges arise in such studies: (a) a substantial portion of subjects may not experience the event, and (b) we may not observe the event count for the entire study period due to informative dropout. To address the first challenge, we assume that underlying population consists of two subpopulations: a subpopulation nonsusceptible to the event of interest and a subpopulation susceptible to the event of interest. In the susceptible subpopulation, the event count is assumed to follow a Poisson distribution given the follow‐up time and the subject‐specific characteristics. We then introduce a frailty to account for informative dropout. The proposed semiparametric frailty models consist of three submodels: (a) a logistic regression model for the probability such that a subject belongs to the nonsusceptible subpopulation; (b) a nonhomogeneous Poisson process model with an unspecified baseline rate function; and (c) a Cox model for the informative dropout time. We develop likelihood‐based estimation and inference procedures. The maximum likelihood estimators are shown to be consistent. Additionally, the proposed estimators of the finite‐dimensional parameters are asymptotically normal and the covariance matrix attains the semiparametric efficiency bound. Simulation studies demonstrate that the proposed methodologies perform well in practical situations. We apply the proposed methods to a clinical trial on patients with myelodysplastic syndromes.  相似文献   

14.
The one‐inflated positive Poisson mixture model (OIPPMM) is presented, for use as the truncated count model in Horvitz–Thompson estimation of an unknown population size. The OIPPMM offers a way to address two important features of some capture–recapture data: one‐inflation and unobserved heterogeneity. The OIPPMM provides markedly different results than some other popular estimators, and these other estimators can appear to be quite biased, or utterly fail due to the boundary problem, when the OIPPMM is the true data‐generating process. In addition, the OIPPMM provides a solution to the boundary problem, by labelling any mixture components on the boundary instead as one‐inflation.  相似文献   

15.
This paper presents the zero‐truncated negative binomial regression model to estimate the population size in the presence of a single registration file. The model is an alternative to the zero‐truncated Poisson regression model and it may be useful if the data are overdispersed due to unobserved heterogeneity. Horvitz–Thompson point and interval estimates for the population size are derived, and the performance of these estimators is evaluated in a simulation study. To illustrate the model, the size of the population of opiate users in the city of Rotterdam is estimated. In comparison to the Poisson model, the zero‐truncated negative binomial regression model fits these data better and yields a substantially higher population size estimate. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Count data sets are traditionally analyzed using the ordinary Poisson distribution. However, such a model has its applicability limited as it can be somewhat restrictive to handle specific data structures. In this case, it arises the need for obtaining alternative models that accommodate, for example, (a) zero‐modification (inflation or deflation at the frequency of zeros), (b) overdispersion, and (c) individual heterogeneity arising from clustering or repeated (correlated) measurements made on the same subject. Cases (a)–(b) and (b)–(c) are often treated together in the statistical literature with several practical applications, but models supporting all at once are less common. Hence, this paper's primary goal was to jointly address these issues by deriving a mixed‐effects regression model based on the hurdle version of the Poisson–Lindley distribution. In this framework, the zero‐modification is incorporated by assuming that a binary probability model determines which outcomes are zero‐valued, and a zero‐truncated process is responsible for generating positive observations. Approximate posterior inferences for the model parameters were obtained from a fully Bayesian approach based on the Adaptive Metropolis algorithm. Intensive Monte Carlo simulation studies were performed to assess the empirical properties of the Bayesian estimators. The proposed model was considered for the analysis of a real data set, and its competitiveness regarding some well‐established mixed‐effects models for count data was evaluated. A sensitivity analysis to detect observations that may impact parameter estimates was performed based on standard divergence measures. The Bayesian ‐value and the randomized quantile residuals were considered for model diagnostics.  相似文献   

17.
The objective of the study was to provide a general procedure for mapping species abundance when data are zero‐inflated and spatially correlated counts. The bivalve species Macoma balthica was observed on a 500×500 m grid in the Dutch part of the Wadden Sea. In total, 66% of the 3451 counts were zeros. A zero‐inflated Poisson mixture model was used to relate counts to environmental covariates. Two models were considered, one with relatively fewer covariates (model “small”) than the other (model “large”). The models contained two processes: a Bernoulli (species prevalence) and a Poisson (species intensity, when the Bernoulli process predicts presence). The model was used to make predictions for sites where only environmental data are available. Predicted prevalences and intensities show that the model “small” predicts lower mean prevalence and higher mean intensity, than the model “large”. Yet, the product of prevalence and intensity, which might be called the unconditional intensity, is very similar. Cross‐validation showed that the model “small” performed slightly better, but the difference was small. The proposed methodology might be generally applicable, but is computer intensive.  相似文献   

18.
Recently, although advances were made on modeling multivariate count data, existing models really has several limitations: (i) The multivariate Poisson log‐normal model (Aitchison and Ho, 1989) cannot be used to fit multivariate count data with excess zero‐vectors; (ii) The multivariate zero‐inflated Poisson (ZIP) distribution (Li et al., 1999) cannot be used to model zero‐truncated/deflated count data and it is difficult to apply to high‐dimensional cases; (iii) The Type I multivariate zero‐adjusted Poisson (ZAP) distribution (Tian et al., 2017) could only model multivariate count data with a special correlation structure for random components that are all positive or negative. In this paper, we first introduce a new multivariate ZAP distribution, based on a multivariate Poisson distribution, which allows the correlations between components with a more flexible dependency structure, that is some of the correlation coefficients could be positive while others could be negative. We then develop its important distributional properties, and provide efficient statistical inference methods for multivariate ZAP model with or without covariates. Two real data examples in biomedicine are used to illustrate the proposed methods.  相似文献   

19.
Birth‐and‐death processes are widely used to model the development of biological populations. Although they are relatively simple models, their parameters can be challenging to estimate, as the likelihood can become numerically unstable when data arise from the most common sampling schemes, such as annual population censuses. A further difficulty arises when the discrete observations are not equi‐spaced, for example, when census data are unavailable for some years. We present two approaches to estimating the birth, death, and growth rates of a discretely observed linear birth‐and‐death process: via an embedded Galton‐Watson process and by maximizing a saddlepoint approximation to the likelihood. We study asymptotic properties of the estimators, compare them on numerical examples, and apply the methodology to data on monitored populations.  相似文献   

20.
We present the one‐inflated zero‐truncated negative binomial (OIZTNB) model, and propose its use as the truncated count distribution in Horvitz–Thompson estimation of an unknown population size. In the presence of unobserved heterogeneity, the zero‐truncated negative binomial (ZTNB) model is a natural choice over the positive Poisson (PP) model; however, when one‐inflation is present the ZTNB model either suffers from a boundary problem, or provides extremely biased population size estimates. Monte Carlo evidence suggests that in the presence of one‐inflation, the Horvitz–Thompson estimator under the ZTNB model can converge in probability to infinity. The OIZTNB model gives markedly different population size estimates compared to some existing truncated count distributions, when applied to several capture–recapture data that exhibit both one‐inflation and unobserved heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号